Absolute Time. Part 8 Geochronology and the Time Scale

Size: px
Start display at page:

Download "Absolute Time. Part 8 Geochronology and the Time Scale"

Transcription

1 Absolute Time Part 8 Geochronology and the Time Scale Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial, non-profit educational purposes provided that credit is given for their origin. Permission is not granted for any commercial or for-profit use, including use at for-profit educational facilities. Other copyrighted material is used under the fair use clause of the copyright law of the United States.

2 What to Look For: Boundary ages for all the units on the chronostratigraphic scale can be estimated by bracketing between the ages of two datable igneous rocks. One of the rocks must be demonstrably older than the boundary. This is established by either superposition, inclusions, or crosscutting, or some combination of those principles. Superposition is usually the easiest to apply. The other must be demonstrably younger than the boundary, and again using some combination of the same three principles. Crosscutting relations is usually the easiest to use. The reported age for the boundary is the half-way point between the two igneous ages (their average) and the implied error is half the range between them. As new igneous dates become available they can change the estimated age and error if they provide a tighter bracket than before.

3 We now have three things: 1. A hierarchical chronostratigraphic scale that subdivides Geologic Time into packages ( units ) of various sizes. 2. A way to determine the numerical ages of rocks by analyzing the radioisotopes and their daughters that the rocks contain. 3. A big problem to solve: The chronostratigraphic scale is made using sedimentary rocks, but sedimentary rocks are, for all intents and purposes, not datable using radioisotopes. Conversely, igneous rocks are the preferred subjects for radiodating, but they have no fossils that let us assign them to the chronostratigraphic scale. How do we tie the two things together? Erathems Systems Series Stages pc PALEOZOIC MESOZOIC CENOZOIC Neogene Paleogene Cretaceous Jurassic Triassic Permian Carboniferous (= Penn./ Miss. Devonian Silurian Ordovician Cambrian Holocene Pleistocene Pliocene Miocene Oligocene Eocene Paleocene Mesozoic Series Omitted Paleozoic Series Omitted... Jackson Claiborne Wilcox etc.. Mesozoic Stages Omitted Paleozoic Stages Omitted

4 Two Reasons for What Follows: This is the logic behind virtually all the numerical ages on all the boundaries on the geologic time (geochronologic) scale, so you need to know it for this topic. Provides a detailed review of relative time as well, giving you practice applying principles from earlier in the term that are likely to appear on the final.

5 SUPERPOSITION YOUNGER If you see two superposed packages of rocks in the field you should be able to tell that one is older and the other younger. That is, not only do you know the relative ages, you know they are not the same age. OLDER This works within individual beds in a Formation, with Formations in a group, with biozones, or with Systems, Series, and Stages. This principle (superposition) is embedded in the geochronologic scale by the order of names arranged vertically up the page.

6 Just for practice, before you move on, see if you can figure out which Erathems are in the section.??? ERATHEM??? ERATHEM

7 FOSSIL SUCCESSION MESOZOIC ERATHEM Furthermore, by studying the fossils you find in the two packages you can now recognize any difference in age between them. Actually, the age you recognize is still only an inference. You are so far only able to recognize their chronostratigraphic membership. PALEOZOIC ERATHEM We have been assuming (or hypothesizing) that age underlies chronostratigraphic membership. We are now in the middle of testing that hypothesis.

8 Though you didn t actually learn enough about fossils to do it yourself, you should be aware of the possibility of narrowing the chronostratigraphic membership to smaller and smaller categories. In the first slide we assigned the fossils (trilobites and ammonites) to the correct Erathem of rocks. ERATHEM SYSTEM SERIES STAGE ZONE TRIASSIC If we identified the fossils more precisely and knew their ranges well we could assign them to Systems instead of Erathems, as the Diagram shows. (The two fossils on the previous page are not Permian and Triassic, they are Cambrian and Cretaceous. This is a hypothetical example.) PERMIAN

9 ERATHEM SYSTEM SERIES STAGE ZONE Even more familiarity with fossils allows even more precise determination of chronostratigraphic membership. LOWER TRIASSIC In this case the fossils are assigned to Series rather than Systems as on the previous page. UPPER PERMIAN

10 ERATHEM SYSTEM SERIES STAGE ZONE and so on. Here we are familiar enough with the fossils to know they indicate Stage membership rather than Series membership as on the previous slide. INDUAN We could go one step further and break our age determination down to biostratigraphic zones, but I don t know any zones of this part of the scale, so we will stop here. ( ) ERATHEM SYSTEM SERIES STAGE ZONE GUADALUPIAN

11 You also know about unconformities and some ways to recognize them. Angular unconformities are easy because of the difference in orientation above and below them. Nonconformities are easy because of the igneous or metamorphic rocks beneath them. Disconformities are tougher, but we did talk about (and you examined in a lab exercise) some ways of identifying them. If there is a clear erosional surface at the contact then there is clearly a disconformity. In lab you saw another way. If one or more biostratigraphic or chronostratigraphic units are not present then there must be a disconformity. In this example the Guadalupian Stage is missing, therefore the contact is a disconformity. INDUAN (TRIASSIC) LEONARDIAN (PERMIAN) (GUADALUPIAN)

12 Why is this important? INDUAN (TRIASSIC) Because the numerical age of this unconformity is approximately the same as the numerical age of the PZ/MZ boundary! Make very sure you see why before proceeding. The unconformity is above (younger) than known Permian rocks and below (older) than known Triassic rocks. LEONARDIAN (PERMIAN)

13 Let s put this into a more familiar format. INDUAN (TRIASSIC) Early on you learned to outline the history of a place by placing the events you see there in the correct order and numbering them, starting from the bottom. The cross section at left records three events, and we can do a little better than put then in order. We can place them within and age chronostratigraphic framework. Here is the correct sequence of events: LEONARDIAN (PERMIAN) This sentence will stay in green because this is the target we are trying to date. 3. Deposition of Induan rocks very early in the Triassic, perhaps right at the start. 2. Uplift and erosion either very late in the Permian or very early in the Triassic, probably the former. This produced the disconformity corresponding approximately to the PZ/MZ boundary. 1. Deposition of the Leonardian rocks late in the Permian, but not too close to the end of it.

14 INDUAN (TRIASSIC) Without further information we cannot add any ages to this scheme because there s probably nothing to date radiometrically. So far all we ve seen are sedimentary rocks. Any 14 C or U/Pb intermediates are long gone from Permian and Triassic rocks, so that s no help, and even if we did find some glauconite the chance of getting a reliable date out of it is pretty small. LEONARDIAN (PERMIAN) But suppose that as we explored further, or studied the sediments more carefully we began to find some igneous rocks. Suppose more mapping turns up a section with a volcanic ash bed right near the top of the Permian rocks. What does this do for us?

15 INDUAN (TRIASSIC) Now we can add a step to our history and that step is based on a rock that we CAN potentially get a numerical date from an igneous rock. That rock is clearly older than the PZ/MZ boundary, giving us a maximum age for the boundary. Here is the sequence now: LEONARDIAN (PERMIAN) 5. Deposition of Induan rocks very early in the Triassic, perhaps right at the start. 4. Uplift and erosion either very late in the Permian or very early in the Triassic, probably the former. This produced the disconformity corresponding approximately to the PZ/MZ boundary. 3. Deposition of the remaining Leonardian. 2. olcanic eruption and deposition of ash bed. 1. Deposition of some of the Leonardian rocks.

16 From what you ve already memorized you should already have an idea of the age of this ash. It must be older than the PZ/MZ boundary, which you have memorized at ~245 my. We send the ash to a lab for age analysis and get back a result of 250 my +/- 1.8 my. 1.8 is less than 2% of 250, so we accept this age for the ash. From the sequence we have determined this means that the Paleozoic ended and the Mesozoic started less than 250 my ago! 5. Deposition of Induan rocks very early in the Triassic, perhaps right at the start. 4. Uplift and erosion either very late in the Permian or very early in the Triassic, probably the former. This produced the disconformity corresponding approximately to the PZ/MZ boundary. 3. Deposition of the remaining Leonardian. 2. olcanic eruption and deposition of ash bed approximately 250 my ago! 1. Deposition of some of the Leonardian rocks.

17 Let s look briefly at another possibility. INDUAN (TRIASSIC) Suppose the 250 my igneous rock we find by further mapping is not an ash bed or flow, but an intrusion. This is an even simpler scenario, but the logical result is the same: the boundary we care about is younger than 250 my. Remember that there are actually three ways we can tell this: LEONARDIAN (PERMIAN) 1. The Induan rocks overlie it at point A. (Superposition the unconformity is a nonconformity right there.) 2. The intrusion cuts the Permian but not the Triassic rocks. (Cross-cutting) 3. There are eroded pieces of the intrusion in the Triassic. (Inclusions)

18 Here s a summary of the history in this diagram: 4. Deposition of Induan rocks very early in the Triassic, perhaps right at the start. 3. Uplift and erosion either very late in the Permian or very early in the Triassic, probably the former. This produced the disconformity corresponding approximately to the PZ/MZ boundary. INDUAN (TRIASSIC) 2. Intrusion of an igneous dike approximately 250 my ago! 1. Deposition of the Leonardian rocks. Notice that the conclusion stands: the PZ/MZ boundary is less than 250 my old. Now that we ve established a maximum possible age for the boundary, all that remains is to set a minimum age for it. You can probably already see how that works. LEONARDIAN (PERMIAN)

19 More mapping reveals another intrusion which cross-cuts both the Permian and Triassic and is therefore younger than both. We sample it, send the samples for age analysis and receive a result of 240 my +/- 1.5 my, making it a reliable estimate. we might also find Triassic xenoliths (inclusions) in the younger dike. Here is how the history stands now: TR INDUAN (TRIASSIC) TR 5. Intrusion of an igneous dike approximately 240 my ago! 4. Deposition of Induan rocks very early in the Triassic, perhaps right at the start. 3. Uplift and erosion either very late in the Permian or very early in the Triassic, probably the former. This produced the disconformity corresponding approximately to the PZ/MZ boundary. 2. Intrusion of an igneous dike approximately 250 my ago! LEONARDIAN (PERMIAN) The boundary we care about is now bracketed by two known numerical ages and 240 my ago! 1. Deposition of the Leonardian rocks.

20 INDUAN (TRIASSIC) In the previous slide the younger dike was shown to be younger than the boundary and the Triassic by cross-cutting (which is generally the easiest thing to spot) and/or by inclusions of Triassic rocks within it. LEONARDIAN (PERMIAN) If the younger of the bracketing igneous rocks is an ash, it is shown to be younger than the boundary by its superpositional position above the boundary.

21 Don t get the idea that we can just run out and find datable igneous rocks any time we like. They are where they are. Fortunately there are enough of them that all the chronostratigraphic boundaries can be bracketed between two of them. Each and every date on the geochronologic scale the true time scale was determined in this way. They were all bracketed between two datable rocks, one demonstrably older and the other demonstrably younger than the boundary. The boundary age is given as the average of the ages of the two radiometric dates closest in age to each other near a boundary. In our example the age assigned would be 245 my. There is an implied error, though not the same as a radiometric error. The error in our example would be +/- 5 my because the boundary could be as old as 250 or as young as 240 (plus the radiometric errors). The errors range from a few tens of thousands for the younger Epochs and Ages to a few million years for the older Systems. For rocks back into the Jurassic the ages are very well constrained because good examples sit above a unique nonconformity on the sea-floor. The continuous production of crust at the ridge assures us of precise, reliable dates for those units. Older oceanic crust has all been subducted so there is generally more error in Triassic and older boundary ages.

22 When I was a student in Geology II I memorized the Precambrian/Cambrian boundary age as 600my. It wasn t obvious on my intro time scale, but there was an error of 100 my in that estimate in other words a 16.7% error. The problem was that there was (and is) a known igneous date of ~500 my within the Cambrian and, at the time, a known igneous age within the Precambrian of 700 my. That was the bracket my. The reported age was therefore 600 my +/- 100 my. In the early to mid 1990 s some newly discovered Precambrian igneous rocks were mapped on what had been highly restricted Soviet missile bases in eastern Siberia. The dates on the newly accessible rocks shrank the age bracket for the boundary and changed the average of that range. Initially the values went to 500 (Cambrian) and 584 (Precambrian) providing an age estimate of 542 my +/- 42 my. The age continues to bee tweaked with each new igneous rock discovered, and each time the bracket gets smaller and the date a little more tightly constrained and closer to certain. There are a couple of approaches to choosing and assessing which dates to use in the boundary age estimate, but in general if a new rock does not make the bracket smaller it is either ignored or has little influence in the decision. Only dates that improve the estimate carry much weight.

23 Take-Home Message: Boundary ages for all the units on the chronostratigraphic scale can be dated by bracketing between the ages of two datable igneous rocks. One of the rocks must be demonstrably older than the boundary. This is established by either superposition, inclusions, or crosscutting, or some combination of those principles. Superposition is usually the easiest to apply. The other must be demonstrably younger than the boundary, and again using some combination of the same three principles. Crosscutting relations is usually the easiest to use. The reported age for the boundary is the half-way point between the two igneous ages (their average) and the implied error is half the range between them. As new igneous dates become available they can change the estimated age and error if they provide a tighter bracket than before.

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 3 Minerals, Rocks, and Structures Section 7 Reading the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section,

More information

Geologic Time. Geologic Events

Geologic Time. Geologic Events Geologic Time Much of geology is focused on understanding Earth's history. The physical characteristics of rocks and minerals offer clues to the processes and conditions on and within Earth in the past.

More information

Geological Time How old is the Earth

Geological Time How old is the Earth Geological Time How old is the Earth How old is everything? Universe? Universe ~ 14 Billion Years Old Milky Way Galaxy? Milky Way Galaxy - 10 Billion Years Old Solar System? Solar System -4.6 Billion Years

More information

Age of Earth/Geologic Time. Vocabulary

Age of Earth/Geologic Time. Vocabulary Age of Earth/Geologic Time Vocabulary Big Ideas Geologic Time Earth Structures Identify current methods for measuring the age of Earth and its parts, including the law of superposition and radioactive

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Finding the age of rocks: Relative versus Actual Dating The science that deals with determining the ages of rocks is called geochronology. Methods of Dating Rocks 1. Relative

More information

Fossils: evidence of past life

Fossils: evidence of past life Fossils: evidence of past life Remains or traces of prehistoric life Petrified Cavities and pores are filled with precipitated mineral matter Petrified Formed by replacement Cell material is removed and

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Methods of Dating Rocks 1. Relative dating - Using fundamental principles of geology (Steno's Laws, Fossil Succession, etc.) to determine the relative ages of rocks (which rocks

More information

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 1 The correct answers are listed at the bottom (no peeking!). These questions are to give you an idea of the type of questions that will be asked. They are not a

More information

Exploring Geology Chapter 9 Geologic Time

Exploring Geology Chapter 9 Geologic Time Exploring Geology Chapter 9 Geologic Time Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9: Geologic Time Stratigraphic Principles Relative Age Dating

More information

Remains or traces of prehistoric life

Remains or traces of prehistoric life Fossils: evidence of past life Remains or traces of prehistoric life Petrified Cavities and pores are filled with precipitated p mineral matter Petrified Formed by replacement Cell material is removed

More information

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally Geologic Time Rock cycle diagram Leaves of History Chapter 21 Lateral Continuity Principle of Original Horizontality Sediment is deposited horizontally Principle of Superposition Oldest rock A Younger

More information

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks Geologic Time Rock cycle diagram Leaves of History Chapter 21 Modern geology Uniformitarianism Fundamental principle of geology "The present is the key to the past Relative dating Placing rocks and events

More information

Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record.

Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record. UNCONFORMITIES Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record. The contact represents time when no sediment

More information

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Geologic Time Essentials of Geology, 11 th edition, Chapter 18 Geologic Time: summary in haiku form Superposition and horizontality tell stories in rocks. Key

More information

Directed Reading A. Section: Relative Dating: Which Came First?

Directed Reading A. Section: Relative Dating: Which Came First? Skills Worksheet Directed Reading A Section: Relative Dating: Which Came First? Write the letter of the correct answer in the space provided. 1. Determining the age of objects or events in relation to

More information

GEOLOGICAL TIME / DATING TECHNIQUES

GEOLOGICAL TIME / DATING TECHNIQUES DATE DUE: INSTRUCTOR: TERRY J. BOROUGHS Geology 305 NAME: SECTION: GEOLOGICAL TIME / DATING TECHNIQUES Instructions: Read each question carefully before selecting the BEST answer. Provide specific and

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 12 Geologic Time 12.1 Discovering Earth s History Rocks Record Earth History Rocks record geological events and changing life forms of the past. We have

More information

Earth Science 11: Geologic Time Unit

Earth Science 11: Geologic Time Unit Earth Science 11: Geologic Time Unit Text: Chapters 8 Lab: Exercise 6 Name Earth Science 11: Geologic Time Page 1 Geology 12: Geologic Time 8.1: The Geologic Time Scale Today, we know that Earth is approximately

More information

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus Station 1 1. Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus 2. Look at the fossil labeled #7. Identify each of the following: a. Kingdom b. Phylum

More information

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. However, as scientists began to better understand the processes that shape

More information

GEOLOGICAL TIME / DATING TECHNIQUES

GEOLOGICAL TIME / DATING TECHNIQUES DATE DUE: INSTRUCTOR: TERRY J. BOROUGHS Geology 305 NAME: SECTION: GEOLOGICAL TIME / DATING TECHNIQUES Instructions: Read each question carefully before selecting the BEST answer. Provide specific and

More information

Law of Superposition Law of Superposition

Law of Superposition Law of Superposition History of Earth Relative Dating In the same way that a history book shows an order of events, layers of rock (called strata) show the sequence of events that took place in the past. Using a few basic

More information

Determining geological ages

Determining geological ages Determining geological ages Relative ages placing rocks and geologic events in their proper sequence, oldest to youngest. Absolute dates define the actual numerical age of a particular geologic event.

More information

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. However, as scientists began to better understand the processes that shape

More information

The Lithosphere and the Tectonic System. The Structure of the Earth. Temperature 3000º ºC. Mantle

The Lithosphere and the Tectonic System. The Structure of the Earth. Temperature 3000º ºC. Mantle The Lithosphere and the Tectonic System Objectives: Understand the structure of the planet Earth Review the geologic timescale as a point of reference for the history of the Earth Examine the major relief

More information

HISTORICAL GEOLOGY. Relative & Absolute age, fossils and geologic time

HISTORICAL GEOLOGY. Relative & Absolute age, fossils and geologic time HISTORICAL GEOLOGY Relative & Absolute age, fossils and geologic time Historical Geology A. Measuring Time 1. Relative Time (Relative Age) Measurement of time using comparison. No numbers used; uses words

More information

Directed Reading page

Directed Reading page Skills Worksheet Directed Reading page 185-190 Section: Determining Relative Age 1. How old is Earth estimated to be? 2. Who originated the idea that Earth is billions of years old? 3. On what did the

More information

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale GEOL 110: PHYSICAL GEOLOGY Why is the Geologic Time Scale important? Rocks record geologic and evolutionary changes throughout Earth s history Without a time perspective, events have little meaning Chapter

More information

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old 1 GEOLOGIC TIME HISTORICAL NOTES Catastrophism James Usher, mid-1600s, concluded Earth was only a few thousand years old Uniformitarianism Charles Lyell published Principles of Geology 1830. 3 HOW DO WE

More information

Science Data Representation Questions: Strategies and Sample Questions

Science Data Representation Questions: Strategies and Sample Questions Science Data Representation Questions: Strategies and Sample Questions Focus on understanding what information is given. Review any additional information given (descriptive paragraphs, headings, scale

More information

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall Biology 1 of 40 2 of 40 Fossils and Ancient Life What is the fossil record? 3 of 40 Fossils and Ancient Life The fossil record provides evidence about the history of life on Earth. It also shows how different

More information

Geologic and Rock Cycles, Fossils and Unconformities

Geologic and Rock Cycles, Fossils and Unconformities Geologic and Rock Cycles, Fossils and Unconformities The Geologic Cycle 3 key events: deposition, uplift, erosion Sedimentation of beds A-D beneath the sea Uplift above sea level and exposure of D to erosion

More information

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture?

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture? CHAPTER 6 5 Time Marches On SECTION The Rock and Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: How do geologists measure time? How has life changed

More information

Earth Science - Lab #11 Geologic Time

Earth Science - Lab #11 Geologic Time Earth Science - Lab #11 Geologic Time Page # Below are standard geologic symbols for the 3 main categories of rocks. Although these symbols are not universal, they are generally accepted by most geologists

More information

UNCONFORMITY. Commonly four types of unconformities are distinguished by geologists: a) Disconformity (Parallel Unconformity)

UNCONFORMITY. Commonly four types of unconformities are distinguished by geologists: a) Disconformity (Parallel Unconformity) UNCONFORMITY Unconformities are gaps in the geologic record that may indicate episodes of crustal deformation, erosion, and sea level variations. They are a feature of stratified rocks, and are therefore

More information

Principle of Uniformitarianism: Laws of nature don t change with time

Principle of Uniformitarianism: Laws of nature don t change with time G e o l o g i c T i m e Principle of Uniformitarianism: Laws of nature don t change with time Radical idea proposed by Hutton in 1780 s Proposed that past events could be explained by modern processes

More information

Read It! Station Directions

Read It! Station Directions Read It! Station Directions Each member of the group will read the passage and answer the questions from the task cards on the lab sheet in the Read It! section. It is important to remember that the answers

More information

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks.

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Objectives State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Compare three types of unconformities. Apply the law of crosscutting

More information

2. Can you name earth s three eras and explain why they are divided that way?

2. Can you name earth s three eras and explain why they are divided that way? Unit: 3 Earth s History LT 3.1 Earth s History: I can map out a basic history of the earth, including key events. 1. Can you place the key events of earth s history in order? #1 Yes I can: 2. Can you name

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Time. How we achieved a modern sense of time. Yearly Calendars are Ancient

Time. How we achieved a modern sense of time. Yearly Calendars are Ancient Time How we achieved a modern sense of time. Yearly Calendars are Ancient Stonehenge is 2000+ BC and indicates that ancient cultures counted days and knew precisely the repeat cycle of the seasons. 1 Renaissance

More information

Unit 6: Interpreting Earth s History

Unit 6: Interpreting Earth s History Unit 6: Interpreting Earth s History How do we know that the Earth has changed over time? Regent s Earth Science Name: Topics Relative Dating Uniformitarianism Superposition Original Horizontality Igneous

More information

Lab 4: Structures and Geologic Maps

Lab 4: Structures and Geologic Maps Key Questions: GEOL 1311 Earth Science Lab 4 Structures and Geologic Maps What shapes do rock bodies take in the Earth? How do two-dimensional visualizations of the Earth, such as maps and cross-sections

More information

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING RELATIVE TIME (DATING) ABSOLUTE TIME (DATING) GEOLOGIC TIME List the order in which events occurred, without regard to the amount of time separating them. Refers to the age of a rock in relation to other

More information

GO ON. Directions: Use the diagram below to answer question 1.

GO ON. Directions: Use the diagram below to answer question 1. d i a g n o s t i c t e s t : e a r t h a n d s p a c e s c i e n c e question 1. 1. What is the correct order (starting from the surface) of Earth s layers? A crust, outer core, inner core, mantle B mantle,

More information

17-1 The Fossil Record Slide 2 of 40

17-1 The Fossil Record Slide 2 of 40 2 of 40 Fossils and Ancient Life What is the fossil record? 3 of 40 Fossils and Ancient Life Fossils and Ancient Life Paleontologists are scientists who collect and study fossils. All information about

More information

geologic age of Earth - about 4.6 billion years

geologic age of Earth - about 4.6 billion years Geologic Time Geologic Time geologic age of Earth - about 4.6 billion years Geologic Time very difficult to appreciate from our human perspective necessary to understand history of Earth two basic ways

More information

17-1 The Fossil Record Slide 1 of 40

17-1 The Fossil Record Slide 1 of 40 1 of 40 Fossils and Ancient Life Fossils and Ancient Life Paleontologists are scientists who collect and study fossils. All information about past life is called the fossil record. The fossil record includes

More information

Warm Up Name the 5 different types of fossils

Warm Up Name the 5 different types of fossils Warm Up Name the 5 different types of fossils Timeline that organizes the events in Earths history. Earth is about 4.7 billion years old. More complex organism such as land plants and fish evolved only

More information

GEOLOGY GL1 Foundation Unit

GEOLOGY GL1 Foundation Unit Candidate Name Centre Number Candidate Number 2 General Certificate of Education Advanced Subsidiary/Advanced 451/01 GEOLOGY GL1 Foundation Unit P.M. THURSDAY, 10 January 2008 (1 hour) Examiner Question

More information

Clues to Earth s Past

Clues to Earth s Past chapter 13 3 Clues to Earth s Past section 2 Relative Ages of Rocks Before You Read Think of two friends. You want to know who is older. What information do you need to figure out who s older? What You

More information

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary Name Date Class A Trip Through Geologic Time Section Summary Fossils Guide for Reading How do fossils form? What are the different kinds of fossils? What does the fossil record tell about organisms and

More information

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch.

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch. The Geologic Time Scale Objectives Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch. Vocabulary geologic time scale eon era period

More information

Name Date EARTH S HISTORY VOCABULARY

Name Date EARTH S HISTORY VOCABULARY Name Date EARTH S HISTORY VOCABULARY Use Figure 2 to answer the following two questions. 10. Interpreting Graphics Which is older the sandstone layer or Dike A? Explain your answer. Conglomerate Sandstone

More information

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Questions? Key Points for today What are the 5 relative age dating principles and how do you apply the principles to determine a geologic history

More information

Geologic Time Test Study Guide

Geologic Time Test Study Guide Geologic Time Test Study Guide Chapter 12 Section 1 The Earth s Story and Those Who First Listened 1. What is the difference between uniformitarianism and catastrophism? Uniformitarianism: the same geologic

More information

Name: Date: Period: Page 1

Name: Date: Period: Page 1 Name: Date: Period: Base your answers to questions 1 through 4 on the three bedrock outcrops below and on your knowledge of Earth science. The outcrops, labeled I, II, and III, are located within 15 kilometers

More information

Geologic Time. Earth s History

Geologic Time. Earth s History Geologic Time Chapter 12 Earth s History Earth s history is recorded in rocks Rocks record geological events and changing life forms of the past. We have learned that Earth is much older than anyone had

More information

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES Loulousis Bellringer What are 5 visual clues that help you determine if someone is older or younger than you? Color of hair Wrinkles in

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

L.O: HOW GEOLOGISTS SEQUENCE EVENTS IN EARTH'S GEOLOGIC HISTORY IF NOT OVERTURNED, OLDEST ON BOTTOM, YOUNGEST ON TOP

L.O: HOW GEOLOGISTS SEQUENCE EVENTS IN EARTH'S GEOLOGIC HISTORY IF NOT OVERTURNED, OLDEST ON BOTTOM, YOUNGEST ON TOP L.O: HOW GEOLOGISTS SEQUENCE EVENTS IN EARTH'S GEOLOGIC HISTORY IF NOT OVERTURNED, OLDEST ON BOTTOM, YOUNGEST ON TOP 1. Unless a series of sedimentary rock layers has been overturned, the bottom rock layer

More information

Geologic Time. This page last updated on 17-Oct-2017

Geologic Time. This page last updated on 17-Oct-2017 Page 1 of 16 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Geologic Time This page last updated on 17-Oct-2017 From the beginning of this course, we have stated that the Earth is

More information

Geologic Trips San Francisco and the Bay Area

Geologic Trips San Francisco and the Bay Area Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part of this book may be reproduced without written permission in writing,

More information

Late 20 th Century Tests of the Continental Drift Hypothesis

Late 20 th Century Tests of the Continental Drift Hypothesis Late 20 th Century Tests of the Continental Drift Hypothesis 5 Characteristics of the Ocean Trenches Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter.

More information

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time Name: Age: I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine

More information

Science 20. Unit C: The Changing Earth. Assignment Booklet C1

Science 20. Unit C: The Changing Earth. Assignment Booklet C1 Science 20 Unit C: The Changing Earth Assignment Booklet C FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 60 Your Mark Science 20 Unit C: The Changing Earth Assignment

More information

II. Knowing and Understanding the Six Principles of Stratigraphy:

II. Knowing and Understanding the Six Principles of Stratigraphy: Student Name(s): Physical Geology 101 Laboratory Relative Dating of Rocks Using Stratigraphic Principles Grade: I. Introduction & Purpose: The purpose of this lab is to learn and apply the concepts of

More information

Today: 1) Quiz- Vocabulary Chapter 8 2) Lecture on Telling Time Geologically

Today: 1) Quiz- Vocabulary Chapter 8 2) Lecture on Telling Time Geologically Today: 1) Quiz- Vocabulary Chapter 8 2) Lecture on Telling Time Geologically Next Class: 1) Go over Exam 2 2) Continue: Telling Time Geologically 3) In Class Exercise: Radiometric dating Introduction to

More information

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes The geologic time scale holds secrets to the life that has existed on Earth since the beginning of time. It is time for you to take a journey through the history of Earth. 1 Click on each of the segments

More information

General Geology Lab #7: Geologic Time & Relative Dating

General Geology Lab #7: Geologic Time & Relative Dating General Geology 89.101 Name: General Geology Lab #7: Geologic Time & Relative Dating Purpose: To use relative dating techniques to interpret geological cross sections. Procedure: Today we will be interpreting

More information

9. RELATIVE AND RADIOMETRIC AGES

9. RELATIVE AND RADIOMETRIC AGES LAST NAME (IN CAPS): FIRST NAME: Instructions: 9. RELATIVE AND RADIOMETRIC AGES Your work will be graded on the basis of its accuracy, completion, clarity, neatness, legibility, and correct spelling of

More information

Earth History Exam. The remains of an early dinosaur could be found at reference point A. A B. B C. C D. D. page 1

Earth History Exam. The remains of an early dinosaur could be found at reference point A. A B. B C. C D. D. page 1 Name: Date: 1. Base your answer(s) to the following question(s) on the Earth Science Reference Tables and your knowledge of Earth science. The accompanying cross section shows undisturbed sedimentary bedrock.

More information

The Environment and Change Over Time

The Environment and Change Over Time The Environment and Change Over Time Fossil Evidence of Evolution What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if

More information

Geology Laboratory - GEOL 101. Ray Rector - Instructor

Geology Laboratory - GEOL 101. Ray Rector - Instructor GEOLOGIC DATING LAB Principles and Applications Geology Laboratory - GEOL 101 Ray Rector - Instructor Earth s Age and History How Old Is the Earth? How Can We Determine Earth s Geologic History? Two Primary

More information

Lecture 10 Constructing the geological timescale

Lecture 10 Constructing the geological timescale Lecture 10 Constructing the geological timescale Geologic Time Discovering the magnitude of the Earth s past was a momentous development in the history of humanity This discovery forever altered our perception

More information

Geologic Time. Decoding the Age of our Planet & North Carolina

Geologic Time. Decoding the Age of our Planet & North Carolina Geologic Time Decoding the Age of our Planet & North Carolina The Geologic Time Scale Objectives Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era,

More information

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its:

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its: EARTH S HISTORY 1 What is Geology? Geo: earth logy: science Geology is the scientific study of the Earth, including its: composition, structure, and physical properties. 2 1 Geologists study: the origin

More information

TIME. Does not give the. Places events in sequencee 1 st, 2 nd, 3 rd. Gives a. exact date of an event. event. Radioactive Dating.

TIME. Does not give the. Places events in sequencee 1 st, 2 nd, 3 rd. Gives a. exact date of an event. event. Radioactive Dating. Geologic History TIME Places events in sequencee 1 st, 2 nd, 3 rd Does not give the exact date of an event Gives a date or time of an event Uses the Law of Superposition Radioactive Dating Youngest Law

More information

GEOLOGY 12 CHAPTER 8 WS #3 GEOLOGIC TIME & THE FOSSIL RECORD

GEOLOGY 12 CHAPTER 8 WS #3 GEOLOGIC TIME & THE FOSSIL RECORD GEOLOGY 12 CHAPTER 8 WS #3 GEOLOGIC TIME & THE FOSSIL RECORD NAME Multiple Choice 1. Fossils are most commonly found in A. sedimentary rocks. B. metamorphic rocks. C. igneous rocks. D. all kinds of rocks.

More information

Name Geo 4 Practice Match the principle on the left (column A) with the definition (or part of the definition) on the right (column B).

Name Geo 4 Practice Match the principle on the left (column A) with the definition (or part of the definition) on the right (column B). Name Geo 4 Practice 1 Target 1 2 3 4 Geo 4 I can define the create, alter and/or destroy the rock record. I can interpret a diagram to determine the sequence of events (relative age) in Earth s history

More information

Laboratory 7 Geologic Time

Laboratory 7 Geologic Time (Name) Laboratory 7 Geologic Time We will be exploring ideas behind the development of the geological column. The geological column is a general term that is used to describe the template behind which

More information

Earth History

Earth History Earth History 89.331 Course information Prof. Lori Weeden Office: Olney 402b Office phone: 978-934-3344 Lori_weeden@uml.edu Course web page: http://faculty.uml.edu/lweeden/earthlife.htm Earth System History

More information

Chapter 09 Geologic Time

Chapter 09 Geologic Time Physical Geology 1330 116-S&R 1 Chapter 09 Geologic Time Lectures 12 & 13 Dr. Mike Murphy mmurphy@mail.uh.edu 333-S&R-1 www.uh.edu/~mamurph2/homepage.html Two Ways to Date Geologic Events 1. Relative Dating

More information

Timing of Geologic Events. Geologic Time Terms. Laws / Principles of Stratigraphy

Timing of Geologic Events. Geologic Time Terms. Laws / Principles of Stratigraphy Geologic Time Terms Hadean Archean Proterozoic Phanerozoic Paleozoic Mesozoic Cenozoic(Tertiary) Cambrian Unconformity Angular unconformity Half-life Alpha particle Beta particle Gamma ray Neutron UT How

More information

Geologic Time: Concepts and Principles

Geologic Time: Concepts and Principles Geologic Time: Concepts and Principles Introduction - An appreciation for the immensity of geologic time is essential for understanding the history of our planet - Geologists use two references for time

More information

ENVI.2030L Geologic Time

ENVI.2030L Geologic Time Name ENVI.2030L Geologic Time I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt

More information

Timeline that organizes the events in Earths history. Earth is about 4.7 billion years old. More complex organism such as land plants and fish

Timeline that organizes the events in Earths history. Earth is about 4.7 billion years old. More complex organism such as land plants and fish Timeline that organizes the events in Earths history. Earth is about 4.7 billion years old. More complex organism such as land plants and fish evolved only with in the last 500 million years. Humans evolved

More information

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain Introduction to the Atlantic Coastal Plain (Please read this page prior to doing the lab) The Atlantic

More information

Learning Goal: Students will review their understanding of earth s history Success Criteria: Students will solve a variety of problems Agenda: 1.

Learning Goal: Students will review their understanding of earth s history Success Criteria: Students will solve a variety of problems Agenda: 1. Learning Goal: Students will review their understanding of earth s history Success Criteria: Students will solve a variety of problems Agenda: 1. Review 2. Earth history review Why are ancient volcanic

More information

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Geologic Time Earth, Chapter 9 Chapter 9 Geologic Time The Importance of a Time Scale Interpreting Earth s history is an important goal of the science of

More information

Plate Tectonics 3. Where Does All the Extra Crust Go?

Plate Tectonics 3. Where Does All the Extra Crust Go? Plate Tectonics 3 Where Does All the Extra Crust Go? Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial,

More information

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes. Unit 1B Lesson 4 History of Life on Earth How do we learn about ancient life? Paleontologists scientists that studies fossils Fossil- a trace or imprint of a living thing that is preserved by geological

More information

GEOLOGIC DATING LAB Principles and Applications

GEOLOGIC DATING LAB Principles and Applications GEOLOGIC DATING LAB Principles and Applications Geology Laboratory - GEOL 101 Ray Rector - Instructor Earth s Age and History How Old Is the Earth? How Can We Determine Earth s Geologic History? Scientific

More information

TIME LINE OF LIFE. Strip for Clock of Eras representing the circumference. 1. Review the eras represented on the Clock of Eras:

TIME LINE OF LIFE. Strip for Clock of Eras representing the circumference. 1. Review the eras represented on the Clock of Eras: TIME LINE OF LIFE Material Time Line of Life Working Time Line of Life Clock of Eras Strip for Clock of Eras representing the circumference Elastic strip for Clock of Eras Presentation 1: Overview 1. Review

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 21: Rock Deformation Instructor: Dr. Douglas W. Haywick Last Time A) How long is long? B) Geological time divisions Web notes 20 Geological

More information

6. Relative and Absolute Dating

6. Relative and Absolute Dating 6. Relative and Absolute Dating Adapted by Sean W. Lacey & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R, & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

Deep Time: How Old Is Old?

Deep Time: How Old Is Old? Deep Time: How Old Is Old? Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared by: Ronald L. Parker, Senior Geologist

More information

Today you will be able to: Utilize the SEVEN rules of rock age identification to describe the geologic age of this rock sequence!

Today you will be able to: Utilize the SEVEN rules of rock age identification to describe the geologic age of this rock sequence! Mr. Sandomenico Welcome!!!! Today we will begin a new unit! The Earth s History!!!!! Today you will be able to: Utilize the SEVEN rules of rock age identification to describe the geologic age of this rock

More information

Fossils. Ch. 29 and 30 Overview

Fossils. Ch. 29 and 30 Overview Ch. 29 and 30 Overview What you need to know: Chapter 29: Fossils, Relative Time, Absolute Time Chapter 30: Geologic Time Fossils Study of fossils called paleontology Original remains rare usually dead

More information

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old. Geologic Time There are 2 kinds: What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.) Relative Age The age compared to the ages of other

More information