4D seismic pressure-saturation inversion at Gullfaks field, Norway

Size: px
Start display at page:

Download "4D seismic pressure-saturation inversion at Gullfaks field, Norway"

Transcription

1 First Break September ' :03 Pagina 3 4D seismic pressure-saturation inversion at Gullfaks field, Norway David Lumley, Don Adams, Mark Meadows, Steve Cole and Ray Ergas* of 4 th Wave Imaging, a Californian company specializing in advanced 4D seismic software development, describe its application of proprietary pressure-saturation inversion to the Statoil operated Gullfaks field, offshore Norway. T ime-lapse 4D seismic reservoir monitoring is experiencing rapid acceptance as a practical reservoir management tool, as evidenced by three full days of technical presentations on the topic at the recent June 2003 EAGE Conference in Stavanger, Norway. The 4D seismic technique is useful to help map bypassed oil, monitor costly injection programs, and improve our understanding of reservoir compartmentalization and the fluidflow properties of faults. Most of the applications to date have tended to be qualitative rather than quantitative. For example, 4D seismic practitioners often examine time-lapse seismic amplitude maps and develop a qualitative interpretation of where they think fluids are flowing in the reservoir, constrained by supporting data such as geologic control, well logs and engineering production information. However, there is a growing desire to obtain more quantitative results from 4D seismic data, for example, the ability to create pressure and saturation maps or volumes with calibrated physical units of saturation and pressure to assist engineering workflows and reservoir management decisions. This paper presents a case study in which we apply quantitative Pressure-Saturation Inversion (PSI) technology developed by 4th Wave Imaging to the 4D seismic project at the Gullfaks field, offshore Norway. * Figure 1 Map of Gullfaks reservoir, top Brent. The yellow shaded region is the study area, green lines are well paths, and the red outlines holes in seismic data coverage. Figure 2A 4D seismic before and after XEQ processing. Left 1985 seismic baseline data; centre contractor difference cube before XEQ; and right improved difference cube after XEQ processing with ProMAX4D software. Note that the shallow false anomalies caused by event ghosting due to misalignment have been largely suppressed after XEQ processing. Gullfaks field The Gullfaks field is operated by Statoil and is located in Block 34/10 in the Norwegian North Sea along the western margin of the North Viking Graben. The main producing reservoirs are variable thickness Jurassic sands up to 300 m thick in the Brent, Cook and Statfjord formations. Gullfaks is produced with vertical and deviated water injectors and producers, in addition to some more recent horizontal production wells. Further information on the Gullfaks field can be found in publications by Stronen & Digranes (2000), Landro (2001), and Alsos et al. (2002), for example. Figure 1 shows a map of the Gullfaks field mapped at the Top Brent marker. The study area for this article is indicated by the shaded yellow region. Green lines represent well paths emanating from the three platforms. Red outlined regions represent areas where repeat 4D seismic streamer data could not be acquired due to the proximity of the platforms and other surface obstacles, causing data holes with varying mute depths in the final seismic image volumes. In this project we focused on the Tarbert reservoir at the top of the Brent group, and the Cook reservoir at depth below it. The study area was selected by Statoil since there have been some anomalous production results in this area, 2003 EAGE 3

2 First Break September ' :03 Pagina 4 Figure 2B Same as Figure 2A but zoomed in on the reservoir region. Note that the false ghosting anomalies at the top Tarbert (T) reservoir and base BCU have been suppressed, revealing a clear pattern of fault-block-constrained reservoir anomalies, and a much clearer image of the oil-water contact (W). The Cook reservoir anomaly (C) has also been improved. Figures 3A, 3B Time-lapse AVO seismic sections after 4D AVO balancing. 3A is the near offset section, 3B is the far offset section. Note that the time-lapse AVO anomalies on the Tarbert (T) event and the Cook (C) event are quite different, since the Tarbert is saturation-dominated and the Cook is pressure-dominated. [Instructions please position Figure 3A immediately above 3B] and mixed success at prior attempts to estimate both pressure and saturation effects from the 4D seismic data. The Cook reservoir in this area was also of interest because of large pressure effects potentially overwhelming any saturation effects. 4D Seismic XEQ processing We received three vintages of seismic streamer data from Statoil including surveys from 1985, 1996 and The data sets consisted of three final migration offset cubes (near, mid, far) per survey, including multiple passes of match filtering and global corrections applied by the processing contractor. In order to apply our pressure-saturation inversion technology, we first had to ensure that the 4D seismic data sets met the highest standards of repeatability required by timelapse AVO analysis. We applied our 4D seismic Cross-Equalization (XEQ) processing flow and found that, although the contractor had done a reasonably good job at processing the cubes, it was possible to significantly improve the repeatability and ultimately the quality of the pressure-saturation inversion results. The XEQ processing flow draws from our 4D seismic prestack and poststack processing toolbox, available commercially as ProMAX4D from Landmark, and was customized for the Gullfaks 4D seismic data sets to consist of constrained time and space variant: data masking, gain compensation, frequency spectra balancing, differential statics, differential waveform phase, seismic event alignment, and final optimized scaling and differencing. Figure 2A shows a full section view of the baseline data and the difference data before and after XEQ. Note that the shallow section of the contractor difference data (before XEQ) is much noisier than after XEQ, containing false ghosting anomalies caused by misalignment of strong nonreservoir reflections. Figure 2B shows a zoom of the reservoir region. Note that the contractor difference section before XEQ shows falsely strong anomalies along the top Brent markers at about 1870 ms, partially due to real reservoir changes and partially due to strong ghosting of the Base Cretaceous Unconformity (BCU) reflector. In contrast, results after XEQ processing show a much cleaner difference section above and below the producing reservoirs, real difference anomalies correlating to production data in the Tarbert reservoir (T) in block-by-block structures along the BCU, a much enhanced image of the Brent oil-water contact (W) in each fault block, and a crisper image of the seismic anomaly related to production activity in the deeper Cook reservoir (C). For time-lapse AVO purposes, a 4D AVO balancing was performed using a combination of the ProMAX4D toolbox and 4th Wave Imaging proprietary in-house software, by applying AVO amplitude and spectral corrections to a matrix of all nine seismic cubes: three vintages by three offsets. Figure 3A shows the near offset sections after 4D AVO balancing for all three survey vintages, and Figure 3B shows the same for the far offset sections. Note the different time-lapse AVO behaviour of the Tarbert reservoir (T) compared to the Cook reservoir (C), which will later be shown to be related to saturation-dominated effects in the Tarbert versus pressure-dominated effects in the Cook EAGE

3 First Break September ' :03 Pagina 5 Pressure-saturation inversion As a developer of pressure-saturation inversion technology for 4D seismic applications (see Cole et al., 2002; 2003; and Lumley et al., 2003), 4th Wave Imaging has recently made the technology available with the release of the PSI interactive software package so that geoscientists and engineers can invert time-lapse seismic data sets to produce quantitative estimates of reservoir pressure and saturation changes, including uncertainty analysis. In this section we discuss the application of PSI to the Gullfaks 4D seismic project. After the 4D seismic data has been pre-conditioned, as described in the previous section, but before PSI can be run, we need to extract and calibrate 4D seismic attributes, perform a reservoir rock and fluid physics analysis, and interactively optimize the inversion parameter set. Horizon surfaces were re-picked with high resolution to isolate the Tarbert and Cook reservoir zones for time-lapse AVO analysis. Several attribute extractions were performed in SeisWorks and analyzed for correlation with production engineering information; the Average Reflection Strength attribute was selected as optimal for this study. These attribute maps were further calibrated with 4D seismic modelling tools at selected wells with know pressure and saturation changes, and in isolated non-producing blocks. Figure 4 shows an example of the high repeatability we were able to obtain at the Tarbert level, even though the two surveys shown are spaced 14 years apart. These attribute maps were subsequently prestack-inverted to produce Shuey slope-intercept maps, and P- and S-impedance maps. We performed a rock and fluid physics analysis using core measurement data and PVT data supplied by Statoil. We determined regression parameters for dry modulus (Kdry) and dry shear bulk modulus (Gdry) as a function of porosity, clay content and pressure (Figure 5). This analysis predicted that for an anticipated reservoir pressure change of 25 bars, Kdry would change by about 2-3%, and Gdry would change by about 5-7%. We later found by post-inversion PSI uncertainty analysis that the shear modulus effects predicted from core data are probably at least three times stronger (more sensitive) to pressure change than the real response of the in-situ reservoir rocks, indicating that the cores were probably damaged (perhaps micro-fractured) along the way from the reservoir to the lab, resulting in an anomalous high core-data pressure sensitivity. With this information in hand, we used the rock physics modeling tools and 4D data analysis within PSI to interactively optimize the pressure-saturation inversion parameters. Figure 6 shows the pressure and saturation axis determination for the Tarbert reservoir in the attribute crossplot domain of PSI required for the inversion. A final step in the PSI inversion uses engineering production data to calibrate the pressure and saturation results. For the saturation calibration we used time-lapse saturation logs provided by Figure 4 Time-lapse far offset attribute maps at the Tarbert reservoir after 4D AVO balancing and attribute analysis. Figure 5 Core data analysis for a Tarbert core sample. Regressions for dry bulk (Kdry) and shear (Gdry) moduli as a function of pressure. Pdiff is the differential (overburden minus pore) pressure of the reservoir. Figure 6 PSI inversion axis determination by rock physics modelling analysis. The interactive software allows the user to model the effect on seismic attributes of various changes in pressure(pp), saturation (Sw), and rock and fluid properties. Figure 7 Time-lapse saturation logs in the Tarbert reservoir at the B-3 and B-8 wells, converted to TVD. Note that the B-8 well is being swept from the base upwards, whereas the B-3 well is being swept from the top downwards. Statoil (Figure 7), converted them to TVD, and averaged the saturation changes in depth with a seismic spatial wavelet to get the true change in saturation that the seismic waves would have been able to see. We interpolated these with calendar time, since logs are rarely collected at the same time as 2003 EAGE 5

4 First Break September ' :03 Pagina 6 Uncertainty analysis In delivering quantitative pressure and saturation results, it is useful to perform an accompanying uncertainty analysis. If we estimate that the pressure has changed by, for example, 35 bars at a particular location, we would also like to specify the error in that estimate. The usefulness of the pressure-saturation estimate depends on whether the error is smaller or larger than the estimate value itself (e.g., 35 bars plus or minus 5 bars or 500 bars?). We have developed a full set of linearized and fully nonlinear Monte Carlo uncertainty analysis tools to address this issue. We can probe the sensitivity of the PSI pressure-saturation results as a function of any single inversion parameter (oil GOR for example), or subset of parameters (e.g., GOR, porosity, Kdry), or all of the inversion parameters simultaneously. We can also explore the post-inversion spatial uncertainty in pressure and saturation results by performing thousands of physically-constrained realizations of the input seismic data and rock physics parameters, and then running thousands of PSI inversions to gather up the full post-inversion uncertainty statistics. Figures 13A and 13B show the standard deviation maps in pressure and saturation obtained by this uncertainty analysis technique, which accompany the pressure and saturation estimate maps of Figures 9 and 10. Note that the standard deviation (error) in saturation in the produced areas is about 0.2 saturation units compared to saturation-change estimates on the order of units, whereas the pressure errors are about 150 bars compared to an anticipated signal of about bars maximum. These results inform us that the saturation estimates in most areas are well-determined, whereas the pressure estimates are largely contaminated by noise, as will be discussed in the next section. Having generated a full a posteriori probability distribufirst break volume 21, September 2003 depend on the reliability of each true saturation or pressure data point (for example, how close in time was the log measurement to the seismic survey?). Figures 9 and 10 show the results of pressure-saturation inversion for the Tarbert reservoir obtained in the manner described above. The Tarbert saturation-change map shows excellent correlation with Statoil s recent engineering drainage map, whereas the Tarbert pressure-change map shows reasonable pressure changes local to producing and injecting wells, but is dominated overall by large-scale noise. Figures 11 and 12 show striking pressure- and saturationchange probability maps for the Cook reservoir. These were also obtained using PSI technology, but using Shuey slopeintercept attributes and a probability-of-change hypothesistesting algorithm instead of the attribute crossplot inversion method described for the Tarbert work flow. The Tarbert and Cook results will be discussed further in the interpretation section of this paper. Figure 8A, 8B Calibration crossplots for water saturation (8A) and pressure (8B). True changes in saturation and pressure are averaged over a seismic spatial wavelength, and crossplotted against the seismic-derived PSI estimate extracted near the well location. Pressure data are averaged over each producing fault block. [Instructions please position Figure 8A side-by-side and to the left of Figure 8B] Figure 9 Tarbert PSI saturation-change map (left) compared to recent Statoil drainage map (right). The PSI map represents the change in water saturation from 1985 (pre-production) to Dark blue is a saturation change of up to 0.8 saturation units, white represents zero saturation change. the seismic surveys. For the pressure calibration, we obtained bottom-hole pressure data from Statoil at various wells, averaged on a block-by-block basis. Then we crossplotted the apparent change in saturation and pressure obtained from our PSI estimates extracted at well locations, against the true change in saturation and pressure as described above (Figures 8A and 8B). We fit polynomial functions to these crossplotted calibration data, including uncertainty error bars in both dimensions, and weighting factors that EAGE

5 First Break September ' :03 Pagina 7 tion function at each reservoir location, we can make virtually any statistical measure of uncertainty that we desire. Figure 14 shows one such example where we have created a map showing the probability that water saturation has increased more than 0.7 saturation units between the 1985 and D seismic surveys. The strong blue areas in the centre of Figure 14 show a strong probability, greater than 0.6 on a scale of 0-1, that waterflood in the H fault block of the Tarbert has exceeded 0.7 saturation units, for example. Interpretation of PSI results Let us now make some brief interpretations of the quantitative pressure-saturation results obtained for the Tarbert and Cook reservoirs. Figure 9 shows the Tarbert saturation-change map obtained from PSI, and a comparison to a recent Statoil engineering drainage map created from production information at wells and Statoil internal 4D seismic interpretation methods. The strongest blue colour in the PSI map is about 0.8 saturation-change units, and white is zero change. Figure 13A shows that the standard deviation error in saturation change is about 0.2 saturation units in the swept areas, so that saturation-change anomalies in Figure 9 are evidently well above the inversion noise level. Overall there is excellent agreement between the PSI and drainage maps. However, there are important differences in detail. The left-most red arrow in Figure 9 indicates an area where Statoil was uncertain whether oil had been produced (stippled green). Our PSI saturation map shows no saturation change in this area, indicating that the oil rim had not been produced by 1999 and probably remains as bypassed oil today. Note that the saturation changes terminate abruptly at a fault just south of the red arrow, supporting our hypothesis that the fault is sealed such that no oil to the north was produced. The right-most red arrow shows a producing well that has watered out and is coloured blue in the Statoil drainage map. Our PSI saturation map is consistent in that it also shows a strong local saturation-change anomaly of about 0.7 saturation units. The area in the northern circle is an original gas cap. Water is being injected at a well here into a deeper formation (Ness), but not the Tarbert. It is apparent that the injected water may be unexpectedly penetrating the Tarbert as shown by the strong blue saturation changes in the PSI map (we have confirmed that these are not seismic wavelet sidelobe or tuning interference effects from the deeper Ness reservoir). Finally, we note a north-south anomaly in the centre of the PSI map which suggests a local pressure decrease below bubble point and gas exsolution near a horizontal producer. We have confirmed with production data that this recently drilled well is producing significantly more gas (produced GOR) than any other well in the area, but since it did not encounter free gas, it was probably drilled just below a small production-induced gas cap. Figure 10 Tarbert PSI pressure-change map (left) and zooms of map around interesting well locations. The red square contains the C-36 producer (centre) and the B-12 injector (south). The green square contains the C-15 producer, the yellow square contains the B-15 producer. Figure 11 Cook PSI map of probability that pressure has increased on a scale of zero (blue) to 0.6 (white). Note that there is a strong pressure anomaly surrounding the B-33 horizontal injector, and east-west sealing fault compartmentalization. Figure 12 Cook PSI map of probability that water saturation has increased on a scale of zero (blue) to 0.6 (white). Note that there is weak water saturation change in most of the compartment since B-33 injects into the water leg, but strong water saturation change to the south-east of the compartment drawn toward nearby producing well B-1. Figure 10 shows the Tarbert pressure-change map and some zoomed areas therein. Overall the pressure map looks very noisy. Figure 13B shows why the uncertainty analysis has determined that the standard deviation error in pressure is on average 150 bars, which means the noise in the pressure 2003 EAGE 7

6 First Break September ' :03 Pagina 8 Figure 13A/13B Standard deviation maps obtained by nonlinear Monte Carlo uncertainty analysis for the Tarbert reservoir for saturation-change (13A) and pressure-change (13B). In the produced areas, the standard deviation error in water saturation is about 0.2 saturation units, and the pressure error is about 150 bars. [Instructions please position Figure 13A side-by-side and to the left of Figure 13B] Figure 14 Monte Carlo uncertainty analysis map showing the probability that the water saturation has increased by more than 0.7 saturation units between 1985 and 1999 in the Tarbert reservoir. Note the large probability that water has swept the central portion of the H block (dark blue) by this amount. estimate is about five times higher than the anticipated 30 bar signal we are looking for! We have determined that this noise is likely caused by a weak pressure signal, low sensitivity of in-situ Tarbert rocks to pressure, and seismic noise in the far offsets contaminating the seismic-derived shear information. Even though the PSI pressure map is dominated by noise, there is some evidence of real pressure signal in the Tarbert map. For example, the calibration plot of Figure 8B shows that when the PSI pressure results are averaged over each producing fault block, the PSI pressure values correlate reasonably well with the bottom-hole pressure data also averaged by block (the crossplot points would not follow a trend if the PSI results were purely noise alone). Also, in the zooms of Figure 10, the B-12 injector shows a local pressure increase in the PSI map, and the C-36 and B-15 producers show a local pressure decrease. In fact, we were informed by Statoil that the B-15 was recently sidetracked to the east and they encountered a low-pressure zone and lost the well, consistent with the local pressure decrease anomaly in the PSI map. Figures 11 and 12 show the probability that pressure and water saturation respectively have changed in the Cook reservoir between the 1985 and 1996 seismic surveys. These maps are obtained with PSI technology but also using hypothesistesting algorithms instead of inversion, as mentioned previously. Figure 11 shows that there is a strong probability (0.6 on a relative scale of 0-1) that pressure has increased in the Cook reservoir due to water injection in the water leg by the B-33 horizontal injection well. Also note that the east and west faults seem to be sealing and containing the pressure anomaly at this point in time, whereas the north and south ends of the compartment appear to be open. Figure 12 shows the probability that water saturation has increased around the B-33 injector, on a scale of 0-1. The main area of the compartment shows a low probability of saturation change, probably because injection is occurring in the water leg and therefore little seismic effect is visible. However, the south-east portion of the compartment shows a relatively strong probability that water saturation has increased, probably because the B-1 producing well is helping to draw injected water up-dip towards it thereby displacing produced oil. Conclusions We have applied our PSI pressure-saturation inversion and uncertainty analysis technology to a case study at the Gullfaks field, offshore Norway. Careful 4D seismic processing is required to perform quantitative analysis of the time-lapse data, and careful seismic attribute analysis and calibration must be performed before pressure-saturation inversion can be successfully applied. The PSI inversion work flow consists of a 4D rock and fluid physics analysis with 4D seismic attributes, and incorporation of production engineering information at a few well locations. Our results show that we can obtain striking examples of well-resolved water-swept and bypassed-oil areas in the Tarbert reservoir, but that the pressure estimates are poorly resolved due to a weak pressure signal, low sensitivity of in-situ Tarbert rocks to pressure, and seismic noise in the far offsets contaminating the seismicderived shear information. Our results in the Cook reservoir show that a strong pressure anomaly can be estimated in the vicinity of a horizontal water injector, along with a strong water saturation anomaly drawing towards a nearby producing well, and strong evidence of east-west fault block compartmentalization at the time of the seismic surveys EAGE

7 First Break September ' :03 Pagina 9 Acknowledgements We would like to acknowledge S. Griesbach and D. Markus at 4th Wave Imaging for their significant software development contributions to the PSI pressure-saturation inversion technology featured in this paper. We would also like to thank Statoil for providing the Gullfaks 4D seismic data used in this case study, and especially L.K. Stronen, K. Duffaut, O. Eiken, T. Alsos, A-K. Furre, R. Tondel and N. Najjar (now at Aramco) for their assistance with the project. References Alsos, T., Eide, A.L., Hegstad, B.K., Najjar, N.F., Astratti, D., Doyen, P. and Psaila, D. (2002) From qualitative to quantitative 4D seismic analysis of the Gullfaks Field. 64th EAGE Annual Meeting, Expanded Abstracts. Cole, S., Lumley, D., Meadows, M., and Tura, A. (2002) Pressure and saturation inversion of 4D seismic data by rock physics forward modeling. 72nd SEG Annual International Meeting, Expanded Abstracts, Cole, S., Lumley, D., and Meadows, M. (2003) 4D pressure and saturation inversion of Schiehallion field by rock physics modeling. 65th EAGE Annual Meeting, Expanded Abstracts, A-05. Landro, M. (2001) Discrimination between pressure and fluid saturation changes from time lapse seismic data. Geophysics, 66, Lumley, D., Meadows, M., Cole, S., and Adams, D. (2003) Estimation of reservoir pressure and saturations by crossplot inversion of 4D seismic attributes. 65th EAGE Annual Meeting, Expanded Abstracts, A-06. Stronen, L. K. and Digranes, P. (2000) The Gullfaks field - 4D seismic enhances oil recovery and improves the reservoir description. 62nd EAGE Annual Meeting. Expanded Abstracts EAGE 9

AVO analysis of 3-D seismic data at G-field, Norway

AVO analysis of 3-D seismic data at G-field, Norway Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(5):148-164 ISSN: 0976-8610 CODEN (USA): AASRFC AVO analysis of 3-D seismic data at G-field, Norway Fredrick

More information

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Downloaded 09/12/14 to 84.215.159.82. Redistribution subject to SEG license or copyright; see Terms of Use

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

Quantitative interpretation using inverse rock-physics modeling on AVO data

Quantitative interpretation using inverse rock-physics modeling on AVO data Quantitative interpretation using inverse rock-physics modeling on AVO data Erling Hugo Jensen 1, Tor Arne Johansen 2, 3, 4, Per Avseth 5, 6, and Kenneth Bredesen 2, 7 Downloaded 08/16/16 to 129.177.32.62.

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway 4D seismic feasibility study for enhanced oil recovery (EOR) with CO2 injection in a mature North Sea field Amini, Hamed; Alvarez, Erick Raciel;

More information

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round New Frontier Advanced Multiclient Data Offshore Uruguay Advanced data interpretation to empower your decision making in the upcoming bid round Multiclient data interpretation provides key deliverables

More information

Updating the low-frequency model in time-lapse seismic inversion: A case study from a heavy-oil steam-injection project

Updating the low-frequency model in time-lapse seismic inversion: A case study from a heavy-oil steam-injection project Updating the low-frequency model in time-lapse seismic inversion: A case study from a heavy-oil steam-injection project Peter R. Mesdag 1, M. Reza Saberi 1, and Cheran Mangat 2 Abstract A workflow to update

More information

Time-lapse seismic modelling for Pikes Peak field

Time-lapse seismic modelling for Pikes Peak field Time-lapse seismic modelling for Pikes Peak field Ying Zou*, Laurence R. Bentley and Laurence R. Lines University of Calgary, 2500 University Dr, NW, Calgary, AB, T2N 1N4 zou@geo.ucalgary.ca ABSTRACT Predicting

More information

Kondal Reddy*, Kausik Saikia, Susanta Mishra, Challapalli Rao, Vivek Shankar and Arvind Kumar

Kondal Reddy*, Kausik Saikia, Susanta Mishra, Challapalli Rao, Vivek Shankar and Arvind Kumar 10 th Biennial International Conference & Exposition P 277 Reducing the uncertainty in 4D seismic interpretation through an integrated multi-disciplinary workflow: A case study from Ravva field, KG basin,

More information

Time-lapse (4D) seismic effects: Reservoir sensitivity to stress and water saturation

Time-lapse (4D) seismic effects: Reservoir sensitivity to stress and water saturation Time-lapse (4D) seismic effects: Reservoir sensitivity to stress and water saturation Sunday O. Amoyedo*, Kurt J. Marfurt and Roger M. Slatt, The University of Oklahoma. Summary Knowledge of reservoir

More information

We G Quantification of Residual Oil Saturation Using 4D Seismic Data

We G Quantification of Residual Oil Saturation Using 4D Seismic Data We G102 15 Quantification of Residual Oil aturation Using 4D eismic Data E. Alvarez* (Heriot-Watt University) & C. MacBeth (Heriot-Watt University) UMMARY A method has been developed to quantify residual

More information

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Agenda 1. Ikon Science Where we are now 2. Geoscience 2012 A motion picture 3. Rock physics, AVO and Inversion

More information

Bertrand Six, Olivier Colnard, Jean-Philippe Coulon and Yasmine Aziez CGGVeritas Frédéric Cailly, Total

Bertrand Six, Olivier Colnard, Jean-Philippe Coulon and Yasmine Aziez CGGVeritas Frédéric Cailly, Total 4-D Seismic Inversion: A Case Study Offshore Congo Bertrand Six, Olivier Colnard, Jean-Philippe Coulon and Yasmine Aziez CGGVeritas Frédéric Cailly, Total Summary The first 4D seismic survey in Congo was

More information

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Marco Venieri and Per Kent Pedersen Department of Geoscience, University

More information

Quantifying remaining oil saturation using seismic time-lapse amplitude changes at fluid contacts Alvarez, Erick; MacBeth, Colin; Brain, Jon

Quantifying remaining oil saturation using seismic time-lapse amplitude changes at fluid contacts Alvarez, Erick; MacBeth, Colin; Brain, Jon Heriot-Watt University Heriot-Watt University Research Gateway Quantifying remaining oil saturation using seismic time-lapse amplitude changes at fluid contacts Alvarez, Erick; MacBeth, Colin; Brain, Jon

More information

A031 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance

A031 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance A31 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance A.M. Francis* (Earthworks Environment & Resources Ltd) & G.J. Hicks (Earthworks Environment & Resources Ltd)

More information

The Hangingstone steam-assisted gravity drainage

The Hangingstone steam-assisted gravity drainage SPECIAL Heavy SECTION: oil H e a v y o i l Elastic property changes in a bitumen reservoir during steam injection AYATO KATO, University of Houston, USA SHIGENOBU ONOZUKA, JOGMEC, Chiba, Japan TORU NAKAYAMA,

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reservoir properties estimation from marine broadband seismic without a-priori well information: A powerful de-risking workflow Cyrille Reiser*, Matt Whaley and Tim Bird, PGS Reservoir Limited Summary

More information

Reservoir properties inversion from AVO attributes

Reservoir properties inversion from AVO attributes Reservoir properties inversion from AVO attributes Xin-gang Chi* and De-hua Han, University of Houston Summary A new rock physics model based inversion method is put forward where the shaly-sand mixture

More information

Monitoring CO 2 Injection at Weyburn Reservoir Using 3-D/3-C Seismic Datasets

Monitoring CO 2 Injection at Weyburn Reservoir Using 3-D/3-C Seismic Datasets Monitoring CO 2 Injection at Weyburn Reservoir Using 3-D/3-C Seismic Datasets Le Gao* and Igor Morozov, University of Saskatchewan, Saskatoon, Saskatchewan le.gao@usask.ca Summary In order to monitor and

More information

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Title 4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Authors Bloomer, D., Ikon Science Asia Pacific Reynolds, S., Ikon Science Asia Pacific Pavlova, M., Origin

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration 66 Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration Kenneth Bredesen 1, Erling Hugo Jensen 1, 2, Tor Arne Johansen 1, 2, and Per Avseth 3, 4

More information

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile 4D SEISMIC INVERSIONS by Lucia Levato, CGG three offshore case studies show how one size does not fi t all 18 seismic profile The following three cases of offshore 4D seismic inversions illustrate how

More information

Recent advances in application of AVO to carbonate reservoirs: case histories

Recent advances in application of AVO to carbonate reservoirs: case histories Recent advances in application of AVO to reservoirs: case histories Yongyi Li, Bill Goodway*, and Jonathan Downton Core Lab Reservoir Technologies Division *EnCana Corporation Summary The application of

More information

E014 4D Case Study at Ringhorne, Ringhorne East, Balder and Forseti - Integrating OBC with Streamer Data

E014 4D Case Study at Ringhorne, Ringhorne East, Balder and Forseti - Integrating OBC with Streamer Data E014 4D Case Study at Ringhorne, Ringhorne East, Balder and Forseti - Integrating OBC with Streamer Data M.B. Helgerud* (ExxonMobil E&P), U.K. Tiwari (ExxonMobil E&P), S.G. Woods (ExxonMobil E&P), P. Homonko

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Ehsan Zabihi Naeini*, Ikon Science & Russell Exley, Summit Exploration & Production Ltd Summary Quantitative interpretation (QI) is an important part of successful Central North Sea exploration, appraisal

More information

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at AVO crossplot analysis in unconsolidated sediments containing gas hydrate and free gas: Green Canyon 955, Gulf of Mexico Zijian Zhang* 1, Daniel R. McConnell 1, De-hua Han 2 1 Fugro GeoConsulting, Inc.,

More information

Using high-density OBC seismic data to optimize the Andrew satellites development

Using high-density OBC seismic data to optimize the Andrew satellites development Using high-density OBC seismic data to optimize the Andrew satellites development Leendert Padmos, 1* Daniel Davies, 1 Merv Davies 1 and John McGarrity 1 Abstract The processed data from conventional towed-streamer

More information

PRELIMINARY REPORT. Evaluations of to what extent CO 2 accumulations in the Utsira formations are possible to quantify by seismic by August 1999.

PRELIMINARY REPORT. Evaluations of to what extent CO 2 accumulations in the Utsira formations are possible to quantify by seismic by August 1999. SINTEF Petroleumsforskning AS SINTEF Petroleum Research N-7465 Trondheim, Norway Telephone: +47 73 59 11 Fax: +477359112(aut.) Enterprise no.: NO 936 882 331 MVA TITLE PRELIMINARY REPORT Evaluations of

More information

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well C. Reiser (Petroleum Geo-Services), T. Bird* (Petroleum Geo-Services) & M. Whaley (Petroleum

More information

Optimizing seismic repeatability at Ringhorne, Ringhorne East, Balder and Forseti with QC driven time-lapse processing

Optimizing seismic repeatability at Ringhorne, Ringhorne East, Balder and Forseti with QC driven time-lapse processing with QC driven time-lapse processing Michael B Helgerud, Upendra Tiwari, Stephen Woods (ExxonMobil Exploration Company) Peter Homonko (ExxonMobil International Limited) Adam Bucki and Bernard Laugier (ExxonMobil

More information

AVO is not an Achilles Heel but a valuable tool for successful exploration west of Shetland

AVO is not an Achilles Heel but a valuable tool for successful exploration west of Shetland 1 AVO is not an Achilles Heel but a valuable tool for successful exploration west of Shetland NICK LOIZOU 1, ENRU LIU 2 AND MARK CHAPMAN 2 1 Department of Trade and Industry, London, UK 2 British Geological

More information

P Edward Knight 1, James Raffle 2, Sian Davies 2, Henna Selby 2, Emma Evans 2, Mark Johnson 1. Abstract

P Edward Knight 1, James Raffle 2, Sian Davies 2, Henna Selby 2, Emma Evans 2, Mark Johnson 1. Abstract P1-3-10 De-risking Drill Decisions. A case study on the benefit of re-processing conventionally acquired seismic data with the latest broadband processing technology Edward Knight 1, James Raffle 2, Sian

More information

Towards Interactive QI Workflows Laurie Weston Bellman*

Towards Interactive QI Workflows Laurie Weston Bellman* Laurie Weston Bellman* Summary Quantitative interpretation (QI) is an analysis approach that is widely applied (Aki and Richards, 1980, Verm and Hilterman, 1995, Avseth et al., 2005, Weston Bellman and

More information

A E. SEG/San Antonio 2007 Annual Meeting. exp. a V. a V. Summary

A E. SEG/San Antonio 2007 Annual Meeting. exp. a V. a V. Summary Time-lapse simulator-to-seismic study - Forties field, North Sea. Christophe Ribeiro *, Cyrille Reiser, Philippe Doyen, CGGeritas, London, UK August Lau, Apache Corp., Houston, US, Steve Adiletta, Apache

More information

Serica Energy (UK) Limited. P.1840 Relinquishment Report. Blocks 210/19a & 210/20a. UK Northern North Sea

Serica Energy (UK) Limited. P.1840 Relinquishment Report. Blocks 210/19a & 210/20a. UK Northern North Sea Serica Energy (UK) Limited P.1840 Relinquishment Report Blocks 210/19a & 210/20a UK Northern North Sea January 2013 1 Header Licence: P.1840 Round: Licence Type: 26th Round Traditional "Drill-or-Drop"

More information

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell Integrating rock physics modeling, prestack inversion and Bayesian classification Brian Russell Introduction Today, most geoscientists have an array of tools available to perform seismic reservoir characterization.

More information

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science)

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) 29829. One 4D geomechanical model and its many applications J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) Main objectives (i) Field case study demonstrating application

More information

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field T. Coleou* (CGG), A.J. van Wijngaarden (Hydro), A. Norenes Haaland (Hydro), P. Moliere (Hydro), R. Ona (Hydro) &

More information

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation Advances in Petroleum Exploration and Development Vol. 7, No. 2, 2014, pp. 30-39 DOI:10.3968/5170 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org Pre-Stack Seismic Inversion

More information

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware HampsonRussell A comprehensive suite of reservoir characterization tools cgg.com/geosoftware HampsonRussell Software World-class geophysical interpretation HampsonRussell Software is a comprehensive suite

More information

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence Amplitude variation with offset AVO and Direct Hydrocarbon Indicators DHI Reflection at vertical incidence Reflection coefficient R(p) c α 1 S wavespeed β 1 density ρ 1 α 2 S wavespeed β 2 density ρ 2

More information

We Improved Salt Body Delineation Using a new Structure Extraction Workflow

We Improved Salt Body Delineation Using a new Structure Extraction Workflow We-08-08 Improved Salt Body Delineation Using a new Structure Extraction Workflow A. Laake* (WesternGeco) SUMMARY Current salt imaging workflows require thorough geological understanding in the selection

More information

A Petroleum Geologist's Guide to Seismic Reflection

A Petroleum Geologist's Guide to Seismic Reflection A Petroleum Geologist's Guide to Seismic Reflection William Ashcroft WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Contents Preface Acknowledgements xi xiii Part I Basic topics and 2D interpretation

More information

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

RC 1.3. SEG/Houston 2005 Annual Meeting 1307 from seismic AVO Xin-Gong Li,University of Houston and IntSeis Inc, De-Hua Han, and Jiajin Liu, University of Houston Donn McGuire, Anadarko Petroleum Corp Summary A new inversion method is tested to directly

More information

Mapping the fluid front and pressure buildup using 4D data on Norne Field

Mapping the fluid front and pressure buildup using 4D data on Norne Field Mapping the fluid front and pressure buildup using 4D data on Norne Field BÅRD OSDAL, ODDVAR HUSBY, HANS A. ARONSEN, NAN CHEN, and TRINE ALSOS, Statoil, Harstad, Norway Norne Field, in the southern part

More information

PRM on Johan Sverdrup - an unique Opportunity. Force seminar 2017 Stavanger, Maximilian Schuberth

PRM on Johan Sverdrup - an unique Opportunity. Force seminar 2017 Stavanger, Maximilian Schuberth PRM on Johan Sverdrup - an unique Opportunity Force seminar 2017 Stavanger, Maximilian Schuberth Agenda Introduction to the Johan Sverdrup Field Ambition for a world class recovery rate Permanent Reservoir

More information

The elastic properties such as velocity, density, impedance,

The elastic properties such as velocity, density, impedance, SPECIAL SECTION: Rr ock Physics physics Lithology and fluid differentiation using rock physics template XIN-GANG CHI AND DE-HUA HAN, University of Houston The elastic properties such as velocity, density,

More information

Toward an Integrated and Realistic Interpretation of Continuous 4D Seismic Data for a CO 2 EOR and Sequestration Project

Toward an Integrated and Realistic Interpretation of Continuous 4D Seismic Data for a CO 2 EOR and Sequestration Project SPE-183789-MS Toward an Integrated and Realistic Interpretation of Continuous 4D Seismic Data for a CO 2 EOR and Sequestration Project Philippe Nivlet, Robert Smith, Michael A. Jervis, and Andrey Bakulin,

More information

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Carl Reine 1, Chris Szelewski 2, and Chaminda Sandanayake 3 Search and Discovery Article #41899 (2016)** Posted September

More information

Building more robust low-frequency models for seismic impedance inversion

Building more robust low-frequency models for seismic impedance inversion first break volume 34, May 2016 technical article Building more robust low-frequency models for seismic impedance inversion Amit Kumar Ray 1 and Satinder Chopra 1* Abstract Seismic impedance inversion

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Bandlimited impedance inversion: using well logs to fill low frequency information in a non-homogenous model

Bandlimited impedance inversion: using well logs to fill low frequency information in a non-homogenous model Bandlimited impedance inversion: using well logs to fill low frequency information in a non-homogenous model Heather J.E. Lloyd and Gary F. Margrave ABSTRACT An acoustic bandlimited impedance inversion

More information

Hydrocarbon Trap Classification Based on Associated Gas Chimneys

Hydrocarbon Trap Classification Based on Associated Gas Chimneys Chapter 14 Hydrocarbon Trap Classification Based on Associated Gas Chimneys Roar Heggland 1 Abstract Oil seeps, shallow gas, and surface features such as seabed pockmarks and mud volcanoes are historically

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Data Using a Facies Based Bayesian Seismic Inversion, Forties Field, UKCS Kester Waters* (Ikon Science Ltd), Ana Somoza (Ikon Science Ltd), Grant Byerley (Apache Corp), Phil Rose (Apache UK) Summary The

More information

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale

Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Reducing Uncertainty through Multi-Measurement Integration: from Regional to Reservoir scale Efthimios Tartaras Data Processing & Modeling Manager, Integrated Electromagnetics CoE, Schlumberger Geosolutions

More information

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E. Rock Physics and Quantitative Wavelet Estimation for Seismic Interpretation: Tertiary North Sea R.W.Simm 1, S.Xu 2 and R.E.White 2 1. Enterprise Oil plc, Grand Buildings, Trafalgar Square, London WC2N

More information

Adding Value with Broadband Seismic and Inversion in the Central North Sea Seagull Area

Adding Value with Broadband Seismic and Inversion in the Central North Sea Seagull Area H2-2-1 Adding Value with Broadband Seismic and Inversion in the Central North Sea Seagull Area Marnix Vermaas, Andy Lind Apache North Sea, Aberdeen, UK Introduction The merits of modern broadband seismic

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting The role of EM rock physics and seismic data in integrated 3D CSEM data analysis I. Brevik*, StatoilHydro, Pål T. Gabrielsen, Vestfonna and Jan Petter Morten, EMGS Summary An extensive 3D CSEM dataset

More information

Sadewa Field is in Kutei Basin in the Makassar Strait between

Sadewa Field is in Kutei Basin in the Makassar Strait between SPECIAL Asia SECTION: Pacific A s i a P acific Distinguishing gas sand from shale/brine sand using elastic impedance data and the determination of the lateral extent of channel reservoirs using amplitude

More information

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion Velocity Calibrated Seismic Imaging and Interpretation Accurate Solution for Prospect Depth, Size & Geometry Accurate Time-to-Depth Conversion was founded to provide geologically feasible solutions for

More information

Using multicomponent seismic for reservoir characterization in Venezuela

Using multicomponent seismic for reservoir characterization in Venezuela Using multicomponent seismic for reservoir characterization in Venezuela REINALDO J. MICHELENA, MARÍA S. DONATI, ALEJANDRO A. VALENCIANO, and CLAUDIO D AGOSTO, Petróleos de Venezuela (Pdvsa) Intevep, Caracas,

More information

Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil*

Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil* Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil* Carlos H. Bruhn 1, Antonio Pinto 1, and Paulo R. Johann 1 Search and Discovery Article

More information

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1 P-259 Summary Data for identification of Porosity Behaviour in Oligocene Lime Stone of D18 Area Of Western Offshore, India V.K. Baid*, P.H. Rao, P.S. Basak, Ravi Kant, V. Vairavan 1, K.M. Sundaram 1, ONGC

More information

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field K. Gjerding* (Statoil), N. Skjei (Statoil), A. Norenes Haaland (Statoil), I. Machecler (CGGVeritas Services) & T.

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

Towed Streamer EM data from Barents Sea, Norway

Towed Streamer EM data from Barents Sea, Norway Towed Streamer EM data from Barents Sea, Norway Anwar Bhuiyan*, Eivind Vesterås and Allan McKay, PGS Summary The measured Towed Streamer EM data from a survey in the Barents Sea, undertaken in the Norwegian

More information

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field.

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Peter Harris*, Zhijun Du, Harald H. Soleng, Lucy M. MacGregor, Wiebke Olsen, OHM-Rock Solid Images Summary It

More information

Summary. Introduction

Summary. Introduction Time-lapse seismic data-calibrated geomechanical model reveals hydraulic fracture re-orientation Jorg V. Herwanger*, Farid R. Mohamed, Robert Newman (Schlumberger), and Ole Vejbæk (Hess) Summary The orientation

More information

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta Violet Grove seismic interpretation Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta Fuju Chen and Don Lawton ABSTRACT Time-lapse seismic technology has

More information

Th LHR2 04 Quantification of Reservoir Pressure-sensitivity Using Multiple Monitor 4D Seismic Data

Th LHR2 04 Quantification of Reservoir Pressure-sensitivity Using Multiple Monitor 4D Seismic Data Th LHR2 04 Quantification of Reservoir -sensitivity Using Multiple Monitor 4D Seismic Data V.E. Omofoma* (Heriot-Watt University) & C. MacBeth (Heriot-Watt University) SUMMARY Key to quantitative interpretation

More information

Tu N Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf

Tu N Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf Tu N118 06 Estimation of Uncertainties in Fault Lateral Positioning on 3D PSDM Seismic Image - Example from the NW Australian Shelf S. Birdus* (CGG), V. Ganivet (CGG), A. Artemov (CGG), R. Teakle (Chevron)

More information

Quantifying Bypassed Pay Through 4-D Post-Stack Inversion*

Quantifying Bypassed Pay Through 4-D Post-Stack Inversion* Quantifying Bypassed Pay Through 4-D Post-Stack Inversion* Robert Woock 1, Sean Boerner 2 and James Gamble 1 Search and Discovery Article #40799 (2011) Posted August 12, 2011 *Adapted from oral presentation

More information

An empirical method for estimation of anisotropic parameters in clastic rocks

An empirical method for estimation of anisotropic parameters in clastic rocks An empirical method for estimation of anisotropic parameters in clastic rocks YONGYI LI, Paradigm Geophysical, Calgary, Alberta, Canada Clastic sediments, particularly shale, exhibit transverse isotropic

More information

How broadband can unlock the remaining hydrocarbon potential of the North Sea

How broadband can unlock the remaining hydrocarbon potential of the North Sea How broadband can unlock the remaining hydrocarbon potential of the North Sea Gregor Duval 1 provides some graphic evidence of how broadband seismic data can unmask the hidden potential of the UK Continental

More information

5 ORIGINAL HYDROCARBONS IN PLACE

5 ORIGINAL HYDROCARBONS IN PLACE 5 ORIGINAL HYDROCARBONS IN PLACE The deterministic estimation of oil in place for the White Rose Field was completed using 3-D geological modelling in the RMS software package. This procedure involves

More information

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Osman Khaled, Yousef Al-Zuabi, Hameed Shereef Summary The zone under study is Zubair formation of Cretaceous

More information

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX Summary Near-surface modeling for statics corrections is an integral part of a land

More information

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data

Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data Detection, Delineation and Characterization of Shallow Anomalies Using Dual Sensor Seismic and Towed Streamer EM data A.J. McKay* (Petroleum Geo-Services ASA), M. Widmaier (Petroleum Geo- Services ASA),

More information

Seismic methods in heavy-oil reservoir monitoring

Seismic methods in heavy-oil reservoir monitoring Seismic methods in heavy-oil reservoir monitoring Duojun A. Zhang and Laurence R. Lines ABSTRACT Laboratory tests show that a significant decrease in acoustic velocity occurs as the result of heating rock

More information

Use of Seismic Inversion Attributes In Field Development Planning

Use of Seismic Inversion Attributes In Field Development Planning IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 6, Issue 2 Ver. II (Mar. Apr. 2018), PP 86-92 www.iosrjournals.org Use of Seismic Inversion Attributes

More information

Pre-stack (AVO) and post-stack inversion of the Hussar low frequency seismic data

Pre-stack (AVO) and post-stack inversion of the Hussar low frequency seismic data Pre-stack (AVO) and post-stack inversion of the Hussar low frequency seismic data A.Nassir Saeed, Gary F. Margrave and Laurence R. Lines ABSTRACT Post-stack and pre-stack (AVO) inversion were performed

More information

Fr Reservoir Monitoring in Oil Sands Using a Permanent Cross-well System: Status and Results after 18 Months of Production

Fr Reservoir Monitoring in Oil Sands Using a Permanent Cross-well System: Status and Results after 18 Months of Production Fr-01-03 Reservoir Monitoring in Oil Sands Using a Permanent Cross-well System: Status and Results after 18 Months of Production R. Tondel* (Statoil ASA), S. Dümmong (Statoil ASA), H. Schütt (Statoil ASA),

More information

We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion

We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion We LHR3 06 Detecting Production Effects and By-passed Pay from 3D Seismic Data Using a Facies Based Bayesian Seismic Inversion K.D. Waters* (Ikon Science Ltd), A.V. Somoza (Ikon Science Ltd), G. Byerley

More information

Estimation of density from seismic data without long offsets a novel approach.

Estimation of density from seismic data without long offsets a novel approach. Estimation of density from seismic data without long offsets a novel approach. Ritesh Kumar Sharma* and Satinder Chopra Arcis seismic solutions, TGS, Calgary Summary Estimation of density plays an important

More information

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Adi Widyantoro (IkonScience), Matthew Saul (IkonScience/UWA) Rock physics analysis of reservoir elastic properties often assumes homogeneity

More information

Reservoir Characterization using AVO and Seismic Inversion Techniques

Reservoir Characterization using AVO and Seismic Inversion Techniques P-205 Reservoir Characterization using AVO and Summary *Abhinav Kumar Dubey, IIT Kharagpur Reservoir characterization is one of the most important components of seismic data interpretation. Conventional

More information

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography

Tu N Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Tu N118 05 Fault Shadow Removal over Timor Trough Using Broadband Seismic, FWI and Fault Constrained Tomography Y. Guo* (CGG), M. Fujimoto (INPEX), S. Wu (CGG) & Y. Sasaki (INPEX) SUMMARY Thrust-complex

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

The Weyburn Field in southeastern Saskatchewan,

The Weyburn Field in southeastern Saskatchewan, SPECIAL 2 SECTION: C O 2 AVO modeling of pressure-saturation effects in Weyburn sequestration JINFENG MA, State Key Laboratory of Continental Dynamics, Northwest University, China IGOR MOROZOV, University

More information

Observations of Azimuthal Anisotropy in Prestack Seismic Data

Observations of Azimuthal Anisotropy in Prestack Seismic Data Observations of Azimuthal Anisotropy in Prestack Seismic Data David Gray* CGGVeritas, Calgary, AB, Canada dave.gray@cggveritas.com Summary A method for displaying prestack seismic data that highlights

More information

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston ain enu Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston Summary When S-wave velocity is absent, approximate Gassmann

More information

Seismic applications in coalbed methane exploration and development

Seismic applications in coalbed methane exploration and development Seismic applications in coalbed methane exploration and development Sarah E. Richardson*, Dr. Don C. Lawton and Dr. Gary F. Margrave Department of Geology and Geophysics and CREWES, University of Calgary

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

Keywords. PMR, Reservoir Characterization, EEI, LR

Keywords. PMR, Reservoir Characterization, EEI, LR Enhancing the Reservoir Characterization Experience through Post Migration Reprocessed (PMR) Data A case study Indrajit Das*, Ashish Kumar Singh, Shakuntala Mangal, Reliance Industries Limited, Mumbai

More information

Quantitative Seismic Interpretation An Earth Modeling Perspective

Quantitative Seismic Interpretation An Earth Modeling Perspective Quantitative Seismic Interpretation An Earth Modeling Perspective Damien Thenin*, RPS, Calgary, AB, Canada TheninD@rpsgroup.com Ron Larson, RPS, Calgary, AB, Canada LarsonR@rpsgroup.com Summary Earth models

More information

URTeC: Summary

URTeC: Summary URTeC: 2665754 Using Seismic Inversion to Predict Geomechanical Well Behavior: a Case Study From the Permian Basin Simon S. Payne*, Ikon Science; Jeremy Meyer*, Ikon Science Copyright 2017, Unconventional

More information