Sadewa Field is in Kutei Basin in the Makassar Strait between

Size: px
Start display at page:

Download "Sadewa Field is in Kutei Basin in the Makassar Strait between"

Transcription

1 SPECIAL Asia SECTION: Pacific A s i a P acific Distinguishing gas sand from shale/brine sand using elastic impedance data and the determination of the lateral extent of channel reservoirs using amplitude data for a channelized deepwater gas field in Indonesia PAUL THOMPSON, JIM JASON HARTMAN, and MUHAMMAD ANUN ANUNG ANANDITO, Chevron Indonesia DHANANJAY KUMAR and JIM MAGILL, Chevron Energy Technology Company KIYOSHI NOGUCHI, INPEX Corporation BRAHMANTYO KRINAHADI GUNAWAN, BPMIGAS Sadewa Field is in Kutei Basin in the Makassar Strait between the Indonesian islands of Kalimantan and Sulawesi about 5 km from the shelf edge in water depths of ft (Figure 1). The discovery well was drilled in 2002, and a total of nine wellbores have been drilled. Two basic development scenarios have been assessed for the field: (1) shelf edge platform with extended reach drilling (ERD), and (2) subsea development. Both are very expensive options. The challenge is to make reliable probabilistic reserve estimates for the economic evaluation. Critical to the reserve estimates is quantitative geophysical reservoir characterization, or what is known in Chevron as reservoir properties from seismic. For Sadewa, elastic impedance inversion data can be used to distinguish gas sand from shale/brine sand and acoustic impedance inversion data can be used to derive porosity data but only for reservoirs close to or above tuning thickness. For reservoirs much less than the tuning thickness, for instance near the edges of the Sadewa reservoir bodies, seismic amplitude data are more reliable than inverted data for geophysical reservoir characterization. Reserves sensitiv- Figure 1. Sadewa location, bathymetry, and seismic data. (a) Shaded relief map. (b) Bathymetry map with curvature overlay with well locations and seismic shooting direction annotated. (c) Arbitrary seismic line showing shelf edge, Pleistocene channeling, Pliocene sequence, and Upper Miocene reservoir sequence. 312 The Leading Edge March 2009

2 Figure 2. Sadewa geology. (a) Schematic cross section showing stratigraphy of Kutei Basin with Paleocene to Eocene extension (rifting), Oligocene subsidence (sag), and Miocene Holocene deltaic progradation (after Saller et al.). (b) Generalized deepwater geological model showing Sadewa upper slope channels (modified from Saller, personal communicaton). (c) Type log with gamma ray and resistivity; gas sands are red and oil sands are green. ity analysis has shown that reservoir body area is the single most important parameter, and, thus, a special focus has been in the determination of the lateral extent of reservoirs using seismic amplitude data. The Sadewa reservoirs are Upper Miocene age and interpreted to have been deposited in a deepwater upper slope environment (Figure 2a). The geological model (Figure 2b) is very analogous to the present day bathymetry (Figure 1b), suggesting that the shelf edge has remained in roughly the same position for at least the last 7 8 million years. A type log for Sadewa with gamma-ray and resistivity logs (Figure 2c) reveals that many sands show some fining upwards, typical of deepwater deposition, and are gas-filled. A 3D seismic reflection data set was shot across the area in 2004 in an essentially bathymetric strike direction (Figure 1b). Cable length was 6000 m with bin size of m and 60 fold. Processing paid particular attention to waterbottom multiple suppression (a severe problem in the Kutei deepwater) while maintaining amplitude integrity, and used a modified prestack time migration (PSTM). Reservoir properties from seismic The success of any reservoir properties from a seismic (RPFS) Figure 3. Angle stack maximum peak+trough amplitude maps from amplitude conditioned, compensated, and AVO-calibrated, zero-phase amplitude data set, for example, Sadewa reservoir. The gas reservoirs are shown with colors other than gray. project is dependent on high-quality data, favorable rock properties (that can be studied from wireline logs), and reliable inversion (also dependent on good wireline logs and data). The type of inversion required depends on the rock properties relationships. To achieve the necessary high-quality data for the Sadewa March 2009 The Leading Edge 313

3 Figure 4. Rock property analysis. (a) Density and P-velocity histograms and probability density functions for brine-filled and gas-filled sands compared to shale (shale is represented by green). (b) Acoustic impedance (gas sand and brine sand) and elastic impedance (gas sand) histograms and probability density functions for high-porosity, medium-porosity, and low-porosity sands, shale, and nonreservoir sand. (c and d) Monte Carlo seismic amplitude modeling. (c) Amplitude versus gradient P10-P90 limits for gas sand, oil sand, brine sand (all over shale with sand thickness of 100 ft) and shale/shale for near-, mid-, far-, and very far-angle stacks. (d) Amplitude versus gradient P10 P90 limits for gas sand of low, medium, and high porosity (sand thickness is 100 ft) and for average porosity sand with variable sand thickness (0 220 ft). On (d) the P20 shale over shale far-angle stack amplitude cutoff is annotated in white. Figure 5. Rock physics relationships for gas sand and shale. (a) P-impedance versus S-impedance and (b) P-impedance versus far-angle elastic impedance. Both shear and elastic impedances along with P-impedance are able to distinguish gas sand from shale, especially for high-porosity sands. 314 The Leading Edge March 2009

4 Figure 6. Rock physics analysis for lithology estimation and porosity estimation of sand. (a) The far-angle elastic impedance at 38 0 (EI38) can be used to differentiate gas sand from shale/brine sand. (b) A range of EI38 cutoffs can be used to estimate the probability of finding gas sand. (c) Once gas sand is estimated, a porosity volume can be derived from acoustic impedance using a regression relationship. Note the regression relationships for porosity estimation of gas sand and brine sand from acoustic impedance are different. RPFS study, amplitude conditioning (beyond what is done in basic processing), compensation, and AVO calibration are required. The conditioning consists of a number of processing steps including the application of a wavelet transform filter, f-k dip filtering, differential moveout, destretch, dynamic structural correction, and residual amplitude correction. The amplitude compensation is required because of shallow transmission effects, and a spatial amplitude correction is applied based on amplitude normalization of the geologically spatially uniform Pliocene sequence (Figure 1c). AVO calibration is achieved by applying well data average rms amplitude calibration multipliers from synthetics for each angle range near, mid, far, and very far. An example set of angle stack reservoir amplitude maps extracted from the seismic data after conditioning, compensation, and AVO calibration ( calibrated data set) is shown in Figure 3. The far-angle stack (effective angle of 38 0 ) is considered the optimum angle stack from the point of view of overall signal-to-noise and reservoir amplitude/coherency. Amplitude increasing with angle with relatively low amplitude on the near-angle stack indicates AVO Class 3. Rock-property analysis of all available well data shows that gas sand can confidently be distinguished from shale, largely as a result of density contrast. However, brine sand and shale are largely indistinguishable (Figure 4). The gas sands in Figure 4b were subdivided into porosity bands: high (>19%), medium (15 19%), low (10 15%), and nonreservoir (<10%). All penetrated Sadewa reservoir sands fall in the high-medium porosity bands, with the majority in the former. The Monte Carlo seismic amplitude modeling indicates an AVO Class 3 response, and that far angles give the best discrimination of gas sand. Additionally, Monte Carlo mod- March 2009 The Leading Edge 315

5 Figure 7. P10 and P20 shale over shale models (Shale:Shale) with a far-angle stack amplitude cutoff. (a) Far-angle stack amplitude tuning plot for gas, oil, and brine sands (high-porosity sand; sand-over-shale model) with P0 P50 shale over shale amplitudes annotated. (b) Geological model of upper slope channel and corresponding amplitude profile with amplitude/thickness cutoffs annotated. (c) Actual calibrated far-angle seismic amplitudes as penetrated by the Sadewa wells with amplitude associated with hydrocarbons plotted as green diamonds and amplitude not associated with hydrocarbons plotted as magenta squares and shale over shale P0 P50 amplitudes annotated. eling shows that high-porosity gas sands with a thickness near the tuning thickness also lead to better discrimination of gas sand from shale (Figures 4c and 4d). Based on the analysis of acoustic impedance versus shear/ elastic impedance data (Figure 5), and because estimated shear impedance data were less reliable than elastic impedance data, it was determined that both elastic impedance (Whitcombe, 2002) and acoustic impedance data sets could be reliably used to distinguish the gas sands. Further, rock physics relationships and modeled amplitudes indicate that the elastic impedance far-angle data at 38 0 (EI38) gives the best statistics for distinguishing the gas sands by the application of an EI38 cutoff (Figure 6a). A range of EI38 cutoff values can be used to estimate the probability of finding gas sand (Figure 6b), which is also desired for numerical simulations of various reservoir scenarios. For example, if EI38 of ft/s.g/cc is selected as a cutoff value (as shown by the vertical line in Figure 6b), then for EI38 values less than this cutoff value there is at least 82% probability of finding gas sand from shale and 83% probability of finding gas sand from brine sand. After the gas sands have been identified in this way, a porosity volume can be estimated using the regression between porosity and acoustic impedance (Figure 6c). The above inversion strategy works well when the reservoir sands are near or above tuning thickness (typically 120 ft in this case). However, at the edges of the channel reservoir bodies, thicknesses will be below tuning thickness, and, therefore, a special approach is required to reliably determine the lateral reservoir extent. For reservoir sand thickness below tuning thickness, inverted impedance data are considered less reliable because of tuning effects (Galbiati et al., 2008), and the original calibrated angle stack amplitude data are considered more reliable. The approach adopted for determining the lateral extent of the Sadewa channel reservoirs is based upon the analysis of model amplitudes for the far-angle amplitude data set for (1) gas sand over shale and (2) shale over shale. Figure 7a shows the tuning curves for the far-angle (high-porosity sand) together with the P0 P50 shale over shale amplitudes (the P50 occurs at zero amplitude because the average shale over average shale causes no reflection). Figure 7b shows the channel sand of the geological model and how seismic amplitude will vary across the channel and the implications of choosing particular amplitude cutoffs. In this case, a P10 shale over shale far-angle stack amplitude cutoff is selected as a conservative scenario, but the implication is that reservoirs with thickness less than 30 ft will be deemed beyond the edge of the reservoir. A more optimistic scenario with P20 shale over shale 316 The Leading Edge March 2009

6 where inversion data are unreliable, has been addressed using quantitative seismic amplitudes. The complete RPFS strategy for Sadewa also includes the estimation of the downdip limit of gas sands (gas/brine sand). This RPFS workflow is considered the basis for reliable reserves estimation and thus will have a direct impact on field economics. Suggested reading. Elastic impedance normalization by Whitcombe (Geophysics, 2002). Seismic evaluation of reservoir quality and gas reserves of DHI supported deep-water systems, offshore Nile delta by Galbiati et al. (EAGE Extended Abstracts, 2008). Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia by Saller et al. (AAPG Bulletin, 2006). Figure 8. Application of P10 and P20 shale over shale amplitude cutoffs on example far-angle stack seismic amplitude map. Acknowledgments: The authors thank the other members of the Sadewa subsurface team Yuniyanto, Lothar Schulte, Andrian Elim, and Suwarno. Also thanks to Craig Huber who managed the seismic processing, Steven Leslie who did the conditioning, and Larry Sydora who was instrumental in initiating the RPFS work. The approval to publish from Chevron, INPEX, BPMIGAS, and MIGAS management is also acknowledged. Corresponding author: pault@chevron.com far-angle stack amplitude cutoff would lead to reservoirs of thickness less than 20 ft being excluded. Figure 7c shows the same shale over shale amplitude cutoffs plotted with actual seismic amplitudes penetrated by the wells (color-coded as amplitudes with and without hydrocarbons). The real seismic amplitudes can also be used to determine shale over shale (or nonhydrocarbon) statistics and cutoffs and a similar answer results. Using the real seismic data (seismic amplitudes at sand tops at the wells) for determining the cutoffs is considered less reliable statistically than using the well data (seismic models with a range of layering and a range of rock properties) because the former data set is sparser. The impact of applying a P10 or P20 shale over shale far-angle stack amplitude cutoff on the real seismic amplitude maps is shown in Figure 8. The more conservative P10 cutoff (red outline) gives a more restricted reservoir lateral extent (and more disconnected bodies), whereas the more optimistic P20 cutoff (blue outline) connects more bodies in a perhaps more geologically meaningful manner. Clearly, the choice of cutoff has a direct impact on reservoir body area and thus on reserves estimation. Conclusions An effective and practical approach for distinguishing gas sand from shale/brine sand using elastic impedance data has been shown for the channelized deepwater Sadewa Field. Furthermore, the issue of determining the lateral extent of these reservoirs where sand thickness is below tuning, and March 2009 The Leading Edge 317

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar 10 th Biennial International Conference & Exposition P 141 Lithology prediction and fluid discrimination in Block A6 offshore Myanmar Hanumantha Rao. Y *, Loic Michel, Hampson-Russell, Kyaw Myint, Ko Ko,

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round New Frontier Advanced Multiclient Data Offshore Uruguay Advanced data interpretation to empower your decision making in the upcoming bid round Multiclient data interpretation provides key deliverables

More information

Arthur Saller 1. Search and Discovery Article #51393 (2017)** Posted June 26, Abstract

Arthur Saller 1. Search and Discovery Article #51393 (2017)** Posted June 26, Abstract PS Mixed Carbonates and Siliciclastics North of the Mahakam Delta, Offshore East Kalimantan, Indonesia* Arthur Saller 1 Search and Discovery Article #51393 (2017)** Posted June 26, 2017 *Adapted from poster

More information

Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction

Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-004, India PP 498-50 Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction Y. Hanumantha Rao & A.K.

More information

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait

Keywords. CSEM, Inversion, Resistivity, Kutei Basin, Makassar Strait Noor Jehan Ashaari Muhamad* (EMGS Asia Pacific), Ritesh Mohan Joshi (EMGS Asia Pacific), Muhamad Afifie Chan Mahadie Chan (EMGS Asia Pacific) mmuhamad@emgs.com Keywords CSEM, Inversion, Resistivity, Kutei

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reservoir properties estimation from marine broadband seismic without a-priori well information: A powerful de-risking workflow Cyrille Reiser*, Matt Whaley and Tim Bird, PGS Reservoir Limited Summary

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

Elements of 3D Seismology Second Edition

Elements of 3D Seismology Second Edition Elements of 3D Seismology Second Edition Copyright c 1993-2003 All rights reserved Christopher L. Liner Department of Geosciences University of Tulsa August 14, 2003 For David and Samantha And to the memory

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Reservoir Characterization using AVO and Seismic Inversion Techniques

Reservoir Characterization using AVO and Seismic Inversion Techniques P-205 Reservoir Characterization using AVO and Summary *Abhinav Kumar Dubey, IIT Kharagpur Reservoir characterization is one of the most important components of seismic data interpretation. Conventional

More information

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Osman Khaled, Yousef Al-Zuabi, Hameed Shereef Summary The zone under study is Zubair formation of Cretaceous

More information

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 11/20/12 to Redistribution subject to SEG license or copyright; see Terms of Use at AVO crossplot analysis in unconsolidated sediments containing gas hydrate and free gas: Green Canyon 955, Gulf of Mexico Zijian Zhang* 1, Daniel R. McConnell 1, De-hua Han 2 1 Fugro GeoConsulting, Inc.,

More information

Fifteenth International Congress of the Brazilian Geophysical Society. Copyright 2017, SBGf - Sociedade Brasileira de Geofísica

Fifteenth International Congress of the Brazilian Geophysical Society. Copyright 2017, SBGf - Sociedade Brasileira de Geofísica Geostatistical Reservoir Characterization in Barracuda Field, Campos Basin: A case study Frank Pereira (CGG)*, Ted Holden (CGG), Mohammed Ibrahim (CGG) and Eduardo Porto (CGG). Copyright 2017, SBGf - Sociedade

More information

Quantifying Bypassed Pay Through 4-D Post-Stack Inversion*

Quantifying Bypassed Pay Through 4-D Post-Stack Inversion* Quantifying Bypassed Pay Through 4-D Post-Stack Inversion* Robert Woock 1, Sean Boerner 2 and James Gamble 1 Search and Discovery Article #40799 (2011) Posted August 12, 2011 *Adapted from oral presentation

More information

A.K. Khanna*, A.K. Verma, R.Dasgupta, & B.R.Bharali, Oil India Limited, Duliajan.

A.K. Khanna*, A.K. Verma, R.Dasgupta, & B.R.Bharali, Oil India Limited, Duliajan. P-92 Application of Spectral Decomposition for identification of Channel Sand Body in OIL s operational area in Upper Assam Shelf Basin, India - A Case study A.K. Khanna*, A.K. Verma, R.Dasgupta, & B.R.Bharali,

More information

Keywords. PMR, Reservoir Characterization, EEI, LR

Keywords. PMR, Reservoir Characterization, EEI, LR Enhancing the Reservoir Characterization Experience through Post Migration Reprocessed (PMR) Data A case study Indrajit Das*, Ashish Kumar Singh, Shakuntala Mangal, Reliance Industries Limited, Mumbai

More information

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Downloaded 09/12/14 to 84.215.159.82. Redistribution subject to SEG license or copyright; see Terms of Use

More information

A Petroleum Geologist's Guide to Seismic Reflection

A Petroleum Geologist's Guide to Seismic Reflection A Petroleum Geologist's Guide to Seismic Reflection William Ashcroft WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Contents Preface Acknowledgements xi xiii Part I Basic topics and 2D interpretation

More information

Application of advance tools for reservoir characterization- EEI & Poisson s impedance: A Case Study

Application of advance tools for reservoir characterization- EEI & Poisson s impedance: A Case Study P-272 Application of advance tools for reservoir characterization- EEI & Poisson s impedance: A Case Study Summary Puja Prakash*, S.K.Singh, Binode Chetia, P.K.Chaudhuri, Shyam Mohan, S.K.Das, ONGC Pore

More information

Salt Geology and New Plays in Deep-Water Gulf of Mexico* By Abu Chowdhury 1 and Laura Borton 1

Salt Geology and New Plays in Deep-Water Gulf of Mexico* By Abu Chowdhury 1 and Laura Borton 1 Salt Geology and New Plays in Deep-Water Gulf of Mexico* By Abu Chowdhury 1 and Laura Borton 1 Search and Discovery Article #10131 (2007) Posted August 25, 2007 *Adapted from extended abstract prepared

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014 IPA14-G-227 PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014 A COMPARISON OF DEPTH CONVERSION METHODS IN BUNTAL GAS FIELD, BLOCK B, NATUNA SEA, INDONESIA

More information

INT 4.5. SEG/Houston 2005 Annual Meeting 821

INT 4.5. SEG/Houston 2005 Annual Meeting 821 Kathleen Baker* and Mike Batzle, Colorado School of Mines, Richard Gibson, Texas A&M University Summary There have been many studies of how Direct Hydrocarbon Indicators (DHIs) can help or hurt us when

More information

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary 2401377 Statistically Improved Resistivity and Density Estimation From Multicomponent Seismic Data: Case Study from the Lower Cretaceous McMurray Formation, Athabasca Oil Sands Fred Mayer 1; Graham Cain

More information

Summary. Seismic Field Example

Summary. Seismic Field Example Water-saturation estimation from seismic and rock-property trends Zhengyun Zhou*, Fred J. Hilterman, Haitao Ren, Center for Applied Geosciences and Energy, University of Houston, Mritunjay Kumar, Dept.

More information

Future of Tunu Field Development: A Breakthrough of Gas Sand Identification Using Automated Seismic Assessment*

Future of Tunu Field Development: A Breakthrough of Gas Sand Identification Using Automated Seismic Assessment* Future of Tunu Field Development: A Breakthrough of Gas Sand Identification Using Automated Seismic Assessment* Firman B. Kurniawan 1, Rangga A. Brahmantio 1, Argo Wuryanto 1, Yudhistira Adji 1, Eros S.

More information

The Stratigraphic Trap in the Benchamas Field Pattani Basin, Gulf of Thailand

The Stratigraphic Trap in the Benchamas Field Pattani Basin, Gulf of Thailand The Stratigraphic Trap in the Benchamas Field Pattani Basin, Gulf of Thailand Jurairat Buangam Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok

More information

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well C. Reiser (Petroleum Geo-Services), T. Bird* (Petroleum Geo-Services) & M. Whaley (Petroleum

More information

An empirical method for estimation of anisotropic parameters in clastic rocks

An empirical method for estimation of anisotropic parameters in clastic rocks An empirical method for estimation of anisotropic parameters in clastic rocks YONGYI LI, Paradigm Geophysical, Calgary, Alberta, Canada Clastic sediments, particularly shale, exhibit transverse isotropic

More information

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Summary Madhumita Sengupta*, Ran Bachrach, Niranjan Banik, esterngeco. Net-to-gross (N/G ) is

More information

The Marrying of Petrophysics with Geophysics Results in a Powerful Tool for Independents Roger A. Young, eseis, Inc.

The Marrying of Petrophysics with Geophysics Results in a Powerful Tool for Independents Roger A. Young, eseis, Inc. The Marrying of Petrophysics with Geophysics Results in a Powerful Tool for Independents Roger A. Young, eseis, Inc. While the application of new geophysical and petrophysical technology separately can

More information

Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand

Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand Patinya Jaithan Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University,

More information

DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger Delta, Nigeria

DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger Delta, Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 1, Issue 1 (May. Jun. 2013), PP 05-10 DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger

More information

Estimation of density from seismic data without long offsets a novel approach.

Estimation of density from seismic data without long offsets a novel approach. Estimation of density from seismic data without long offsets a novel approach. Ritesh Kumar Sharma* and Satinder Chopra Arcis seismic solutions, TGS, Calgary Summary Estimation of density plays an important

More information

Seismic characterization of Montney shale formation using Passey s approach

Seismic characterization of Montney shale formation using Passey s approach Seismic characterization of Montney shale formation using Passey s approach Ritesh Kumar Sharma*, Satinder Chopra and Amit Kumar Ray Arcis Seismic Solutions, Calgary Summary Seismic characterization of

More information

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Ehsan Zabihi Naeini*, Ikon Science & Russell Exley, Summit Exploration & Production Ltd Summary Quantitative interpretation (QI) is an important part of successful Central North Sea exploration, appraisal

More information

Bulletin of Earth Sciences of Thailand

Bulletin of Earth Sciences of Thailand Quantitative Seismic Geomorphology of Early Miocene to Pleistocene Fluvial System of Northern Songkhla Basin, Gulf of Thailand Oanh Thi Tran Petroleum Geoscience Program, Department of Geology, Faculty

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

INTEGRATED GEOPHYSICAL INTERPRETATION METHODS FOR HYDROCARBON EXPLORATION

INTEGRATED GEOPHYSICAL INTERPRETATION METHODS FOR HYDROCARBON EXPLORATION INTEGRATED GEOPHYSICAL INTERPRETATION METHODS FOR HYDROCARBON EXPLORATION Instructor : Kumar Ramachandran 31 July 4 August 2017 Jakarta COURSE OUTLINE The course is aimed at imparting working knowledge

More information

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 2 Ver. I (Mar. - Apr. 2017), PP 95-105 www.iosrjournals.org Derived Rock Attributes Analysis

More information

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Title 4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Authors Bloomer, D., Ikon Science Asia Pacific Reynolds, S., Ikon Science Asia Pacific Pavlova, M., Origin

More information

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Porosity. Downloaded 09/22/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Geostatistical Reservoir Characterization of Deepwater Channel, Offshore Malaysia Trisakti Kurniawan* and Jahan Zeb, Petronas Carigali Sdn Bhd, Jimmy Ting and Lee Chung Shen, CGG Summary A quantitative

More information

Deep-Water Reservoir Potential in Frontier Basins Offshore Namibia Using Broadband 3D Seismic

Deep-Water Reservoir Potential in Frontier Basins Offshore Namibia Using Broadband 3D Seismic Deep-Water Reservoir Potential in Frontier Basins Offshore Namibia Using Broadband 3D Seismic E. Polyaeva* (Petroleum Geo-Services), I. Thomas (Chariot Oil and Gas), C. Reiser (Petroleum Geo-Services),

More information

Downloaded 09/29/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/29/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Richard Wright*, James Carter, Ian Atkinson, Erin Gillis, Deric Cameron, and Leona Stead, Nalcor Energy Tom Neugebauer, TGS Jerry Witney, PGS Daniel Hughes and Michael Hall, Airbus Defence and Space Summary

More information

Geophysical model response in a shale gas

Geophysical model response in a shale gas Geophysical model response in a shale gas Dhananjay Kumar and G. Michael Hoversten Chevron USA Inc. Abstract Shale gas is an important asset now. The production from unconventional reservoir like shale

More information

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin P-276 Summary Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin K.L.Mandal*, R.K.Srivastava, S.Saha, Oil India Limited M.K.Sukla, Indian Institute of Technology, Kharagpur

More information

OTC OTC PP. Abstract

OTC OTC PP. Abstract OTC OTC-19977-PP Using Modern Geophysical Technology to Explore for Bypassed Opportunities in the Gulf of Mexico R.A. Young/eSeis; W.G. Holt, G. Klefstad/ Fairways Offshore Exploration Copyright 2009,

More information

Southern Songkhla Basin, Gulf of Thailand

Southern Songkhla Basin, Gulf of Thailand Architecture and Depositional Environment of Fluvial Systems of Southern Songkhla Basin, Gulf of Thailand Toan Manh Do Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn

More information

EGAS. Ministry of Petroleum

EGAS. Ministry of Petroleum EGAS Ministry of Petroleum EGAS Ministry of Petroleum About The Block Location: N. El Arish offshore block is located in the extreme eastern part of the Egypt s economic water border and bounded from the

More information

Downloaded 01/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 01/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at An integrated study of a Mississippian tripolitic chert reservoir Osage County, Oklahoma, USA Benjamin L. Dowdell*, Atish Roy, and Kurt J. Marfurt, The University of Oklahoma Summary With the advent of

More information

SUMMARY INTRODUCTION METHODOLOGY

SUMMARY INTRODUCTION METHODOLOGY Kamal Hami-Eddine*, Pascal Klein, Loic Richard, Paradigm, Andrew Furniss, AWE Limited SUMMARY Automatic seismic facies classification is now common practice in the oil and gas industry. Unfortunately unsupervised

More information

BLACK PLATINUM ENERGY LTD

BLACK PLATINUM ENERGY LTD Black Platinum Energy Ltd ( BPE or the Company ) Announces a Material Increase in the Discovered Dara East Gas Field Resources and Upside Potential Resources in Nearby Features Dara East Assessed Gas Resource

More information

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1 P-259 Summary Data for identification of Porosity Behaviour in Oligocene Lime Stone of D18 Area Of Western Offshore, India V.K. Baid*, P.H. Rao, P.S. Basak, Ravi Kant, V. Vairavan 1, K.M. Sundaram 1, ONGC

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

EGAS. Ministry of Petroleum

EGAS. Ministry of Petroleum EGAS Ministry of Petroleum EGAS Ministry of Petroleum About The Block Location: N. Thekah offshore block is located at about 56 km to the north of the Mediterranean shore line, 85 km to the north west

More information

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation Advances in Petroleum Exploration and Development Vol. 7, No. 2, 2014, pp. 30-39 DOI:10.3968/5170 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org Pre-Stack Seismic Inversion

More information

SAND DISTRIBUTION AND RESERVOIR CHARACTERISTICS NORTH JAMJUREE FIELD, PATTANI BASIN, GULF OF THAILAND

SAND DISTRIBUTION AND RESERVOIR CHARACTERISTICS NORTH JAMJUREE FIELD, PATTANI BASIN, GULF OF THAILAND SAND DISTRIBUTION AND RESERVOIR CHARACTERISTICS NORTH JAMJUREE FIELD, PATTANI BASIN, GULF OF THAILAND Benjawan KIinkaew Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn

More information

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Mellinda Arisandy 1 and I Wayan Darma 1 Search and Discovery Article #11008 (2017)** Posted November 6, 2017 *Adapted

More information

A031 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance

A031 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance A31 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance A.M. Francis* (Earthworks Environment & Resources Ltd) & G.J. Hicks (Earthworks Environment & Resources Ltd)

More information

Hague and London Oil Plc

Hague and London Oil Plc Hague and London Oil Plc Exploiting Shallow Gas Offshore Netherlands De-Gassing Shallow Hazards or De-Risking Shallow Gas November 2016 The Shallow Gas Play can be Summarized as Schematic evolution of

More information

SEISMIC INVERSION OVERVIEW

SEISMIC INVERSION OVERVIEW DHI CONSORTIUM SEISMIC INVERSION OVERVIEW Rocky Roden September 2011 NOTE: Terminology for inversion varies, depending on the different contractors and service providers, emphasis on certain approaches,

More information

Luderitz Basin, Offshore Namibia: Farm-out Opportunity. APPEX, London, March 2015 Graham Pritchard, Serica Energy plc

Luderitz Basin, Offshore Namibia: Farm-out Opportunity. APPEX, London, March 2015 Graham Pritchard, Serica Energy plc Luderitz Basin, Offshore Namibia: Farm-out Opportunity APPEX, London, March 2015 Graham Pritchard, Serica Energy plc Serica Luderitz Basin Namibia Introduction Serica (85%, operator) 17,384 km 2 acreage

More information

3D Seismic Reservoir Characterization and Delineation in Carbonate Reservoir*

3D Seismic Reservoir Characterization and Delineation in Carbonate Reservoir* 3D Seismic Reservoir Characterization and Delineation in Carbonate Reservoir* M. N. Alamsyah 1, Bambang W. Handono 1, and Andri Syafriya 1 Search and Discovery Article #41760 (2016) Posted January 25,

More information

Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India*

Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India* Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India* Kanak R. Nambiar 1, B.K. Singh 2, R.N. Goswami 2, and K.R.K. Singh 2 Search and Discovery Article

More information

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger www.nr.no The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger 17. November 2016 Consortium goals Better estimation of reservoir parameters from

More information

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion Velocity Calibrated Seismic Imaging and Interpretation Accurate Solution for Prospect Depth, Size & Geometry Accurate Time-to-Depth Conversion was founded to provide geologically feasible solutions for

More information

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration 66 Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration Kenneth Bredesen 1, Erling Hugo Jensen 1, 2, Tor Arne Johansen 1, 2, and Per Avseth 3, 4

More information

Synthetic Seismic Modeling of Turbidite Outcrops

Synthetic Seismic Modeling of Turbidite Outcrops 7 Synthetic Seismic Modeling of Turbidite Outcrops Mark Chapin and Gottfried Tiller Shell International Exploration and Production, Inc., Houston, Texas, USA Executive Summary Seismic forward models of

More information

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware HampsonRussell A comprehensive suite of reservoir characterization tools cgg.com/geosoftware HampsonRussell Software World-class geophysical interpretation HampsonRussell Software is a comprehensive suite

More information

Bulletin of Earth Sciences of Thailand

Bulletin of Earth Sciences of Thailand AN INTEGRATED VELOCITY MODELING WORKFLOW TO PREDICT RELIABLE DEPTHS IN TRAT FIELD, GULF OF THAILAND Sarayoot Geena Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn

More information

Using high-density OBC seismic data to optimize the Andrew satellites development

Using high-density OBC seismic data to optimize the Andrew satellites development Using high-density OBC seismic data to optimize the Andrew satellites development Leendert Padmos, 1* Daniel Davies, 1 Merv Davies 1 and John McGarrity 1 Abstract The processed data from conventional towed-streamer

More information

Towards Interactive QI Workflows Laurie Weston Bellman*

Towards Interactive QI Workflows Laurie Weston Bellman* Laurie Weston Bellman* Summary Quantitative interpretation (QI) is an analysis approach that is widely applied (Aki and Richards, 1980, Verm and Hilterman, 1995, Avseth et al., 2005, Weston Bellman and

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil*

Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil* Main Challenges and Uncertainties for Oil Production from Turbidite Reservoirs in Deep Water Campos Basin, Brazil* Carlos H. Bruhn 1, Antonio Pinto 1, and Paulo R. Johann 1 Search and Discovery Article

More information

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* J.N. Sahu 1, C.H.V. Satya Sai 1, V. Chintamani 1 and C. Vishnu Vardhan 1 Search and Discovery Article #20182 (2012)*

More information

Use of Traveltime Tomographic velocity model beyond imaging: Estimating 3D pore pressure & effective stress volumes

Use of Traveltime Tomographic velocity model beyond imaging: Estimating 3D pore pressure & effective stress volumes 10 th Biennial International Conference & Exposition P 324 Summary Use of Traveltime Tomographic velocity model beyond imaging: Estimating 3D pore pressure & effective stress volumes Kanharol K Hari*,

More information

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Agenda 1. Ikon Science Where we are now 2. Geoscience 2012 A motion picture 3. Rock physics, AVO and Inversion

More information

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Summary.

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at   Summary. in thin sand reservoirs William Marin* and Paola Vera de Newton, Rock Solid Images, and Mario Di Luca, Pacific Exploración y Producción. Summary Rock Physics Templates (RPTs) are useful tools for well

More information

Quantitative interpretation using inverse rock-physics modeling on AVO data

Quantitative interpretation using inverse rock-physics modeling on AVO data Quantitative interpretation using inverse rock-physics modeling on AVO data Erling Hugo Jensen 1, Tor Arne Johansen 2, 3, 4, Per Avseth 5, 6, and Kenneth Bredesen 2, 7 Downloaded 08/16/16 to 129.177.32.62.

More information

Combined Seismic Multiple Attribute Analysis: An effective tool for lightly explored basins

Combined Seismic Multiple Attribute Analysis: An effective tool for lightly explored basins P-345 Combined Seismic Multiple Attribute Analysis: An effective tool for lightly explored basins Shubhabrata Samantaray* and Pankaj Gupta. Reliance Industries Ltd, Petroleum Business (E&P) Summary Search

More information

Improved image aids interpretation: A case history

Improved image aids interpretation: A case history Ye Zheng, Scott Cheadle (Veritas GeoServices, Calgary, Canada) Glenn M. Rising (Perez Companc Norcen Corod, Venezuela) SUMMARY The Oritupano-Leona 3D of Eastern Venezuela was originally acquired and processed

More information

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method Geological Parameters Effecting Controlled-Source Electromagnetic Feasibility: A North Sea Sand Reservoir Example Michelle Ellis and Robert Keirstead, RSI Summary Seismic and electromagnetic data measure

More information

Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea

Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea Improved Interpretability via Dual-sensor Towed Streamer 3D Seismic - A Case Study from East China Sea S. Rongfu (CNOOC Shanghai), C. Hua (CNOOC Shanghai), W. Yun (CNOOC Shanghai), Z. Yabin (CNOOC Shanghai),

More information

3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion.

3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion. first break volume 28, June 2010 special topic A New Spring for Geoscience 3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion. I. Yakovlev, Y.

More information

The Late Tertiary Deep-Water Siliciclastic System of the Levant Margin - An Emerging Play Offshore Israel*

The Late Tertiary Deep-Water Siliciclastic System of the Levant Margin - An Emerging Play Offshore Israel* The Late Tertiary Deep-Water Siliciclastic System of the Levant Margin - An Emerging Play Offshore Israel* Michael A. Gardosh 1, Yehezkel Druckman 2 and Binyamin Buchbinder 2 Search and Discovery Article

More information

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Carl Reine 1, Chris Szelewski 2, and Chaminda Sandanayake 3 Search and Discovery Article #41899 (2016)** Posted September

More information

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO*

Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* Pluto 1.5 2D ELASTIC MODEL FOR WAVEFIELD INVESTIGATIONS OF SUBSALT OBJECTIVES, DEEP WATER GULF OF MEXICO* *This paper has been submitted to the EAGE for presentation at the June 2001 EAGE meeting. SUMMARY

More information

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Geetartha Dutta (gdutta@stanford.edu) December 10, 2015 Abstract Seismic data helps in better characterization of hydrocarbon reservoirs.

More information

Seismic Velocities for Pore-Pressure Prediction. Some Case Histories.

Seismic Velocities for Pore-Pressure Prediction. Some Case Histories. P - 87 Seismic Velocities for Pore-Pressure Prediction. Some Case Histories. Patrizia Cibin*, Luigi Pizzaferri, Mauro Della Martera Eni E&P Division (Milano, Italy) Summary Seismic velocities have long

More information

Seismic Inversion on 3D Data of Bassein Field, India

Seismic Inversion on 3D Data of Bassein Field, India 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 526-532 Seismic Inversion on 3D Data of Bassein Field, India K.Sridhar, A.A.K.Sundaram, V.B.G.Tilak & Shyam Mohan Institute

More information

Integrated Reservoir Characterisation - a successful interdisciplinary working model

Integrated Reservoir Characterisation - a successful interdisciplinary working model Integrated Reservoir Characterisation - a successful interdisciplinary working model Satinder Chopra*, Scott Singleton*, Craig Hall**, Randy Nickerson + and David Carlson +, *Core Laboratories Reservoir

More information

Relinquishment Report. for. Licences: P.1596 (Blocks 205/3, 205/4a) P.1836 (Block 205/2b) P.1837 (Block 205/5b)

Relinquishment Report. for. Licences: P.1596 (Blocks 205/3, 205/4a) P.1836 (Block 205/2b) P.1837 (Block 205/5b) Relinquishment Report for Licences: P.1596 (Blocks 205/3, 205/4a) P.1836 (Block 205/2b) P.1837 (Block 205/5b) November 2013 1 of 9 CONTENT 1. Header 2. Synopsis 3. Exploration Activities 4. Prospectivity

More information

IPA, Proceedings of an International Conference on Gas Habitats of SE Asia and Australasia, 1999

IPA, Proceedings of an International Conference on Gas Habitats of SE Asia and Australasia, 1999 PA, 26 - Proceedings of an nternational Conference on Gas Habitats of SE Asia and Australasia, 1999 GH98 - OR - 44 NDONESAN PETROLEUM ASSOCATON Proceedings of the Gas Habitats of SE Asia and Australasia

More information

Interpretation of PP and PS seismic data from the Mackenzie Delta, N.W.T.

Interpretation of PP and PS seismic data from the Mackenzie Delta, N.W.T. Interpretation of PP and PS seismic data from the Mackenzie Delta, N.W.T. Carlos E. Nieto* CREWES. The University of Calgary nieto@geo.ucalgary.ca and Robert R. Stewart CREWES. The University of Calgary

More information

Pre Stack Imaging To Delineate A New Hydrocarbon Play A Case History

Pre Stack Imaging To Delineate A New Hydrocarbon Play A Case History 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 375-379 Pre Stack Imaging To Delineate A New Hydrocarbon Play A Case History D. Srinivas, T.R. Murali Mohan, Ashwani Lamba,

More information

URTeC: Summary

URTeC: Summary URTeC: 2665754 Using Seismic Inversion to Predict Geomechanical Well Behavior: a Case Study From the Permian Basin Simon S. Payne*, Ikon Science; Jeremy Meyer*, Ikon Science Copyright 2017, Unconventional

More information

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field P-305 The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field Summary V B Singh*, Mahendra Pratap, ONGC The objective of the modeling was to

More information