Physics 41 Homework Set 3 Chapter 17 Serway 7 th Edition

Size: px
Start display at page:

Download "Physics 41 Homework Set 3 Chapter 17 Serway 7 th Edition"

Transcription

1 Pyic 41 Homework Set 3 Capter 17 Serway 7 t Edition Q: 1, 4, 5, 6, 9, 1, 14, 15 Quetion *Q17.1 Anwer. Te typically iger denity would by itelf make te peed of ound lower in a olid compared to a ga. Q17.4 Te peed of ound to two ignificant figure i. Let aume tat you can meaure time to 1 econd by uing a topwatc. To get a peed to two ignificant figure, you 10 need to meaure a time of at leat 1.0 econd. Since d= vt, te minimum ditance i 340 meter. *Q17.5 (i) Anwer. Te frequency increae by a factor of becaue te wave peed, wic i dependent only on te medium troug wic te wave travel, remain contant. (ii) Anwer (c). *Q17.9 Anwer (d). Te drop in intenity i wat we ould expect according to te invere-quare law: 4πr 1 P and 4πr P ould agree. (300 m) ( μw/m ) and (950 m) (0. μw/m ) are 0.18 W and 0.18 W, agreeing wit eac oter. Q17.1 Our brave Siberian aw te firt wave e encountered, ligt traveling 8 at m. At te ame moment, infrared a well a viible ligt began warming i kin, but ome time wa required to raie te temperature of te outer kin layer before e noticed it. Te meteor produced compreional wave in te air and in te ground. Te wave in te ground, wic can be called eiter ound or a eimic wave, traveled muc fater tan te wave in air, ince te ground i muc tiffer againt compreion. Our witne received it next and noticed it a a little eartquake. He wa no doubt unable to ditingui te P and S wave from eac oter. Te firt air-compreion wave e received wa a ock wave wit an amplitude on te order of meter. It tranported im off i doortep. Ten e could ear ome additional direct ound, reflected ound, and perap te ound of te falling tree. *Q17.14 In f'= (v + v o )f/(v v ) we can conider te ize of te fraction (v + v o )/(v v ) in eac cae. Te poitive direction i defined to run from te oberver toward te ource. In (a), 340/340 = 1 In, 340/(340 5) = 1.08 In (c), 340/( ) = 0.93 In (d), (340+5)/340 = 1.07 In (e), (340 5)/340 = 0.96 In (f) ( )/( ) = 1 In (g) (340 5)/(340 5) = 1. In order of decreaing ize we ave b > d > a = f = g > c > e. *Q17.15 (i) Anwer (c). Bot oberver and ource ave equal peed in oppoite direction relative to te medium, o in f'= (v + v o )f/(v v ) we would ave ometing like (340 5)f/(340 5) = f. (ii) Anwer (a). Te peed of te medium add to te peed of ound a far a te oberver i concerned, to caue an increae in λ = v/f. (iii) Anwer (a).

2 Problem: 3, 5, 7, 9, 11, 13, 17, 19, 3, 33, 38, 39,41 *P17.3 Te ound pule mut travel 150 m before reflection and 150 m after reflection. We ave d= vt d 300 m t = = = v 1533 m P17.5 Sound take ti time to reac te man: ( ) 0.0 m 1.75 m = m o te warning ould be outed no later tan = before te pot trike. 1 1 Since te wole time of fall i given by y = gt : 18.5 m = ( 9.80 m ) t t = 1.93 te warning need to come = 1.58 into te fall, wen te pot a fallen 1 ( 9.80 m )( 1.58 ) = 1. m to be above te ground by 0.0 m 1. m = 7.8 m 7. A cowboy tand on orizontal ground between two parallel vertical cliff. He i not midway between te cliff. He fire a ot, and ear it ecoe. Te econd eco arrive 1.9 after te firt, and 1.47 before te tird. Conider only te ound traveling parallel to te ground and reflecting from te cliff. Take te peed of ound a 340 m/. (a) Wat i te ditance between te cliff? Wat If? If e can ear a fourt eco, ow long after te tird eco doe it arrive? *P17.7 Let x1 repreent te cowboy ditance from te nearer canyon wall and x i ditance from te farter cliff. Te ound for te firt eco travel ditance x 1. For te econd, x. For te tird, x x1 x1+ x. For te fourt eco, x1 + x+ x1. Ten = 1.9 and x1+ x x 1 x = Tu m x = = and = ; x = 576 m. (a) So x1+ x = 86 m x + x + x x + x = 1.47

3 v 1500 m *P17.9 (a) If f =.4 M H z, λ = = = 6 f.4 10 v 1500 m If f = 1 M H z, λ = = = 6 f mm 1.50 mm m If f = 0 M H z, λ = = μm P17.11 (a) A =.00 μm π λ = = m = 40.0 cm 15.7 ω 858 v = = = 54.6 m k =.00co = μm 1 (c) v Aω ( μ ) max = =.00 m 858 = 1.7 mm 13. Write an expreion tat decribe te preure variation a a function of poition and time for a inuoidal ound wave in air, if λ = m and Δ Pmax = 0.00 N/m. π π P17.13 k= = = 6.8 m λ ( m ) ( m ) 1 π v π 343 m ω = = = λ Terefore, Δ = P 0.00 Pa in 6.8x m t. Write te function tat decribe te diplacement wave correponding to te preure wave in Problem 13. π v π 343 m 4 ω = π f= = = rad λ ( m ) ( 0.00 Pa) ΔP 8 = = =.5 10 m ρω v max max π π k = = = 6.8 m λ ( m ) ( 1.0 kg m )( 343 m )( ) 1 Terefore, maxco ( kx ω t) ( m ) co( 6.8x m t) = =.

4 P17.17 β 6 I = 10log = 10log 66.0 db 1 = I P17.19 I = ρω maxv (a) At f = 500 Hz, te frequency i increaed by a factor of.50, o te intenity (at contant ) increae by.50 = 6.5. max = 3.75 W m Terefore, W m 3. A family ice ow i eld at an encloed arena. Te kater perform to muic wit level 80.0 db. Ti i too loud for your baby, wo yell at 75.0 db. (a) Wat total ound intenity engulf you? Wat i te combined ound level? 1 P17.3 (a) ( β1 ) 1 = ( ) = ( ) I W m W m 10 or 4 I 1 = W m 1 ( β ) I = W m 10 = W m or I = W m = W m Wen bot ound are preent, te total intenity i I= I1+ I = W m W m = W m Te decibel level for te combined ound i W m 8 β = 10log 10log 1 ( = ) = W m 81. db..

5 P17.6 We preume te peaker broadcat equally in all direction. (a) r = + = AC P m 5.00 m W W m I = = = m π r π W m β = 10 dblog 1 10 W m β = 10 db 6.50 = 65.0 db r BC = 4.47 m W W m I = = m π β = 10 dblog 1 10 β = 67.8 db (c) I = 3.18 μw m μw m β = 10 dblog = 69.6 db 1 10 *P17.33 (a) f = ( + vo) ( v v ) f v ( ) ( ) f = 500 = 3.04 kh z (c) f = 500 =.08 khz 343 ( 40.0) f = 500 =.6 khz f = 500 =.40 khz 343 ( 40.0) wile police car overtake after police car pae

6 38. A iren mounted on te roof of a fireoue emit ound at a frequency of 900 Hz. A teady wind i blowing wit a peed of 15.0 m/. Taking te peed of ound in calm air to be 343 m/, find te wavelengt of te ound (a) upwind of te iren and downwind of te iren. Firefigter are approacing te iren from variou direction at 15.0 m/. Wat frequency doe a firefigter ear (c) if e or e i approacing from an upwind poition, o tat e i moving in te direction in wic te wind i blowing? (d) if e or e i approacing from a downwind poition and moving againt te wind? *P17.38 (a) Sound move upwind wit peed ( ) at frequency 900 Hz. Ten λ = v 38 m f = 900 = m. Cret pa a tationary upwind point m By imilar logic, ( + ) v m λ = = = f m (c) (d) Te ource i moving troug te air at 15 m/ toward te oberver. Te oberver i tationary relative to te air. v+ vo f = f = 900 Hz = 941 Hz v v Te ource i moving troug te air at 15 m/ away from te downwind firefigter. Her peed relative to te air i 30 m/ toward te ource. v+ vo f = f = 900 Hz = 900 Hz = 938 Hz v v P17.39 You ave to do firt! v 1 in θ = = ; θ = 19.5 v 3.00 S tanθ = ; x = x tan θ t = 0 θ x θ Oberver Oberver ear te boom a. b m m 56.6 km x = = = tan19.5 (a) It take te plane 4 x m t = = = 56.3 to travel ti ditance. v m S

Velocity or 60 km/h. a labelled vector arrow, v 1

Velocity or 60 km/h. a labelled vector arrow, v 1 11.7 Velocity en you are outide and notice a brik wind blowing, or you are riding in a car at 60 km/, you are imply conidering te peed of motion a calar quantity. ometime, owever, direction i alo important

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE SEISMIC ACTIVE EARTH PRESSURE ON RETAINING WALL CONSIDERING SOIL AMPLIFICATION

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE SEISMIC ACTIVE EARTH PRESSURE ON RETAINING WALL CONSIDERING SOIL AMPLIFICATION INDIAN GEOTECHNICAL CONFERENCE SEISMIC ACTIVE EARTH PRESSURE ON RETAINING WALL CONSIDERING SOIL AMPLIFICATION Obaidur Raaman 1 and Priati Raycowdury 2 ABSTRACT Te quet for te realitic etimation of eimic

More information

Sound Waves. Answer (c). Every crest in air produces one crest in water immediately as it reaches the interface, so there must be 500 in every second.

Sound Waves. Answer (c). Every crest in air produces one crest in water immediately as it reaches the interface, so there must be 500 in every second. 7 ound Wae CHAPTER OUTLNE 7. peed of ound Wae 7. Periodic ound Wae 7.3 ntenity of Periodic ound Wae 7.4 The Doppler Effect 7.5 Digital ound Recording 7.6 Motion Picture ound *Q7. ANWER TO QUETON Anwer

More information

Unit 2 Linear Motion

Unit 2 Linear Motion Unit Linear Motion Linear Motion Key Term - How to calculate Speed & Ditance 1) Motion Term: a. Symbol for time = (t) b. Diplacement (X) How far omething travel in a given direction. c. Rate How much omething

More information

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work.

Sound waves. Content. Chapter 21. objectives. objectives. When we use Sound Waves. What are sound waves? How they work. Chapter 21. Sound wae Content 21.1 Propagation o ound wae 21.2 Source o ound 21.3 Intenity o ound 21.4 Beat 21.5 Doppler eect 1 2 objectie a) explain the propagation o ound wae in air in term o preure

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

Cumulative Review of Calculus

Cumulative Review of Calculus Cumulative Review of Calculu. Uing the limit definition of the lope of a tangent, determine the lope of the tangent to each curve at the given point. a. f 5,, 5 f,, f, f 5,,,. The poition, in metre, of

More information

Physics 6C. Heisenberg Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Heisenberg Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C Heienberg Uncertainty Principle Heienberg Uncertainty Principle Baic Idea you can t get eact meaurement 2 Verion: E p t 2 2 Eample: For te electron in te previou eample, teir wavelengt wa 0.123nm.

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

EELE 3332 Electromagnetic II Chapter 10

EELE 3332 Electromagnetic II Chapter 10 EELE 333 Electromagnetic II Chapter 10 Electromagnetic Wave Propagation Ilamic Univerity of Gaza Electrical Engineering Department Dr. Talal Skaik 01 1 Electromagnetic wave propagation A changing magnetic

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Unit I Review Worksheet Key

Unit I Review Worksheet Key Unit I Review Workheet Key 1. Which of the following tatement about vector and calar are TRUE? Anwer: CD a. Fale - Thi would never be the cae. Vector imply are direction-conciou, path-independent quantitie

More information

Intermediate Math Circles November 5, 2008 Geometry II

Intermediate Math Circles November 5, 2008 Geometry II 1 Univerity of Waterloo Faculty of Matematic Centre for Education in Matematic and Computing Intermediate Mat Circle November 5, 2008 Geometry II Geometry 2-D Figure Two-dimenional ape ave a perimeter

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

ELECTROMAGNETIC WAVES AND PHOTONS

ELECTROMAGNETIC WAVES AND PHOTONS CHAPTER ELECTROMAGNETIC WAVES AND PHOTONS Problem.1 Find the magnitude and direction of the induced electric field of Example.1 at r = 5.00 cm if the magnetic field change at a contant rate from 0.500

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number:

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number: Anwer to Practice Tet Quetion 4 Electron, Orbital Quantu Nuber. Heienberg uncertaint principle tate tat te preciion of our knowledge about a particle poition it oentu are inverel related. If we ave ore

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C De Broglie Wavelengt Uncertainty Principle De Broglie Wavelengt Bot ligt and atter ave bot particle and wavelike propertie. We can calculate te wavelengt of eiter wit te ae forula: p v For large

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

2.3 Formulas. Evaluating Formulas. EXAMPLE 1 Event promotion. Event promoters use the formula. Evaluating Formulas a Solving for a Variable

2.3 Formulas. Evaluating Formulas. EXAMPLE 1 Event promotion. Event promoters use the formula. Evaluating Formulas a Solving for a Variable 2.3 Formula Evaluating Formula a Solving for a Variable Many application of matematic involve relationip among two or more quantitie. An equation tat repreent uc a relationip will ue two or more letter

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4.

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4. 05 PhyicBowl Solution # An # An # An # An # An B B B 3 D 4 A C D A 3 D 4 C 3 A 3 C 3 A 33 C 43 B 4 B 4 D 4 C 34 A 44 E 5 E 5 E 5 E 35 E 45 B 6 D 6 A 6 A 36 B 46 E 7 A 7 D 7 D 37 A 47 C 8 E 8 C 8 B 38 D

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Psychrometrics. PV = N R u T (9.01) PV = N M R T (9.02) Pv = R T (9.03) PV = m R T (9.04)

Psychrometrics. PV = N R u T (9.01) PV = N M R T (9.02) Pv = R T (9.03) PV = m R T (9.04) Pycrometric Abtract. Ti capter include baic coverage of pycrometric propertie and pycrometric procee. Empai i upon propertie and procee relative to te environment and to proceing of biological material.

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Frames of Reference and Relative Velocity

Frames of Reference and Relative Velocity 1.5 frame of reference coordinate ytem relative to which motion i oberved Frame of Reference and Relative Velocity Air how provide element of both excitement and danger. When high-peed airplane fly in

More information

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?)

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?) High-field behavior: the law of approach to aturation (I there an equation for the magnetization at high field? In the high-field region the magnetization approache aturation. The firt attempt to give

More information

Hilbert-Space Integration

Hilbert-Space Integration Hilbert-Space Integration. Introduction. We often tink of a PDE, like te eat equation u t u xx =, a an evolution equation a itorically wa done for ODE. In te eat equation example two pace derivative are

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

EP225 Note No. 5 Mechanical Waves

EP225 Note No. 5 Mechanical Waves EP5 Note No. 5 Mechanical Wave 5. Introduction Cacade connection of many ma-pring unit conitute a medium for mechanical wave which require that medium tore both kinetic energy aociated with inertia (ma)

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Derivative as Instantaneous Rate of Change

Derivative as Instantaneous Rate of Change 43 Derivative as Instantaneous Rate of Cange Consider a function tat describes te position of a racecar moving in a straigt line away from some starting point Let y s t suc tat t represents te time in

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

A) At each point along the pipe, the volume of fluid passing by is given by dv dt = Av, thus, the two velocities are: v n. + ρgy 1

A) At each point along the pipe, the volume of fluid passing by is given by dv dt = Av, thus, the two velocities are: v n. + ρgy 1 1) The horizontal pipe hon in Fig. 1 ha a diameter of 4.8 cm at the ider portion and 3.7 cm at the contriction. Water i floing in the pipe and the dicharge from the pipe i 6.50 x -3 m 3 /. A) Find the

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Sound Waves. Solutions of Home Work Problems

Sound Waves. Solutions of Home Work Problems Chapter 17 Sound Waves. s of Home Work Problems 17.1 Problem 17.8 (In the text book An ultrasonic tape measure uses frequencies above 20.0 M Hz to determine dimensions of structures such as buildings.

More information

Homework 1. L φ = mωr 2 = mυr, (1)

Homework 1. L φ = mωr 2 = mυr, (1) Homework 1 1. Problem: Streetman, Sixt Ed., Problem 2.2: Sow tat te tird Bor postulate, Eq. (2-5) (tat is, tat te angular momentum p θ around te polar axis is an integer multiple of te reduced Planck constant,

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2 Pysics 121, April 1, 2008. Pysics 121. April 1, 2008. Course Information Discussion of Exam # 2 Topics to be discussed today: Requirements for Equilibrium Gravitational Equilibrium Sample problems Pysics

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

This appendix derives Equations (16) and (17) from Equations (12) and (13).

This appendix derives Equations (16) and (17) from Equations (12) and (13). Capital growt pat of te neoclaical growt model Online Supporting Information Ti appendix derive Equation (6) and (7) from Equation () and (3). Equation () and (3) owed te evolution of pyical and uman capital

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

The distance between City C and City A is just the magnitude of the vector, namely,

The distance between City C and City A is just the magnitude of the vector, namely, Pysics 11 Homework III Solutions C. 3 - Problems 2, 15, 18, 23, 24, 30, 39, 58. Problem 2 So, we fly 200km due west from City A to City B, ten 300km 30 nort of west from City B to City C. (a) We want te

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

h=1 cm 1.03 g/cm 1.43 g/cm

h=1 cm 1.03 g/cm 1.43 g/cm ES 43/614: Introduction to Oceanograpy Solution Homeork # 1) Tere i uge lake it contant ater dept 1 cm and an extenion of 5 km. Te ater in te lake i till and unperturbed (noting move). No e drop object,

More information

Fringe integral equations for the 2-D wedges with soft and hard boundaries. r Fringe Wave Integral Equation

Fringe integral equations for the 2-D wedges with soft and hard boundaries. r Fringe Wave Integral Equation RESEARCH ARTICLE Key Point: An alternative approac baed on te integral euation derived directly for tefringecurrentipreented A MoM-baed algoritm i developed for direct modeling of fringe wave around oft

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

Non-Computability of Consciousness

Non-Computability of Consciousness NeuroQuantolog December 2007 Vol 5 Iue 4 Page 382-39 Song D. Non-computabilit of concioune 382 Original Article Non-Computabilit of Concioune Daegene Song Abtract Wit te great ucce in imulating man intelligent

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

CHAPTER 18 MOTION IN A CIRCLE

CHAPTER 18 MOTION IN A CIRCLE EXERCISE, Pae 6 CHAPTER 8 MOTION IN A CIRCLE. A locomotive travels around a curve of 0 m radius. If te orizontal trust on te outer rail is of te locomotive weit, determine te speed of te locomotive. Te

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

Downloaded from

Downloaded from HEIGHTS AND DISTANCES 1. If te angle of elevation of cloud from a point meters aove a lake is and te angle of depression of its reflection in te lake is cloud is., prove tat te eigt of te Ans : If te angle

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: KEY Block: Date: 1. A change in velocity occur when the peed o an object change, or it direction o motion change, or both. Thee change in velocity can either be poitive

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Chapter 17 Solutions

Chapter 17 Solutions Chapter 17 Solutions 17.1 Since v light >> v sound, d (343 m/s)(16. s) 5.56 km Goal Solution G: There is a common rule of thumb that lightning is about a mile away for every 5 seconds of delay between

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Pearson Physics Level 30 Unit VII Electromagnetic Radiation: Chapter 14 Solutions

Pearson Physics Level 30 Unit VII Electromagnetic Radiation: Chapter 14 Solutions Pearon Pyic Level 30 Unit VII Electromagnetic Radiation: Cater 14 Solution Student Book age 704 Concet Ceck Te colour of te tar are a firt indication of te temerature of teir urface. Te brigt red tar,

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization Finite Element Analyi of a Fiber Bragg Grating Accelerometer for Performance Optimization N. Baumallick*, P. Biwa, K. Dagupta and S. Bandyopadhyay Fiber Optic Laboratory, Central Gla and Ceramic Reearch

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

Internet Appendix for Informational Frictions and Commodity Markets

Internet Appendix for Informational Frictions and Commodity Markets Internet ppendix for Informational Friction and Commodity Market MICHEL SOCKIN and WEI XIONG In ti appendix, we preent in detail an extended model wit a future market, in upplement to te ummary of te model

More information