SINGULARLY PERTURBED BOUNDARY VALUE. We consider the following singularly perturbed boundary value problem

Size: px
Start display at page:

Download "SINGULARLY PERTURBED BOUNDARY VALUE. We consider the following singularly perturbed boundary value problem"

Transcription

1 Cater PARAETRIC QUITIC SPLIE SOLUTIO OR SIGULARLY PERTURBED BOUDARY VALUE PROBLES Introcton We conser te ollong snglarly ertrbe bonary vale roblem " L r r > an ere s a small ostve arameter st << r an are scently smoot nctons st r r > an < < We ave mose te conton r r > to ensre te estence an neness o te solton 8 We se arametrc ntc slne or ts solton Sc n o roblems arses n varos els o engneerng an scence or eamle elastcty l ynamcs otmal control teory yroynamcs etc any ators ave scsse te nmercal solton o snglarly ertrbe bonary vale roblems n ter or In ts cater e evelo a amly o metos base on arametrc ntc slne In secton e ave gven te bre ntrocton o arametrc ntc slne an erve mortant slne relatons In secton e ale te arametrc ntc slne tecne on snglarly ertrbe bonary vale roblem an obtane te

2 Parametrc Qntc Slne Solton sceme Secton ncles te eveloment o bonary contons o orer or an s an sbsecton enes te erent class o metos base on ter orer In secton convergence analyss o te metos s scsse an secton contans nmercal llstratons o te roose metos Parametrc Qntc Slne an ts Relatons In ts secton e ave resente te ormlaton o te arametrc ntc slne nterolant S τ C a b an erve te slne relatons or te ormlatons o or metos b a Conser a norm mes { } A ncton τ S o class C a b c nterolates at te mes onts eens on te arameterτ reces to ntc slne S n a b as τ s terme as arametrc ntc slne ncton Snce te arameter τ can occr n τ n many ays sc a slne s not ne S I S τ S s a arametrc ntc slne satsyng te ollong erental eaton n te nterval - S τ S τ τ Q Q ere Q τ S S an τ > ten t s terme arametrc ntc slne I 8

3 Parametrc Qntc Slne Solton Solvng an etermnng te or constants o ntegraton rom te nterolatng contons at an - e obtan!!! S ere sn / sn τ ± ± Smlarly n te nterval e get!!! S Usng te contnty contons o rst an secon orer ervatves e obtan rom an e obtan: ltlyng by an by an ang e get

4 Parametrc Qntc Slne Solton Usng e ave te ollong relatons s 7 ere s cos ec cot τ Remar: 7 8 As τ e ten an 8 s o 8 teslneene by reces to ntc slne8 Te eto At te mes onts a te erental eaton can be screte by sng te slne relaton 7 to obtan

5 Parametrc Qntc Slne Solton 7 s r r rs r r Remar: or an s or meto reces to ntc slne meto Develoment o Bonary Eatons We evelo t orer bonary contons at as s T Relacng te cttos vales - an - sng Taylor s teorem e get s T ere r s r r an ence

6 Parametrc Qntc Slne Solton 8 " " " s T Usng Taylor s seres an comarng te coecents o an e get s an Pttng tese vales n e get te ort orer bonary eaton as O r r r Smlarly at te oter en te bonary eaton s gven by O r r r rove rter n orer to obtan te st orer meto e evelo te bonary contons as ollos: t b b b b t b b b b By Taylor s eanson e obtan te vales o te nnons as ollos:

7 Parametrc Qntc Slne Solton 9 b b b b Te local trncaton error t assocate t te sceme s gven by t " " s " " " Class o etos Eatons to gve rse to a class o metos o erent orer as ollos: Secon orer meto or an s or sceme s o secon orer an te local trncaton error s t t / t 77 / 77 / ort orer meto 7 or / / s / or sceme s o ort orer an te local trncaton error s t t / 7 t 77 / 77 / 8 an or sceme reces to A an Kan s meto

8 Parametrc Qntc Slne Solton St orer meto or 7 / 7 9 / 9 s 7 / an b b b b Or meto s st orer an local trncaton error s 8 t 79 / 8 t 8 8 t / / v St orer at nteror noes an ort orer at en onts or 7 / 7 9 / 9 s 7 / or sceme s ort orer at te en onts an st orer at nteror noes an local trncaton error s t t 77 / 8 8 t / 8 77 / Convergence o te eto Pttng te enta agonal system n te matr e ave AU D C ere A a j s a enta agonal matr o orer - t coecent o ± n eaton a ± - - T U - - T

9 Parametrc Qntc Slne Solton D s s s an C c c c - c - T ere r c r c c r c r c or St orer meto D s s s

10 Parametrc Qntc Slne Solton an C c c c - c - T ere c r b c r c c r c r b Also e ave A U D T C T ere U s eact solton an T T t t t s te local trncaton error vector rom eaton an e ave A U U AE T ere E U U T e e e Clearly te ro sms S a j r s j j S a j r s j S a r s B j -

11 Parametrc Qntc Slne Solton S S j a j r s j j a r s We can coose scently small so tat te matr A s rrecble an monotone It ollos tat A - ests an ts elements are nonnegatve Hence rom eaton e ave E A T Also rom te teory o matrces e ave a S - ere a s element o matr A - Tereore a mn S B B ere B / mn S or some beteen an - > rom -9 an e ave e j a T j - j j an tereore or Secon Orer eto K e j j - 7 B ere K s neenent o

12 Parametrc Qntc Slne Solton Tereore t ollos tat E O or ort Orer eto ere K s neenent o Tereore t ollos tat E O or St Orer eto K e j j - 8 B K e j j - 9 B ere K s neenent o Tereore at te noal onts t ollos tat E O We smmare te above reslts n te ollong teorem: Teorem Te meto gven by along t te bonary contons o erent orers or solvng bonary vale roblem t r an scently small gves te ollong class o convergent soltons: E O s a secon orer convergent gven by 7 E O s a ort orer convergent gven by 8 E O s a st orer convergent gven by 9

13 Parametrc Qntc Slne Solton mercal Illstratons an Dscssons We conser nmercal eamles to llstrate comaratve erormance o or metos Te mamm absolte errors are tablate n tables - or erent vales o te arameters an an comare or reslts t te oter non estng metos All calclatons are mlemente by ATLAB7 Eamle Doolan et al8 " cos π π cosπ Te eact solton s gven by e / e / / e / cos π Snce > te bonary layer ests at bot ens Te mamm error at te noal onts ma s tablate n tables - Table : amm absolte errors or Secon orer meto 8 / 7E- 7E- 97E- 87E- 8E- / E- 7E- 7E- 8E- 7E- / E- 7E- 9E- 7E- 9E-

14 Parametrc Qntc Slne Solton Table : amm absolte errors or ort orer meto 8 / 879E-7 E-8 E-9 9E- 8E- / E-7 E-8 E-9 E- E- / 87E-7 E-8 9E-9 78E- 779E- Table : amm absolte errors or St orer meto at nteror noes 8 / 98E-8 E-9 9E- E- 7E- / E-7 7E-9 8E- 7E- E- / 9E-7 E-8 97E- E- 7E- Table : amm absolte errors or St orer meto 8 / 8E-9 78E- 9E- 7E- 79E- / E-9 E- 9E- 9E- 7E- / 79E-8 E- E- E- 7E-

15 Parametrc Qntc Slne Solton 7 Table : amm absolte errors 8 / E- 8 E- 7 E- 7 E- / 79 E- 8 E- E- 8 E- / E- E- E- E- Table : amm absolte errors 8 / E- E- E- 8 E- / 9 E- E- E- E- / 8 E- 8 E- E- E- Table 7: amm absolte errors 8 / 77 E- 7 E-7 9 E-8 9 E-9 / 8 E- E-7 E-8 99 E-9 / E- E-7 9 E-8 E-9

16 Parametrc Qntc Slne Solton 8 Table 8: amm absolte errors 8 / 77 E- E- E- 78 E- / E- E- 889 E- E- / E- E- E- 8 E- Table 9: amm absolte errors 8 / E- 8 E E-9 7 E- / E- 77 E-8 8 E-9 E- / E- E-7 E-8 89 E- Table : amm absolte errors 9 8 / 8 E-9 7 E- 7 E- 888 E- / 8 E-8 7 E- 9 E- 9 E- / 8 E-7 E-9 8 E- 97 E-

17 Parametrc Qntc Slne Solton 9 Eamle " e / e / Te eact solton s gven by e / e / Te mamm error at te noal onts ma s tablate n Tables - Table : amm absolte errors or Secon orer meto 8 / E- E- E- E- E- / 8 E- 87 E- 8 E- 7 E- 98 E- / 7 E- 97 E- 8 E- E- E- Table : amm absolte errors or ort orer meto 8 / 8 E-7 E-8 7 E- E- E- / E-7 7 E-8 97 E-9 E- 778 E- / E- 9 E-8 7 E-9 98 E- E-

18 Parametrc Qntc Slne Solton Table : amm absolte errors or St orer meto at nteror noes 8 / E-8 E- 7 E- 99 E- 9 E- / 9 E-7 7 E-9 E- 77 E- E- / 89 E-7 7 E-8 8 E- 7 E- E- Table : amm absolte errors or St orer meto 8 / 7 E- 78 E- 7 E- E- E- / E-9 9 E- 7 E- 87 E- E- / 7 E-8 8 E- 9 E- 88 E- E-

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Optimization. Nuno Vasconcelos ECE Department, UCSD

Optimization. Nuno Vasconcelos ECE Department, UCSD Optmzaton Nuno Vasconcelos ECE Department, UCSD Optmzaton many engneerng problems bol on to optmzaton goal: n mamum or mnmum o a uncton Denton: gven unctons, g,,...,k an h,,...m ene on some oman Ω R n

More information

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2. SE 8 Fnal Project Story Sear Frame Gven: EI ω ω Solve for Story Bendng Beam Gven: EI ω ω 3 Story Sear Frame Gven: L 3 EI ω ω ω 3 3 m 3 L 3 Solve for Solve for m 3 3 4 3 Story Bendng Beam Part : Determnng

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems ISSN 746-769 England UK Journal of Informaton and Computng Scence Vol. 7 No. 4 pp. 33-34 A Splne based computatonal smulatons for solvng selfadjont sngularly perturbed two-pont boundary value problems

More information

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS In ts lecture we wll ntroduce two mortant classes of mas of saces, namely te Hurewcz fbratons and te more general Serre fbratons, wc are bot obtaned by mosng certan

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Chapter 7 Clustering Analysis (1)

Chapter 7 Clustering Analysis (1) Chater 7 Clusterng Analyss () Outlne Cluster Analyss Parttonng Clusterng Herarchcal Clusterng Large Sze Data Clusterng What s Cluster Analyss? Cluster: A collecton of ata obects smlar (or relate) to one

More information

Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition

Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition Lecture Hertablty Hertablty: n Intutve pproac Frst enton Broa Sense: Proporton o te penotypc varaton ue to genetc causes H G Y Narro Sense: Proporton o te penotypc varaton ue to atve genetc eects Y Useul

More information

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES wwwrresscom/volmes/vol7isse/ijrras_7 df UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOIAL OPERATOR ON DOAINS IN COPLEX PROJECTIVE SPACES D Feng & L Ynl * Scool of emcs nd Pyscs Scence

More information

Lecture: Financing Based on Market Values II

Lecture: Financing Based on Market Values II Lectre: Fnancng Based on Market Vales II Ltz Krscwtz & Andreas Löler Dsconted Cas Flow, Secton 2.4.4 2.4.5, Otlne 2.4.4 Mles-Ezzell- and Modglan-Mller Mles-Ezzell adjstment Modglan-Mller adjstment 2.4.5

More information

The Bellman Equation

The Bellman Equation The Bellman Eqaton Reza Shadmehr In ths docment I wll rovde an elanaton of the Bellman eqaton, whch s a method for otmzng a cost fncton and arrvng at a control olcy.. Eamle of a game Sose that or states

More information

Bounds for Spectral Radius of Various Matrices Associated With Graphs

Bounds for Spectral Radius of Various Matrices Associated With Graphs 45 5 Vol.45, No.5 016 9 AVANCES IN MATHEMATICS (CHINA) Sep., 016 o: 10.11845/sxjz.015015b Bouns for Spectral Raus of Varous Matrces Assocate Wth Graphs CUI Shuyu 1, TIAN Guxan, (1. Xngzh College, Zhejang

More information

QUANTITATIVE RISK MANAGEMENT TECHNIQUES USING INTERVAL ANALYSIS, WITH APPLICATIONS TO FINANCE AND INSURANCE

QUANTITATIVE RISK MANAGEMENT TECHNIQUES USING INTERVAL ANALYSIS, WITH APPLICATIONS TO FINANCE AND INSURANCE QANTITATIVE RISK MANAGEMENT TECHNIQES SING INTERVA ANAYSIS WITH APPICATIONS TO FINANCE AND INSRANCE Slva DED Ph.D. Bucharest nversty of Economc Studes Deartment of Aled Mathematcs; Romanan Academy Insttute

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

MEMBRANE ELEMENT WITH NORMAL ROTATIONS

MEMBRANE ELEMENT WITH NORMAL ROTATIONS 9. MEMBRANE ELEMENT WITH NORMAL ROTATIONS Rotatons Mst Be Compatble Between Beam, Membrane and Shell Elements 9. INTRODUCTION { XE "Membrane Element" }The comple natre of most bldngs and other cvl engneerng

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

COSC 6374 Parallel Computation

COSC 6374 Parallel Computation COSC 67 Parallel Comptaton Partal Derental Eqatons Edgar Gabrel Fall 0 Nmercal derentaton orward derence ormla From te denton o dervatves one can derve an appromaton or te st dervatve Te same ormla can

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

A Note on the Numerical Solution for Fredholm Integral Equation of the Second Kind with Cauchy kernel

A Note on the Numerical Solution for Fredholm Integral Equation of the Second Kind with Cauchy kernel Journal of Mathematcs an Statstcs 7 (): 68-7, ISS 49-3644 Scence Publcatons ote on the umercal Soluton for Freholm Integral Equaton of the Secon Kn wth Cauchy kernel M. bulkaw,.m.. k Long an Z.K. Eshkuvatov

More information

Lecture Notes Di erentiating Trigonometric Functions page 1

Lecture Notes Di erentiating Trigonometric Functions page 1 Lecture Notes Di erentiating Trigonometric Functions age (sin ) 7 sin () sin 8 cos 3 (tan ) sec tan + 9 tan + 4 (cot ) csc cot 0 cot + 5 sin (sec ) cos sec tan sec jj 6 (csc ) sin csc cot csc jj c Hiegkuti,

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION?

WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION? ISAHP 001, Berne, Swtzerlan, August -4, 001 WHY NOT USE THE ENTROPY METHOD FOR WEIGHT ESTIMATION? Masaak SHINOHARA, Chkako MIYAKE an Kekch Ohsawa Department of Mathematcal Informaton Engneerng College

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

MOLECULAR TOPOLOGICAL INDEX OF C 4 C 8 (R) AND C 4 C 8 (S) NANOTORUS

MOLECULAR TOPOLOGICAL INDEX OF C 4 C 8 (R) AND C 4 C 8 (S) NANOTORUS Dgest Journal of Nanomaterals an Bostructures ol No December 9 69-698 MOLECULAR TOPOLOICAL INDEX OF C C 8 R AND C C 8 S NANOTORUS ABBAS HEYDARI Deartment of Mathematcs Islamc Aza Unverst of Ara Ara 85-567

More information

Parametric Useful Information Measure of Order Some Coding Theorem

Parametric Useful Information Measure of Order Some Coding Theorem Avalable onlne wwwejaetcom Eroean Jornal of Advances n Engneerng and Technoy, 207, 4(8): 603-607 Research Artcle ISS: 2394-658X Parametrc Usefl Informaton Measre of Order Some Codng Theorem egree and hanesh

More information

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008 Mat 324 Advanced Fnancal Matematcs Sprng 28 Fnal Exam Solutons May 2, 28 Ts s an open book take-ome exam. You may work wt textbooks and notes but do not consult any oter person. Sow all of your work and

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1 Problem Set 4 Suggested Solutons Problem (A) The market demand functon s the soluton to the followng utlty-maxmzaton roblem (UMP): The Lagrangean: ( x, x, x ) = + max U x, x, x x x x st.. x + x + x y x,

More information

Finite Element Analysis of the Ramberg-Osgood Bar

Finite Element Analysis of the Ramberg-Osgood Bar Amercan Jornal of Comtatonal Matematcs, 3, 3, -6 tt://doorg/436/ajcm3333 Pblsed Onlne Setember 3 (tt://wwwscrorg/jornal/ajcm) Fnte Element Analss of te Ramberg-Osgood Bar Dongmng We, Moamed B M Elgnd Deartment

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Parametric Spline Method for Solving Bratu s Problem

Parametric Spline Method for Solving Bratu s Problem ISSN 749-3889 print, 749-3897 online International Journal of Nonlinear Science Vol4202 No,pp3-0 Parametric Spline Metod for Solving Bratu s Problem M Zarebnia, Z Sarvari 2,2 Department of Matematics,

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

Solution Set #3

Solution Set #3 5-55-7 Soluton Set #. Te varaton of refractve ndex wt wavelengt for a transarent substance (suc as glass) may be aroxmately reresented by te emrcal equaton due to Caucy: n [] A + were A and are emrcally

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

An application of generalized Tsalli s-havrda-charvat entropy in coding theory through a generalization of Kraft inequality

An application of generalized Tsalli s-havrda-charvat entropy in coding theory through a generalization of Kraft inequality Internatonal Journal of Statstcs and Aled Mathematcs 206; (4): 0-05 ISS: 2456-452 Maths 206; (4): 0-05 206 Stats & Maths wwwmathsjournalcom Receved: 0-09-206 Acceted: 02-0-206 Maharsh Markendeshwar Unversty,

More information

Confidence intervals for weighted polynomial calibrations

Confidence intervals for weighted polynomial calibrations Confdence ntervals for weghted olynomal calbratons Sergey Maltsev, Amersand Ltd., Moscow, Russa; ur Kalambet, Amersand Internatonal, Inc., Beachwood, OH e-mal: kalambet@amersand-ntl.com htt://www.chromandsec.com

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

C PLANE ELASTICITY PROBLEM FORMULATIONS

C PLANE ELASTICITY PROBLEM FORMULATIONS C M.. Tamn, CSMLab, UTM Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and

More information

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration Managng Caacty Through eward Programs on-lne comanon age Byung-Do Km Seoul Natonal Unversty College of Busness Admnstraton Mengze Sh Unversty of Toronto otman School of Management Toronto ON M5S E6 Canada

More information

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives E 5 Engneerng nlss ore on Fnte Eleents n ore on Fnte Eleents n Two Densons Two Densons Lrr Cretto echncl Engneerng 5 Senr n Engneerng nlss prl 7-9 9 Otlne Revew lst lectre Qrtc ss nctons n two ensons orer

More information

PROJECTIVE REPRESENTATIONS OF QUIVERS

PROJECTIVE REPRESENTATIONS OF QUIVERS IJMMS 31:2 22 97 11 II. S1611712218192 ttp://ijmms.indawi.com Hindawi ublisin Corp. ROJECTIVE RERESENTATIONS OF QUIVERS SANGWON ARK Received 3 Auust 21 We prove tat 2 is a projective representation o a

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Fuzzy approach to solve multi-objective capacitated transportation problem

Fuzzy approach to solve multi-objective capacitated transportation problem Internatonal Journal of Bonformatcs Research, ISSN: 0975 087, Volume, Issue, 00, -0-4 Fuzzy aroach to solve mult-objectve caactated transortaton roblem Lohgaonkar M. H. and Bajaj V. H.* * Deartment of

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

Module 3. Process Control. Version 2 EE IIT, Kharagpur 1

Module 3. Process Control. Version 2 EE IIT, Kharagpur 1 Moule 3 Process Control Verson 2 EE IIT, Kharagur 1 Lesson 13 Controller Tunng Verson 2 EE IIT, Kharagur 2 Instructonal Objectves At the en of ths lesson, the stuent shoul be able to Exlan the mortance

More information

Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting

Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting Amercan Journal of Computatonal and Appled Matematcs 0, (): 49-54 DOI: 0.593/j.ajcam.000.09 umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng GBSL. Soujanya, Y.. Reddy,

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions Lakshm Sreesha Ch. Non Standard Fnte Dfference Method for Sngularly Perturbed Sngular wo Pont Boundary Value Problem usng Non Polynomal Splne LAKSHMI SIREESHA CH Department of Mathematcs Unversty College

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

A New Recursive Method for Solving State Equations Using Taylor Series

A New Recursive Method for Solving State Equations Using Taylor Series I J E E E C Internatonal Journal of Electrcal, Electroncs ISSN No. (Onlne) : 77-66 and Computer Engneerng 1(): -7(01) Specal Edton for Best Papers of Mcael Faraday IET Inda Summt-01, MFIIS-1 A New Recursve

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

On the First Integrals of KdV Equation and the Trace Formulas of Deift-Trubowitz Type

On the First Integrals of KdV Equation and the Trace Formulas of Deift-Trubowitz Type 2th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caro, Egypt, December 29-3, 2007 25 On the Frst Integrals of KV Equaton an the Trace Formulas of Deft-Trubowtz Type MAYUMI OHMIYA Doshsha Unversty Department

More information

Solving Singularly Perturbed Differential Difference Equations via Fitted Method

Solving Singularly Perturbed Differential Difference Equations via Fitted Method Avalable at ttp://pvamu.edu/aam Appl. Appl. Mat. ISSN: 193-9466 Vol. 8, Issue 1 (June 013), pp. 318-33 Applcatons and Appled Matematcs: An Internatonal Journal (AAM) Solvng Sngularly Perturbed Dfferental

More information

Outline. EM Algorithm and its Applications. K-Means Classifier. K-Means Classifier (Cont.) Introduction of EM K-Means EM EM Applications.

Outline. EM Algorithm and its Applications. K-Means Classifier. K-Means Classifier (Cont.) Introduction of EM K-Means EM EM Applications. EM Algorthm and ts Alcatons Y L Deartment of omuter Scence and Engneerng Unversty of Washngton utlne Introducton of EM K-Means EM EM Alcatons Image Segmentaton usng EM bect lass Recognton n BIR olor lusterng

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve Freedom n Coordnates Transormaton or Exact Lnearzaton and ts Applcaton to Transent Beavor Improvement Kenj Fujmoto and Tosaru Suge Dvson o Appled Systems Scence, Kyoto Unversty, Uj, Kyoto, Japan suge@robotuassyoto-uacjp

More information

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions Mat 22: Principles of Analysis Fall 206 Homework 7 Part B Solutions. Sow tat f(x) = x 2 is not uniformly continuous on R. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. Since

More information

38 centered on te orgn, and for ostve ntegers K let P K () denote te set of lattce vectors n suc tat n=k P. Gven N onts r 1 ;::: ;r N n te unt cell U,

38 centered on te orgn, and for ostve ntegers K let P K () denote te set of lattce vectors n suc tat n=k P. Gven N onts r 1 ;::: ;r N n te unt cell U, 37 Aendx D Ewald Summaton D.1 Introducton From macromolecular structure, to aqueous bologcal systems, accurate comutaton of electrostatc and van der Waals nteractons s te most dcult task n comuter modelng.

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

7 Semiparametric Methods and Partially Linear Regression

7 Semiparametric Methods and Partially Linear Regression 7 Semiparametric Metods and Partially Linear Regression 7. Overview A model is called semiparametric if it is described by and were is nite-dimensional (e.g. parametric) and is in nite-dimensional (nonparametric).

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

Convexity and Smoothness

Convexity and Smoothness Capter 4 Convexity and Smootness 4.1 Strict Convexity, Smootness, and Gateaux Differentiablity Definition 4.1.1. Let X be a Banac space wit a norm denoted by. A map f : X \{0} X \{0}, f f x is called a

More information

Notes on Multigrid Methods

Notes on Multigrid Methods Notes on Multigrid Metods Qingai Zang April, 17 Motivation of multigrids. Te convergence rates of classical iterative metod depend on te grid spacing, or problem size. In contrast, convergence rates of

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Applications of the van Trees inequality to non-parametric estimation.

Applications of the van Trees inequality to non-parametric estimation. Brno-06, Lecture 2, 16.05.06 D/Stat/Brno-06/2.tex www.mast.queensu.ca/ blevit/ Applications of te van Trees inequality to non-parametric estimation. Regular non-parametric problems. As an example of suc

More information

PHZ 6607 Lecture Notes

PHZ 6607 Lecture Notes NOTE PHZ 6607 Lecture Notes 1. Lecture 2 1.1. Defntons Books: ( Tensor Analyss on Manfols ( The mathematcal theory of black holes ( Carroll (v Schutz Vector: ( In an N-Dmensonal space, a vector s efne

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

Some Notes on Consumer Theory

Some Notes on Consumer Theory Some Notes on Consumer Theory. Introducton In ths lecture we eamne the theory of dualty n the contet of consumer theory and ts use n the measurement of the benefts of rce and other changes. Dualty s not

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

An L p di erentiable non-di erentiable function

An L p di erentiable non-di erentiable function An L di erentiable non-di erentiable function J. Marsall As Abstract. Tere is a a set E of ositive Lebesgue measure and a function nowere di erentiable on E wic is di erentible in te L sense for every

More information

A Fuzzy Chance Constraint Programming Approach for Optimal Allocation in Multivariate Stratified Surveys: A Compromise Solution

A Fuzzy Chance Constraint Programming Approach for Optimal Allocation in Multivariate Stratified Surveys: A Compromise Solution Internatonal Jornal of Oeratons Researc Internatonal Jornal of Oeratons Researc Vol., No. 4, (4) A Fy Cance Constrant Programmng Aroac for Otmal Allocaton n Mltvarate Stratfed Srveys: A Comromse Solton

More information

1 ode.mcd. Find solution to ODE dy/dx=f(x,y). Instructor: Nam Sun Wang

1 ode.mcd. Find solution to ODE dy/dx=f(x,y). Instructor: Nam Sun Wang Fin solution to ODE /=f(). Instructor: Nam Sun Wang oe.mc Backgroun. Wen a sstem canges wit time or wit location, a set of ifferential equations tat contains erivative terms "/" escribe suc a namic sstem.

More information

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 3.

More information

Nuclear/Particle Physics. The Structure of Nuclei and Nucleons: Elastic electron scattering from a spin-less target (nucleus or nucleon):

Nuclear/Particle Physics. The Structure of Nuclei and Nucleons: Elastic electron scattering from a spin-less target (nucleus or nucleon): lastc electron scatterng rom a sn-less target (nucleus or nucleon): Puttng bac n the see o lght ( = v/c) an Plan constant, we get: Where Z F ( ) 0 F ( ) 0 Z Rutheror Cross-secton or nonrelatvstc scatterng

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

A Note on the Beavers and Joseph Condition for Flow over a Forchheimer Porous Layer

A Note on the Beavers and Joseph Condition for Flow over a Forchheimer Porous Layer Internatonal Jornal o Research n Engneerng and Scence (IJRES) ISSN (Onlne): 30-9364, ISSN (Prnt): 30-9356 www.jres.org Volme 5 Isse 3 ǁ Mar. 017 ǁ PP.13-0 A Note on the eavers and Joseph Condton or Flow

More information

1D Lagrangian Gas Dynamics. g t

1D Lagrangian Gas Dynamics. g t Te KT Dfferece Sceme for Te KT Dfferece Sceme for D Laraa Gas Damcs t 0 t 0 0 0 t 0 Dfferece Sceme for D Dfferece Sceme for D Laraa Gas Damcs 0 t m 0 / / F F t t 0 / / F F t 0 / F F t Dfferece Sceme for

More information

Large-Scale Data-Dependent Kernel Approximation Appendix

Large-Scale Data-Dependent Kernel Approximation Appendix Large-Scale Data-Depenent Kernel Approxmaton Appenx Ths appenx presents the atonal etal an proofs assocate wth the man paper [1]. 1 Introucton Let k : R p R p R be a postve efnte translaton nvarant functon

More information

On a nonlinear compactness lemma in L p (0, T ; B).

On a nonlinear compactness lemma in L p (0, T ; B). On a nonlnear compactness lemma n L p (, T ; B). Emmanuel Matre Laboratore de Matématques et Applcatons Unversté de Haute-Alsace 4, rue des Frères Lumère 6893 Mulouse E.Matre@ua.fr 3t February 22 Abstract

More information

1 The Euler Forward scheme (schéma d'euler explicite)

1 The Euler Forward scheme (schéma d'euler explicite) TP : Finite dierence metod for a European option M2 Modélisation aléatoire - Université Denis-Diderot Cours EDP en Finance et Métodes Numériques. December 2016 1 Te Euler Forward sceme (scéma d'euler explicite)

More information

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function Commun. Theor. Phys. Bejng, Chna 49 008 pp. 97 30 c Chnese Physcal Socety Vol. 49, No., February 15, 008 Hgh-Orer Hamlton s Prncple an the Hamlton s Prncple of Hgh-Orer Lagrangan Functon ZHAO Hong-Xa an

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

3.1. COMPLEX DERIVATIVES 89

3.1. COMPLEX DERIVATIVES 89 3.1. COMPLEX DERIVATIVES 89 Teorem 3.1.4 (Cain rule) Let f : D D C and g : D C be olomorpic functions on te domains D and D respectively. Suppose tat bot f and g are C 1 -smoot. 10 Ten (g f) (z) g (f(z))

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information