3D stochastic inversion of borehole and surface gravity data using Geostatistics

Size: px
Start display at page:

Download "3D stochastic inversion of borehole and surface gravity data using Geostatistics"

Transcription

1 3D stochastic inversion of borehole and surface gravity data using Geostatistics P. Shamsipour ( 1 ), M. Chouteau ( 1 ), D. Marcotte( 1 ), P. Keating( 2 ), ( 1 ) Departement des Genies Civil, Geologique et des Mines, Ecole Polytechnique de Montreal, ( 2 ) Geological Survey of Canada, Continental Geoscience Division, Ottawa, Ontario, Canada Summary Geophysical inversion of potential field is impeded because of the intrinsic non-uniqueness of the solution. An inversion method based on a geostatistical approach (cokriging) is presented for threedimensional inversion of gravity borehole and surface data to limit the resulting solution space. Cokriging is a method of estimation that minimizes the error variance by applying cross-correlation between several variables. In this study the estimates are derived using gravity data (from boreholes and the surface) as a secondary variable and the density as the primary variable. The necessary gravity, density and gravity-density covariance matrices are estimated using the observed gravity data. The proposed method is applied to two different synthetic models: 1) a massive orebody; 2) a stochastic distribution of densities. Gravimeters are now becoming available (Gravilog from Scintrex), which can fit boreholes for mineral exploration. Using the borehole data, we can improve the depth resolution of surface inversion. The results show the ability of the method to invert surface and borehole data simultaneously. The results also clearly show the important role of borehole data to improve depth resolution. Introduction Many strategies can be used to deal with the non-uniqueness problem in gravity inversion. They all involve some kind of constraints or regularization to limit the solutions. Smoothness or roughness of density distribution which control gradients of parameters in spatial directions are used in magnetic inversion by Pilkington (1997). Li and Oldenburg (1998) counteract the decreasing sensitivities of cells with depth by weighting with an inverse function of depth. Another 3D inversion technique proposed by Fedi and Rapolla (1999) allows the definition of depth resolution. Geostatistical methods in geophysical inversion were applied by Asli et al (2000), Gloaguen et al (2005) and Hansen et al (2006). Bosch et al (2006) also applied geostatistical constraints to gravity inversion using Monte Carlo techniques. In fact, linear stochastic inversion was first described by Franklin (1970) and then popularized by Tarantola and Valette (1982). Chasseriau and Chouteau (2003) have done 3D inversion of gravity data using an a priori model of covariance. However, their method involved nonlinear constraints on density so they used an iterative approach. Shamsipour et al. (2009) proposed geostatistical techniques of cokriging and conditional simulation for the three-dimensional inversion of gravity data including geological constraints. Simulations allow identification of stable features of the inverted fields. We build on the approach of Shamsipour et al. (2009). We extend this approach to test using the borehole and surface gravity inversion at the same time. First, we present the method for 3D stochastic inversion of borehole and surface gravity data using cokriging. Then we use synthetic data sets from two models to illustrate the application of the method. The results prove the flexibility of the method to include borehole data.

2 Methodology The cokriging method gives weights to data so as to minimize the estimation variance (the cokriging variance). Here, the primary variable of cokriging system is density (ρ) and the secondary variable is gravity (g). Cgg is the gravity covariance matrix, C ρρ is the density covariance matrix and Cgρ is the cross covariance between gravity and density. The variables (ρ) and (g) are multidimensional * random variables and ρ is the estimated density defined on block support. Minimization of the estimation variance will yield the simple cokriging solution, Cgg Λ = Cgρ, and the estimate of * T densities is obtained from the gravity data using the optimal weights, ρ = Λ g. In this method, the model covariance is obtained using the V-V plot method (for details, see Shamsipour et al. (2008, 2009)). Results We present two different kinds of synthetic data. The first example is concerned with the detection of a compact ore body, which is common in mining exploration. The second example, a stochastic distribution of density, is common in reservoir modeling and oil exploration. Example 1): The 3D domain is divided into cubic prisms. The dimension of each elementary prism is meters resulting in a 3D domain of km. In this domain, we suppose a compact mass ( ) with uniform density contrast of 1000 kg/m 3 with respect to a homogeneous background at a depth of 500 m (Figure 1 (a)). We also assume a vertical borehole at (x, y)=(1000, 1000) with gravity data sampled every 10 m along it. The gravity data caused by this compact mass at ground surface and along the borehole is shown in Figure 1 (b) and (f) respectively. Using the gravity observations at ground surface, we can apply the inversion method based on cokriging to estimate the density distribution. The inverted densities at section y=1000 m are shown in Figure 1 (c). As we expect there is not good resolution at depth. Then we use the gravity observation along the borehole and perform the inversion to estimate the density distributions. The result is shown in Figure 1 (d). Finally, both the gravity observations at ground surface and along the borehole are used for inversion by cokriging (Figure 1 (e)). As we can see using the borehole data helps improving the density estimation especially at depth and recovering the exact shape and position of the compact mass. Example 2): Densities for km prisms were generated by non-conditional LU simulation using a spherical variogram model with C=60000 (kg/m), a h,45 =5 km, a h,135 =9 km, a vert =4 km where C is the variogram sill, and, a h,45,, a h,135, a vert are the variogram ranges along horizontal directions 45 o and 135 o and vertical direction respectively. We also assume a vertical borehole at (x, y)=(5000, 5000) such that the gravity response along this borehole is known at every 25 meters. The 3D domain is divided into cubic prisms. One section (y = 500 m) of this stochastic density distribution is shown in Figure 2 (a). The gravity caused by this distribution can be found across the surface and along the borehole. From now on, we assume the generated gravity data is known and we invert them in order to estimate the density distribution. Figure 2 (b) shows the inverted densities at section y = 500 m only using the surface gravity data. Again, the resolution at depth is not good. Figure 2 (c) shows the result of inversion by cokriging

3 using only the gravity data along the borehole and Figure 2 (d) shows the results using gravity data from both the surface and the borehole. Again, adding the information along the borehole can improve the results of inversion and increase depth resolution. In Figure 3, we compare the initial data with the estimated data. From Figure 3 (c), as we expect the initial gravity matches very well to the calculated gravity. However, this is not the case for density. From Figures 3 (a) and (b), we observe that including the borehole information in the stochastic inversion results in better match between model and estimated densities. Figure 1) Results for compact mass example

4 Figure 3) Comparison of estimated data and initial data for the stochastic example Conclusions We presented an inversion method based on a geostatistical approach for three-dimensional inversion of gravity data. The proposed non-iterative inversion method based on cokriging is computationally efficient, as practical solutions exist for large problems. This enables easy incorporation of known gravity values in all locations. We showed on synthetic models the value of using borehole gravity in cokriging to improve the accuracy of density estimation. The application of borehole gravity can be useful in exploration wherever information is available from boreholes. This method can be extended to other 2D and 3D geophysical linear inversion methods as it has been done by authors of this article to magnetic data and to joint inversion of gravity and magnetic data. References Asli, M., D. Marcotte, and M. Chouteau, 2000, Direct inversion of gravity data by cokriging, in Kleingeld and Krige, eds., 6th International Geostatistics Congress, Cape town, South Africa, Bosch, M., R. Meza, R. Jimenez, and A. Honig, 2006, Joint gravity and magnetic inversion in 3D using Monte Carlo methods: Geophysics, 71, G153. Chasseriau, P. and M. Chouteau, 2003, 3D gravity inversion using a model of parameter covariance: Journal of Applied Geophysics, 52, Fedi, M. and A. Rapolla, 1999, 3-D inversion of gravity and magnetic data with depth resolution: Geophysics, 64, Franklin, J., 1970, Well posed stochastic extensions of ill posed linear problems: J. Math, 31, Gloaguen, E., D. Marcotte, M. Chouteau, and H. Perroud, 2005, Borehole radar velocity inversion using cokriging and cosimulation: Journal of Applied Geophysics, 57, Hansen, T., A. Journel, A. Tarantola, and K. Mosegaard, 2006, Linear inverse Gaussian theory and geostatistics: Geophysics, 71, R101. Li, Y. and D. Oldenburg, 1998, 3-D inversion of gravity data: Geophysics, 63, Shamsipour, p. (2008). 3D inverison of gravity data using cokriging and cosimulation. M.A.Sc Thesis, Ecole Polytechnique de Montreal. Shamsipour, p., Marcotte, D., Chouteau, M., and Keating, P. (2009). 3D stochastic inversion of gravity data using cokriging and cosimulation. Accepted for publication in Geophysics journal. Pilkington, M., 1997, 3-D magnetic imaging using conjugate gradients: Geophysics, 62,

5 Tarantola, A. and B. Valette, 1982, Generalized nonlinear inverse problems solved using the least squares criterion: Rev. Geophys. Space Phys, 20,

Linear inverse Gaussian theory and geostatistics a tomography example København Ø,

Linear inverse Gaussian theory and geostatistics a tomography example København Ø, Linear inverse Gaussian theory and geostatistics a tomography example Thomas Mejer Hansen 1, ndre Journel 2, lbert Tarantola 3 and Klaus Mosegaard 1 1 Niels Bohr Institute, University of Copenhagen, Juliane

More information

USING GEOSTATISTICS TO DESCRIBE COMPLEX A PRIORI INFORMATION FOR INVERSE PROBLEMS THOMAS M. HANSEN 1,2, KLAUS MOSEGAARD 2 and KNUD S.

USING GEOSTATISTICS TO DESCRIBE COMPLEX A PRIORI INFORMATION FOR INVERSE PROBLEMS THOMAS M. HANSEN 1,2, KLAUS MOSEGAARD 2 and KNUD S. USING GEOSTATISTICS TO DESCRIBE COMPLEX A PRIORI INFORMATION FOR INVERSE PROBLEMS THOMAS M. HANSEN 1,2, KLAUS MOSEGAARD 2 and KNUD S. CORDUA 1 1 Institute of Geography & Geology, University of Copenhagen,

More information

IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp

IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp.131-142 Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis Moslem Moradi 1, Omid Asghari 1,

More information

Geostatistics for Seismic Data Integration in Earth Models

Geostatistics for Seismic Data Integration in Earth Models 2003 Distinguished Instructor Short Course Distinguished Instructor Series, No. 6 sponsored by the Society of Exploration Geophysicists European Association of Geoscientists & Engineers SUB Gottingen 7

More information

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION G. MARIETHOZ, PH. RENARD, R. FROIDEVAUX 2. CHYN, University of Neuchâtel, rue Emile Argand, CH - 2009 Neuchâtel, Switzerland 2 FSS Consultants, 9,

More information

GRAVILOG: An update on the development and use of Borehole Gravity for Mining Exploration

GRAVILOG: An update on the development and use of Borehole Gravity for Mining Exploration GRAVILOG: An update on the development and use of Borehole Gravity for Mining Exploration C. Nind* J. MacQueen, Ph.D R. Wasylechko M. Chemam C. Nackers Scintrex Ltd. Micro-g LaCoste, Inc Abitibi Geophysics

More information

Porosity prediction using cokriging with multiple secondary datasets

Porosity prediction using cokriging with multiple secondary datasets Cokriging with Multiple Attributes Porosity prediction using cokriging with multiple secondary datasets Hong Xu, Jian Sun, Brian Russell, Kris Innanen ABSTRACT The prediction of porosity is essential for

More information

Sequential Simulations of Mixed Discrete-Continuous Properties: Sequential Gaussian Mixture Simulation

Sequential Simulations of Mixed Discrete-Continuous Properties: Sequential Gaussian Mixture Simulation Sequential Simulations of Mixed Discrete-Continuous Properties: Sequential Gaussian Mixture Simulation Dario Grana, Tapan Mukerji, Laura Dovera, and Ernesto Della Rossa Abstract We present here a method

More information

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION G. MARIETHOZ, PH. RENARD, R. FROIDEVAUX 2. CHYN, University of Neuchâtel, rue Emile Argand, CH - 2009 Neuchâtel, Switzerland 2 FSS Consultants, 9,

More information

Development of a Borehole Gravity Meter for Mining Applications

Development of a Borehole Gravity Meter for Mining Applications Ground and Borehole Geophysical Methods Paper 111 Development of a Borehole Gravity Meter for Mining Applications Seigel, H. O. [1], Nind, C. [1], Lachapelle, R. [1], Chouteau, M. [2], Giroux, B. [2] 1.

More information

Multiple Scenario Inversion of Reflection Seismic Prestack Data

Multiple Scenario Inversion of Reflection Seismic Prestack Data Downloaded from orbit.dtu.dk on: Nov 28, 2018 Multiple Scenario Inversion of Reflection Seismic Prestack Data Hansen, Thomas Mejer; Cordua, Knud Skou; Mosegaard, Klaus Publication date: 2013 Document Version

More information

3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project

3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project 3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project Maxime Claprood Institut national de la recherche scientifique, Québec, Canada Earth Modelling 2013 October

More information

SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information Part 1 Methodology

SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information Part 1 Methodology Downloaded from orbit.dtu.dk on: Sep 19, 2018 SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information Part 1 Methodology Hansen, Thomas Mejer; Cordua, Knud

More information

Stepwise Conditional Transformation for Simulation of Multiple Variables 1

Stepwise Conditional Transformation for Simulation of Multiple Variables 1 Mathematical Geology, Vol. 35, No. 2, February 2003 ( C 2003) Stepwise Conditional Transformation for Simulation of Multiple Variables 1 Oy Leuangthong 2 and Clayton V. Deutsch 2 Most geostatistical studies

More information

4th HR-HU and 15th HU geomathematical congress Geomathematics as Geoscience Reliability enhancement of groundwater estimations

4th HR-HU and 15th HU geomathematical congress Geomathematics as Geoscience Reliability enhancement of groundwater estimations Reliability enhancement of groundwater estimations Zoltán Zsolt Fehér 1,2, János Rakonczai 1, 1 Institute of Geoscience, University of Szeged, H-6722 Szeged, Hungary, 2 e-mail: zzfeher@geo.u-szeged.hu

More information

A MultiGaussian Approach to Assess Block Grade Uncertainty

A MultiGaussian Approach to Assess Block Grade Uncertainty A MultiGaussian Approach to Assess Block Grade Uncertainty Julián M. Ortiz 1, Oy Leuangthong 2, and Clayton V. Deutsch 2 1 Department of Mining Engineering, University of Chile 2 Department of Civil &

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

A BAYESIAN APPROACH TO INVERT GOCE GRAVITY GRADIENTS

A BAYESIAN APPROACH TO INVERT GOCE GRAVITY GRADIENTS A BAYESIAN APPROACH TO INVERT GOCE GRAVITY GRADIENTS Gwendoline Pajot (1), Michel Diament (1), Marie-Francoise Lequentrec-Lalancette (), and Christel Tiberi (3) (1) Institut de Physique du Globe de Paris,

More information

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN: Index Akaike information criterion (AIC) 105, 290 analysis of variance 35, 44, 127 132 angular transformation 22 anisotropy 59, 99 affine or geometric 59, 100 101 anisotropy ratio 101 exploring and displaying

More information

Earth models for early exploration stages

Earth models for early exploration stages ANNUAL MEETING MASTER OF PETROLEUM ENGINEERING Earth models for early exploration stages Ângela Pereira PhD student angela.pereira@tecnico.ulisboa.pt 3/May/2016 Instituto Superior Técnico 1 Outline Motivation

More information

Application of sensitivity analysis in DC resistivity monitoring of SAGD steam chambers

Application of sensitivity analysis in DC resistivity monitoring of SAGD steam chambers The University of British Columbia Geophysical Inversion Facility Application of sensitivity analysis in DC resistivity monitoring of SAGD steam chambers S. G. R. Devriese and D. W. Oldenburg gif.eos.ubc.ca

More information

Course on Inverse Problems

Course on Inverse Problems Stanford University School of Earth Sciences Course on Inverse Problems Albert Tarantola Third Lesson: Probability (Elementary Notions) Let u and v be two Cartesian parameters (then, volumetric probabilities

More information

Some practical aspects of the use of lognormal models for confidence limits and block distributions in South African gold mines

Some practical aspects of the use of lognormal models for confidence limits and block distributions in South African gold mines Some practical aspects of the use of lognormal models for confidence limits and block distributions in South African gold mines by D.G. Krige* Synopsis For the purpose of determining confidence limits

More information

Large Scale Modeling by Bayesian Updating Techniques

Large Scale Modeling by Bayesian Updating Techniques Large Scale Modeling by Bayesian Updating Techniques Weishan Ren Centre for Computational Geostatistics Department of Civil and Environmental Engineering University of Alberta Large scale models are useful

More information

The Borehole Gravity Meter: Development and Results

The Borehole Gravity Meter: Development and Results 10 th Biennial International Conference & Exposition P 124 The Borehole Gravity Meter: Development and Results Chris J.M. Nind, Jeffrey D. MacQueen Summary Borehole gravity (BHGM) measurements respond

More information

Inference of multi-gaussian relative permittivity fields by. probabilistic inversion of crosshole ground-penetrating radar. data

Inference of multi-gaussian relative permittivity fields by. probabilistic inversion of crosshole ground-penetrating radar. data Inference of multi-gaussian relative permittivity fields by probabilistic inversion of crosshole ground-penetrating radar data Jürg Hunziker, Eric Laloy, Niklas Linde Applied and Environmental Geophysics

More information

Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review

Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review GEOPHYSICS, VOL. 75, NO. 5 SEPTEMBER-OCTOBER 2010 ; P. 75A165 75A176, 8 FIGS. 10.1190/1.3478209 Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review

More information

Advances in Locally Varying Anisotropy With MDS

Advances in Locally Varying Anisotropy With MDS Paper 102, CCG Annual Report 11, 2009 ( 2009) Advances in Locally Varying Anisotropy With MDS J.B. Boisvert and C. V. Deutsch Often, geology displays non-linear features such as veins, channels or folds/faults

More information

Kriging, indicators, and nonlinear geostatistics

Kriging, indicators, and nonlinear geostatistics Kriging, indicators, and nonlinear geostatistics by J. Rivoirard*, X. Freulon, C. Demange, and A. Lécureuil Synopsis Historically, linear and lognormal krigings were first created to estimate the in situ

More information

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 08/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at New approach to 3D inversion of MCSEM and MMT data using multinary model transform Alexander V. Gribenko and Michael S. Zhdanov, University of Utah and TechnoImaging SUMMARY Marine controlled-source electromagnetic

More information

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS A008 THE PROAILITY PERTURATION METHOD AN ALTERNATIVE TO A TRADITIONAL AYESIAN APPROAH FOR SOLVING INVERSE PROLEMS Jef AERS Stanford University, Petroleum Engineering, Stanford A 94305-2220 USA Abstract

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

Optimizing Thresholds in Truncated Pluri-Gaussian Simulation

Optimizing Thresholds in Truncated Pluri-Gaussian Simulation Optimizing Thresholds in Truncated Pluri-Gaussian Simulation Samaneh Sadeghi and Jeff B. Boisvert Truncated pluri-gaussian simulation (TPGS) is an extension of truncated Gaussian simulation. This method

More information

Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information

Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information Downloaded from orbit.dtu.dk on: Dec, 0 Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information Cordua, Knud Skou; Hansen, Thomas Mejer; Mosegaard,

More information

Integration of seismic interpretation in to geostatistical acoustic impedance Results presentation and discussion

Integration of seismic interpretation in to geostatistical acoustic impedance Results presentation and discussion ANNUAL MEETING MASTER OF PETROLEUM ENGINEERING Integration of seismic interpretation in to geostatistical acoustic impedance Results presentation and discussion SERGIO CRUZ BARDERA 03/May/2016 Instituto

More information

ERTH 4121 Gravity and Magnetic Exploration Session 8. Introduction to inversion - 2

ERTH 4121 Gravity and Magnetic Exploration Session 8. Introduction to inversion - 2 ERTH 4121 Gravity and Magnetic Exploration Session 8 Introduction to inversion - 2 Lecture schedule (subject to change) Minimum 10 x 3 hour lecture sessions: 1:30pm Tuesdays Aug 2 : 1. Introduction to

More information

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas)

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Summary Static reservoir connectivity analysis is sometimes based on 3D facies or geobody models defined by combining well data and inverted seismic impedances.

More information

TRUNCATED GAUSSIAN AND PLURIGAUSSIAN SIMULATIONS OF LITHOLOGICAL UNITS IN MANSA MINA DEPOSIT

TRUNCATED GAUSSIAN AND PLURIGAUSSIAN SIMULATIONS OF LITHOLOGICAL UNITS IN MANSA MINA DEPOSIT TRUNCATED GAUSSIAN AND PLURIGAUSSIAN SIMULATIONS OF LITHOLOGICAL UNITS IN MANSA MINA DEPOSIT RODRIGO RIQUELME T, GAËLLE LE LOC H 2 and PEDRO CARRASCO C. CODELCO, Santiago, Chile 2 Geostatistics team, Geosciences

More information

Uncertainty quantification for Wavefield Reconstruction Inversion

Uncertainty quantification for Wavefield Reconstruction Inversion Uncertainty quantification for Wavefield Reconstruction Inversion Zhilong Fang *, Chia Ying Lee, Curt Da Silva *, Felix J. Herrmann *, and Rachel Kuske * Seismic Laboratory for Imaging and Modeling (SLIM),

More information

Contents 1 Introduction 2 Statistical Tools and Concepts

Contents 1 Introduction 2 Statistical Tools and Concepts 1 Introduction... 1 1.1 Objectives and Approach... 1 1.2 Scope of Resource Modeling... 2 1.3 Critical Aspects... 2 1.3.1 Data Assembly and Data Quality... 2 1.3.2 Geologic Model and Definition of Estimation

More information

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Amaro C. 1 Abstract: The main goal of reservoir modeling and characterization is the inference of

More information

Journal of Earth Science, Vol. 20, No. 3, p , June 2009 ISSN X Printed in China DOI: /s

Journal of Earth Science, Vol. 20, No. 3, p , June 2009 ISSN X Printed in China DOI: /s Journal of Earth Science, Vol. 20, No. 3, p. 580 591, June 2009 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-009-0048-6 Quantitative Integration of High-Resolution Hydrogeophysical Data: A Novel

More information

Reservoir Uncertainty Calculation by Large Scale Modeling

Reservoir Uncertainty Calculation by Large Scale Modeling Reservoir Uncertainty Calculation by Large Scale Modeling Naeem Alshehri and Clayton V. Deutsch It is important to have a good estimate of the amount of oil or gas in a reservoir. The uncertainty in reserve

More information

Results from the Initial Field Trials of a Borehole Gravity Meter for Mining and Geotechnical Applications

Results from the Initial Field Trials of a Borehole Gravity Meter for Mining and Geotechnical Applications P-174 Results from the Initial Field Trials of a Borehole Gravity Meter for Mining and Geotechnical Applications H.O. Seigel 1, C.J.M. Nind 1, A. Milanovic 1, J. MacQueen 2 Summary Scintrex is in the final

More information

Coregionalization by Linear Combination of Nonorthogonal Components 1

Coregionalization by Linear Combination of Nonorthogonal Components 1 Mathematical Geology, Vol 34, No 4, May 2002 ( C 2002) Coregionalization by Linear Combination of Nonorthogonal Components 1 J A Vargas-Guzmán, 2,3 A W Warrick, 3 and D E Myers 4 This paper applies the

More information

The Proportional Effect of Spatial Variables

The Proportional Effect of Spatial Variables The Proportional Effect of Spatial Variables J. G. Manchuk, O. Leuangthong and C. V. Deutsch Centre for Computational Geostatistics, Department of Civil and Environmental Engineering University of Alberta

More information

Geostatistical Determination of Production Uncertainty: Application to Firebag Project

Geostatistical Determination of Production Uncertainty: Application to Firebag Project Geostatistical Determination of Production Uncertainty: Application to Firebag Project Abstract C. V. Deutsch, University of Alberta (cdeutsch@civil.ualberta.ca) E. Dembicki and K.C. Yeung, Suncor Energy

More information

Hydraulic tomography: Development of a new aquifer test method

Hydraulic tomography: Development of a new aquifer test method WATER RESOURCES RESEARCH, VOL. 36, NO. 8, PAGES 2095 2105, AUGUST 2000 Hydraulic tomography: Development of a new aquifer test method T.-C. Jim Yeh and Shuyun Liu Department of Hydrology and Water Resources,

More information

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Vahid Dehdari and Clayton V. Deutsch Geostatistical modeling involves many variables and many locations.

More information

Time-lapse filtering and improved repeatability with automatic factorial co-kriging. Thierry Coléou CGG Reservoir Services Massy

Time-lapse filtering and improved repeatability with automatic factorial co-kriging. Thierry Coléou CGG Reservoir Services Massy Time-lapse filtering and improved repeatability with automatic factorial co-kriging. Thierry Coléou CGG Reservoir Services Massy 1 Outline Introduction Variogram and Autocorrelation Factorial Kriging Factorial

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

Statistícal Methods for Spatial Data Analysis

Statistícal Methods for Spatial Data Analysis Texts in Statistícal Science Statistícal Methods for Spatial Data Analysis V- Oliver Schabenberger Carol A. Gotway PCT CHAPMAN & K Contents Preface xv 1 Introduction 1 1.1 The Need for Spatial Analysis

More information

Facies Modeling in Presence of High Resolution Surface-based Reservoir Models

Facies Modeling in Presence of High Resolution Surface-based Reservoir Models Facies Modeling in Presence of High Resolution Surface-based Reservoir Models Kevin Zhang Centre for Computational Geostatistics Department of Civil and Environmental Engineering University of Alberta

More information

Geostatistical History Matching coupled with Adaptive Stochastic Sampling

Geostatistical History Matching coupled with Adaptive Stochastic Sampling Geostatistical History Matching coupled with Adaptive Stochastic Sampling A Geologically consistent approach using Stochastic Sequential Simulation Eduardo Barrela Nº 79909 Project Thesis Presentation

More information

Geostatistical inference using crosshole ground-penetrating radar

Geostatistical inference using crosshole ground-penetrating radar Downloaded from orbit.dtu.dk on: Sep 5, 0 Geostatistical inference using crosshole ground-penetrating radar Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou; Nielsen, Lars; Jensen, Karsten H.;

More information

Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters

Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters CWP-815 Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters Dave Hale Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA a) b) c) Figure

More information

Acceptable Ergodic Fluctuations and Simulation of Skewed Distributions

Acceptable Ergodic Fluctuations and Simulation of Skewed Distributions Acceptable Ergodic Fluctuations and Simulation of Skewed Distributions Oy Leuangthong, Jason McLennan and Clayton V. Deutsch Centre for Computational Geostatistics Department of Civil & Environmental Engineering

More information

Novel approach to joint 3D inversion of EM and potential field data using Gramian constraints

Novel approach to joint 3D inversion of EM and potential field data using Gramian constraints first break volume 34, April 2016 special topic Novel approach to joint 3D inversion of EM and potential field data using Gramian constraints Michael S. Zhdanov 1,2, Yue Zhu 2, Masashi Endo 1 and Yuri

More information

Geostatistics for Gaussian processes

Geostatistics for Gaussian processes Introduction Geostatistical Model Covariance structure Cokriging Conclusion Geostatistics for Gaussian processes Hans Wackernagel Geostatistics group MINES ParisTech http://hans.wackernagel.free.fr Kernels

More information

OFTEN we need to be able to integrate point attribute information

OFTEN we need to be able to integrate point attribute information ALLAN A NIELSEN: GEOSTATISTICS AND ANALYSIS OF SPATIAL DATA 1 Geostatistics and Analysis of Spatial Data Allan A Nielsen Abstract This note deals with geostatistical measures for spatial correlation, namely

More information

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization A. Moradi Tehrani* (CGG), A. Stallone (Roma Tre University), R. Bornard (CGG) & S. Boudon (CGG) SUMMARY

More information

Magnetotelluric (MT) Method

Magnetotelluric (MT) Method Magnetotelluric (MT) Method Dr. Hendra Grandis Graduate Program in Applied Geophysics Faculty of Mining and Petroleum Engineering ITB Geophysical Methods Techniques applying physical laws (or theory) to

More information

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland EnviroInfo 2004 (Geneva) Sh@ring EnviroInfo 2004 Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland Mikhail Kanevski 1, Michel Maignan 1

More information

Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada*

Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada* Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada* Amir H. Hosseini 1, Hong Feng 1, Abu Yousuf 1, and Tony Kay 1 Search and Discovery

More information

Basics in Geostatistics 2 Geostatistical interpolation/estimation: Kriging methods. Hans Wackernagel. MINES ParisTech.

Basics in Geostatistics 2 Geostatistical interpolation/estimation: Kriging methods. Hans Wackernagel. MINES ParisTech. Basics in Geostatistics 2 Geostatistical interpolation/estimation: Kriging methods Hans Wackernagel MINES ParisTech NERSC April 2013 http://hans.wackernagel.free.fr Basic concepts Geostatistics Hans Wackernagel

More information

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields

Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields Spatial statistics, addition to Part I. Parameter estimation and kriging for Gaussian random fields 1 Introduction Jo Eidsvik Department of Mathematical Sciences, NTNU, Norway. (joeid@math.ntnu.no) February

More information

Full waveform inversion of shot gathers in terms of poro-elastic parameters

Full waveform inversion of shot gathers in terms of poro-elastic parameters Full waveform inversion of shot gathers in terms of poro-elastic parameters Louis De Barros, M. Dietrich To cite this version: Louis De Barros, M. Dietrich. Full waveform inversion of shot gathers in terms

More information

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary 2401377 Statistically Improved Resistivity and Density Estimation From Multicomponent Seismic Data: Case Study from the Lower Cretaceous McMurray Formation, Athabasca Oil Sands Fred Mayer 1; Graham Cain

More information

Manuscript of paper for APCOM 2003.

Manuscript of paper for APCOM 2003. 1 Manuscript of paper for APCOM 2003. AN ANALYSIS OF THE PRACTICAL AND ECONOMIC IMPLICATIONS OF SYSTEMATIC UNDERGROUND DRILLING IN DEEP SOUTH AFRICAN GOLD MINES W. ASSIBEY-BONSU Consultant: Geostatistics

More information

GSLIB Geostatistical Software Library and User's Guide

GSLIB Geostatistical Software Library and User's Guide GSLIB Geostatistical Software Library and User's Guide Second Edition Clayton V. Deutsch Department of Petroleum Engineering Stanford University Andre G. Journel Department of Geological and Environmental

More information

Data S.A. 30s. Xe= Gravity anom. sigd=0.06 corlength=1000s sigp=1. dg microgal. dg microgal. Data S.A. 30s. Xe=

Data S.A. 30s. Xe= Gravity anom. sigd=0.06 corlength=1000s sigp=1. dg microgal. dg microgal. Data S.A. 30s. Xe= Gravity anom. sigd=.6 corlength=4s sigp=1. Gravity anom. sigd=.6 corlength=6s sigp=1. Xe=.594 Λ=4s Xe=.595 Λ=6s -2. -15. -1. -5.. Tim -2. -15. -1. -5.. Tim Gravity anom. sigd=.6 corlength=8s sigp=1. Gravity

More information

Non-linear least-squares inversion with data-driven

Non-linear least-squares inversion with data-driven Geophys. J. Int. (2000) 142, 000 000 Non-linear least-squares inversion with data-driven Bayesian regularization Tor Erik Rabben and Bjørn Ursin Department of Petroleum Engineering and Applied Geophysics,

More information

Article: Report on gravity analysis

Article: Report on gravity analysis Article: Report on gravity analysis Brownfields exploration using constrained gravity inversions By Chris Wijns (First Quantum Minerals Ltd) and Daniel Core (Fathom Geophysics LLC) Summary Gravity measurements

More information

Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan

Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan Integrated interpretation of multimodal geophysical data for exploration of geothermal resources Case study: Yamagawa geothermal field in Japan Masashi Endo*(TechnoImaging), Alex Gribenko (TechnoImaging

More information

Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir

Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir GEOPHYSICS, VOL. 4, NO. MARCH-APRIL 009 ; P. O1 O1, 11 FIGS. 10.1190/1.30439 Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir Miguel Bosch 1, Carla

More information

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Hatice Çitakoğlu 1, Murat Çobaner 1, Tefaruk Haktanir 1, 1 Department of Civil Engineering, Erciyes University, Kayseri,

More information

METHODOLOGY WHICH APPLIES GEOSTATISTICS TECHNIQUES TO THE TOPOGRAPHICAL SURVEY

METHODOLOGY WHICH APPLIES GEOSTATISTICS TECHNIQUES TO THE TOPOGRAPHICAL SURVEY International Journal of Computer Science and Applications, 2008, Vol. 5, No. 3a, pp 67-79 Technomathematics Research Foundation METHODOLOGY WHICH APPLIES GEOSTATISTICS TECHNIQUES TO THE TOPOGRAPHICAL

More information

Is there still room for new developments in geostatistics?

Is there still room for new developments in geostatistics? Is there still room for new developments in geostatistics? Jean-Paul Chilès MINES ParisTech, Fontainebleau, France, IAMG 34th IGC, Brisbane, 8 August 2012 Matheron: books and monographs 1962-1963: Treatise

More information

Inverting hydraulic heads in an alluvial aquifer constrained with ERT data through MPS and PPM: a case study

Inverting hydraulic heads in an alluvial aquifer constrained with ERT data through MPS and PPM: a case study Inverting hydraulic heads in an alluvial aquifer constrained with ERT data through MPS and PPM: a case study Hermans T. 1, Scheidt C. 2, Caers J. 2, Nguyen F. 1 1 University of Liege, Applied Geophysics

More information

Summary STK 4150/9150

Summary STK 4150/9150 STK4150 - Intro 1 Summary STK 4150/9150 Odd Kolbjørnsen May 22 2017 Scope You are expected to know and be able to use basic concepts introduced in the book. You knowledge is expected to be larger than

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

Constrained inversion of gravity and magnetic data: a real time exploration tool?

Constrained inversion of gravity and magnetic data: a real time exploration tool? Constrained inversion of gravity and magnetic data: a real time exploration tool? Hugh Miller Michael R. sh Michael Wheeler Colin G. Farquharson Department of Earth Sciences Memorial University of ewfoundland,

More information

Local refined Earth model for JUNO geo-neutrino analysis

Local refined Earth model for JUNO geo-neutrino analysis Local refined Earth model for JUNO geo-neutrino analysis Virginia Strati University of Ferrara & INFN arxiv:1412.3324 In collaboration with: Marica Baldoncini, Ivan Callegari,Yu Huang, Fabio Mantovani,

More information

Multivariate Geostatistics

Multivariate Geostatistics Hans Wackernagel Multivariate Geostatistics An Introduction with Applications Third, completely revised edition with 117 Figures and 7 Tables Springer Contents 1 Introduction A From Statistics to Geostatistics

More information

IN RECONNAISSANCE geophysical exploration for oil

IN RECONNAISSANCE geophysical exploration for oil 1228 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 14, NO. 8, AUGUST 2017 Joint Inversion of Gravity and Magnetotelluric Data for the Depth-to-Basement Estimation Abstract It is well known that both

More information

VISIM : Sequential simulation for linear. inverse problems. Code is available from server at.

VISIM : Sequential simulation for linear. inverse problems. Code is available from server at. VISIM : Sequential simulation for linear inverse problems. Code is available from server at http://www.iamg.org/cgeditor/index.htm Thomas Mejer Hansen and Klaus Mosegaard Niels Bohr Institute, Juliane

More information

A Short Note on the Proportional Effect and Direct Sequential Simulation

A Short Note on the Proportional Effect and Direct Sequential Simulation A Short Note on the Proportional Effect and Direct Sequential Simulation Abstract B. Oz (boz@ualberta.ca) and C. V. Deutsch (cdeutsch@ualberta.ca) University of Alberta, Edmonton, Alberta, CANADA Direct

More information

The value of imperfect borehole information in mineral resource evaluation

The value of imperfect borehole information in mineral resource evaluation The value of imperfect borehole information in mineral resource evaluation Steinar L. Ellefmo and Jo Eidsvik Abstract In mineral resource evaluation a careful analysis and assessments of the geology, assay

More information

Fast probabilistic nonlinear petrophysical inversion

Fast probabilistic nonlinear petrophysical inversion GEOPHYSICS, VOL. 76, NO. 2 (MARCH-APRIL 2011); P. E45 E58, 12 FIGS., 3 TABLES. 10.1190/1.3540628 Fast probabilistic nonlinear petrophysical inversion Mohammad S. Shahraeeni 1 and Andrew Curtis 1 ABSTRACT

More information

unbiased predictive risk estimator for regularization

unbiased predictive risk estimator for regularization submitted to Geophys. J. Int. 3-D Projected L inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation Saeed Vatankhah, Rosemary A. Renaut 2

More information

Constrained ERT bayesian inversion using inverse Matérn covariance matrix

Constrained ERT bayesian inversion using inverse Matérn covariance matrix GEOPHYSICS Downloaded 0// to... Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Constrained ERT bayesian inversion using inverse Matérn covariance matrix

More information

Applications of geophysical inversions in mineral exploration

Applications of geophysical inversions in mineral exploration Applications of geophysical inversions in mineral exploration I DOUGLAS W. OLDENBURG, YAOGUO LI, and COLIN G. FARQUHARSON, University of British Columbia PETER KOWALCZYK, Placer Dome, Incorporated, Vancouver,

More information

A Methodology to Construct Training Images for Vein Type Deposits

A Methodology to Construct Training Images for Vein Type Deposits A Methodology to Construct Training Images for Vein Type Deposits Jeff Boisvert 1, Oy Leuangthong 1, Julian Ortiz 2, and Clayton V. Deutsch 1 1 Center for Computational Geostatistics (CCG) University of

More information

Bayesian reservoir characterization

Bayesian reservoir characterization Bayesian reservoir characterization Bayesian reservoir characterization Luiz Lucchesi Loures ABSTRACT This research aims to provide a complete solution for reservoir properties determination, including

More information

Seismic reservoir characterization in offshore Nile Delta.

Seismic reservoir characterization in offshore Nile Delta. Seismic reservoir characterization in offshore Nile Delta. Part II: Probabilistic petrophysical-seismic inversion M. Aleardi 1, F. Ciabarri 2, B. Garcea 2, A. Mazzotti 1 1 Earth Sciences Department, University

More information

Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations

Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations Simultaneous use of hydrogeological and geophysical data for groundwater protection zone delineation by co-conditional stochastic simulations C. Rentier,, A. Dassargues Hydrogeology Group, Departement

More information

7 Geostatistics. Figure 7.1 Focus of geostatistics

7 Geostatistics. Figure 7.1 Focus of geostatistics 7 Geostatistics 7.1 Introduction Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that are linked to spatial coordinates. To describe the spatial variation

More information

MODELLING THE STONE SIZE DISTRIBUTION OF A DIAMOND DEPOSIT

MODELLING THE STONE SIZE DISTRIBUTION OF A DIAMOND DEPOSIT MODELLING THE STONE SIZE DISTRIBUTION OF A DIAMOND DEPOSIT CHRISTIAN LANTUÉJOUL and MIKE MILLAD Ecole des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau, France. De Beers MRM, PO Box 23329, Claremont

More information

Geophysical Investigation of the Internal Structure of a Waste Rock Pile (for the evaluation of water flow and transport)

Geophysical Investigation of the Internal Structure of a Waste Rock Pile (for the evaluation of water flow and transport) Geophysical Investigation of the Internal Structure of a Waste Rock Pile (for the evaluation of water flow and transport) Olivier Anterrieu 1,* Michel Chouteau 1 Michel Aubertin 1,& Bruno Bussière 2,&

More information

Journal of Applied Science and Agriculture. Euler deconvolution of 3D gravity data interpretation: New approach

Journal of Applied Science and Agriculture. Euler deconvolution of 3D gravity data interpretation: New approach AENSI Journals Journal of Applied Science and Agriculture Journal home page: www.aensiweb.com/jasa/index.html Euler deconvolution of 3D gravity data interpretation: New approach 1 Reza Toushmalani and

More information