Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants.

Size: px
Start display at page:

Download "Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants."

Transcription

1 Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants. Development of seismotectonic models Ramon Secanell Kuala Lumpur, August 2013

2 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 2

3 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 3

4 Necessary Information for the construction of the seismotectonic model. a) Geological, geophysical, geotechnical and seismological database. b) 4 spatial scales: a) Regional (300 km) b) Near regional (25 km) c) Site vicinity (5 km) d) Site area (1 km) c) Data compiled in a SIG 4

5 Seismotectonic model a) Introduction: 1. Link between geological, geophysical and geotechnical database and seismological database. 2. Identification of seismogenic structures: faults or systems of faults and zones of diffuse seismicity. 3. Evaluation and characterization of seismic sources and its uncertainty (Characteristic model, Poissonian model). 4. Epistemic uncertainty should be considered and weighted. Alternative models should be used. 5. Use of palaeoseismology. 6. Magnitude of the catalogue should be the same as the magnitude of the attenuation relationship used (Mw preferred due to the non saturation). 5

6 Seismotectonic model a) Introduction: 7. The magnitude-frequency should identify the parameters describing the seismic exceedance rate in function of magnitude and the maximum magnitude for each source (Typically, b-value, a-value and Mmax). 8. Uncertainty in seismic parameters should be considered. 9. Attention to the definition of Mmax (key parameter for long return periods). 10. Use of paleoseismicity in order to: a) Identification of seismogenic structures b) Improvement of the completeness (large events, high magnitudes) c) Definition of Mmax 6

7 Seismotectonic model b) Seismogenic structures: Safety Guide (SSG-9) Identification and characterization: 1. Consideration of seismogenic sources able to produce a ground motion in the site (in the frequency range of interest). 2. Analysis of surface faulting and fault displacement. 3. Identification of seismogenic sources using: geological, geophysical, geotechnical and seismological data. 4. Identification of the geometry, segmentation, branching, focal mechanism, etc. and its uncertainty. 5. Identification of Mmax. 6. Identification of a magnitude-frequency relationship (typically characteristic or exponential) and its uncertainties 7

8 Regional seismotectonic model c) Zones of diffuse seismicity: 1. Identification of the diffuse zones taking into account depth of the earthquakes, rates of earthquakes, etc. 2. Depth and its uncertainty are a key parameter in PSHA. 3. Identification of Mmax with historical and instrumental data., comparison with similar regions, etc. 4. Determination of the magnitude-frequency relation. Attention should be paid to the definition of b-value. 8

9 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 9

10 Example of Regional Seismotectonic zonation: The geometry of zones should be justified 10

11 Example of Regional Seismotectonic Zonation: The geometry of zones should be justified with data 11

12 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 12

13 The objective if to defined the geometry and seismic parameters of a fault: 13

14 Example of Local Seismotectonic Zonation. Use of existing data

15 Example of Local Seismotectonic Zonation Use of existing data

16 Example of local seismotectonic zonation: seismic reflexion profiles. Use of existing data Seismic reflexion profiles

17 Example of local seismotectonic zonation: aerial photographies Use of existing data

18 Example of Local Seismotectonic Zonation Possible capable fault. Bibliographic evidences: geological cross-sections, geological maps, etc.

19 Example of seismotectonic zonation: local scale Generation of new data High resolution seismic reflexion profiles gives us a good image of the sub-surface

20 Example of seismotectonic zonation: local scale High resolution seismic reflexion Profiles: characterization of geometry and location of faults

21 Example of seismotectonic zonation: local scale High resolution seismic reflexion Profiles: characterization of geometry and location of faults

22 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 22

23 Characterization of the seismic sources: seismic distribution Poisson model: GR law, log10(n)=a+bm. Parameters: a, b,, β, (a), (b), ( ), (β), Mmax, Mmin Characteristic model. Parameters: Tc, Mc and Elapsed time from last earthquake 23

24 Characterization of the seismic sources 24

25 Methods to fit the GR law: Safety Guide (SSG-9) Least squares (old methodology) Maximum likelihood methods Weichter method (1980), free code Kijko method (2002, 2012), commercial code The maximum likelihood methods are preferred because they allow to take into account the periods of completeness and a better consideration of the number of earthquakes Par range of magnitude 25

26 Methods to fit the characteristic model: Needed parameters are: Characteristic earthquake. It is determined using physical equations or paleoseismicity Wells & Coppersmith (1994) Todorovska (2007) Others Return period of characteristic earthquake. It is determined using paleoseismicity or using the slip rate methods. Elapsed time since the last earthquake 26

27 Slip rate method Fast slip rate & big fault Slow slip rate & small fault 27

28 Seismic characterization of seismic sources. Depth and Mmax 28

29 Seismic characterization of seismic sources : Depth Depth can be estimated using instrumental data and/or geological information 29

30 Seismic characterization of seismic sources: Mmax Mmax can be estimated taking into account some methods to propagate the uncertainties 30

31 Example of seismic parameters of a seismotectonic model. Input data for a PSHA Zone a b a b b Mmin ajust Data fitted b Mmin ajust Mmax Obs. Step mag. SEISMIC PARAMETERS. CATALOGUE Mw File Per. Comp. Mmin / km² * 10E6 Data recalculated from a and b for a new Mmin b Mmin Mmin calc. b H Hmoy Mmax periodes_mw.dbf à à periodes_mw.dbf à à periodes_mw.dbf à à periodes_mw.dbf à à Mmax moy surface (km) 31

32 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 32

33 Why do we introduce faults in a PSHA? PSHA study in Provence: example of fault treatment Seismicity models Gutenberg-Richter based on earthquake catalogue Characteristic earthquake based on moment rate distribution Objectives Compare faults models with zone models Include these models in the logic tree Impact on the hazard assessment. 33

34 New Seismotectonic zonation 1773 RÉGION TRICASTIN DIOIS-BARONNIES 1866 CHAINES SUBALP MÉRIDIONALE PROVENCE OCCIDENTALE PROVENCE ORIENTALE GOLFE DU LION-CAMARGUE Kilomètres Old Seismotectonic zonation 34

35 Western Provence fault model for PSHA UNCERTAINTIES Geometry trace segmentation dip depth Slip rate Single/multi segment rupture Recurrence model Background seismicity 35

36 Probabilistic logic tree Epistemic uncertainties Aleatory uncertainties Seismotectonic model Seismicity distribution Attenuation model Source parameters RFS & catalogue Ms [0.33], b, H, Mmax (zones) Regional zonation [0.33] Gutenberg-Richter [1] Campbell & Bozorgnia (2003) & catalogue Mw [0.33], b, H, Mmax (zones) Sabetta & Pugliese (1996) & catalogue MLLDG [0.33], b, H, Mmax (zones) Probabilistic Logic tree RFS & catalogue Ms [0.33], b, H, Mmax, b, H, Mmax (faults) (zones) Single segment rupture [0.75] Gutenberg-Richter [0.5] Campbell & Bozorgnia (2003) & catalogue Mw [0.33], b, H, Mmax, b, H, Mmax (faults) (zones) Fault model + Regional zonation [0.66] Multi segment rupture [0.25] Characteristic model (faults) + Gutenberg-Richter (zones) [0.5] Sabetta & Pugliese (1996) & catalogue MLLDG [0.33] RFS & catalogue Ms [0.33] Campbell & Bozorgnia (2003) & catalogue Mw [0.33] Sabetta & Pugliese (1996) & catalogue MLLDG [0.33], b, H, Mmax, b, H, Mmax (faults) (zones) H, V, Mca r, T car (faults), b, H, Mmax (zones) H, V, Mca r, T car (faults), b, H, Mmax (zones) H, V, Mca r, T car (faults), b, H, Mmax (zones) 36

37 Total Logic tree : Seismic hazard map 475 years Negligible contribution of faults 37

38 Total Logic tree : Seismic hazard map 1975 years Low contribution of faults 38

39 Total Logic tree : Seismic hazard map 5000 years Conclusion: Uncertainties in PSHA can be reduced using new data Significant contribution of faults 39

40 Overview of Presentation Main concepts about seismotectonic model in SSG-9 Regional seismotectonic model Local seismotectonic model Seismic characterization of seismotectonic sources Treatment of uncertainties associated to seismotectonic model Example of regional and local seismotectonic model 40

41 Geological, geophysical, seismological database of Peru-Chilean region Seismicity, geological cross-sections, etc 41

42 Geological, geophysical, seismological database of Peru-Chilean region Morphology, tectonic units, geological cross-section 42

43 Regional shallow seismic zonation of the Chilean-Peru region Summary of the characteristics of the zones 43

44 Regional shallow seismic zonation of the Chilean-Peru region Seismic and Geological parameters of the zones 44

45 Regional shallow seismic zonation of the Chilean-Peru region with seismic catalogue Seismic parameters needed in a PSHA 45

46 Regional subduction seismic zonation of the Chilean-Peru region with cross section 46

47 Regional subduction seismic zonation of the Chilean-Peru region with depth of the subduction 47

48 Regional subduction seismic zonation of the Chilean-Peru region with seismic catalogue Seismic parameters needed in a PSHA 48

49 Local seismotectonic zonation: consideration of faults 49

50 Thank you for your attention This activity is conducted by the IAEA, with funding by the European Union. The views expressed in this presentation do not necessarily reflect the views of the European Union.

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN Dr Ilaria Mosca 1 and Dr Natalya Silacheva 2 1 British Geological Survey, Edinburgh (UK) imosca@nerc.ac.uk 2 Institute of Seismology, Almaty (Kazakhstan) silacheva_nat@mail.ru

More information

AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING

AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING CO 2 TRACCS INTERNATIONAL WORKSHOP Bucharest, 2 September, 2012 AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING M. Semih YÜCEMEN Department of Civil Engineering and Earthquake Studies

More information

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties H4.SMR/1645-29 "2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard" 14-25 February 2005 Overview of Seismic PHSA Approaches with Emphasis on the Management of

More information

L. Danciu, D. Giardini, J. Wößner Swiss Seismological Service ETH-Zurich Switzerland

L. Danciu, D. Giardini, J. Wößner Swiss Seismological Service ETH-Zurich Switzerland BUILDING CAPACITIES FOR ELABORATION OF NDPs AND NAs OF THE EUROCODES IN THE BALKAN REGION Experience on the field of seismic hazard zonation SHARE Project L. Danciu, D. Giardini, J. Wößner Swiss Seismological

More information

PSHA results for the BSHAP region

PSHA results for the BSHAP region NATO Science for Peace and Security Programme CLOSING CONFERENCE OF THE NATO SfP 983054 (BSHAP) PROJECT Harmonization of Seismic Hazard Maps for the Western Balkan Countries October 23, 2011 Ankara, Turkey

More information

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND Mark W STIRLING 1 SUMMARY The Institute of Geological and Nuclear Sciences (GNS) has developed a new seismic hazard model for New Zealand that incorporates

More information

ANVS Guidelines on Seismic Hazards in Site Evaluation for Nuclear Installations (revised version of IAEA standard SSG-9, 2010)

ANVS Guidelines on Seismic Hazards in Site Evaluation for Nuclear Installations (revised version of IAEA standard SSG-9, 2010) ANVS Guidelines on Seismic Hazards in Site Evaluation for Nuclear Installations (revised version of IAEA standard SSG-9, 2010) 1 Foreword The ANVS (the Authority for Nuclear Safety and Radiation Protection)

More information

Earthquake catalogues and preparation of input data for PSHA science or art?

Earthquake catalogues and preparation of input data for PSHA science or art? Earthquake catalogues and preparation of input data for PSHA science or art? Marijan Herak Department of Geophysics, Faculty of Science University of Zagreb, Zagreb, Croatia e-mail: herak@irb.hr EARTHQUAKE

More information

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36)

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) Lecture 34 Topics Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) 7.3 DETERMINISTIC SEISMIC HAZARD ANALYSIS 7.4 PROBABILISTIC SEISMIC HAZARD ANALYSIS 7.4.1 Earthquake Source Characterization 7.4.2

More information

GEM's community tools for probabilistic seismic hazard modelling and calculation

GEM's community tools for probabilistic seismic hazard modelling and calculation GEM's community tools for probabilistic seismic hazard modelling and calculation Marco Pagani, GEM Secretariat, Pavia, IT Damiano Monelli, GEM Model Facility, SED-ETH, Zürich, CH Graeme Weatherill, GEM

More information

5. Probabilistic Seismic Hazard Analysis

5. Probabilistic Seismic Hazard Analysis Probabilistic Seismic Hazard Analysis (PSHA) proposed by C.A. Cornell (1968) used to determine the design earthquake for all locations in USA. PSHA gives a relative quantification i of the design earthquake,

More information

Appendix O: Gridded Seismicity Sources

Appendix O: Gridded Seismicity Sources Appendix O: Gridded Seismicity Sources Peter M. Powers U.S. Geological Survey Introduction The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) is a forecast of earthquakes that fall

More information

Preliminary probabilistic seismic hazard assessment for the Nuclear Power Plant Bohunice (Slovakia) site

Preliminary probabilistic seismic hazard assessment for the Nuclear Power Plant Bohunice (Slovakia) site Preliminary probabilistic seismic hazard assessment for the Nuclear Power Plant Bohunice (Slovakia) site P. Labák, A. Bystrická & P. Moczo Geophysical Institute, Slovak Academy of Sciences, Dúbravská cesta

More information

Actual practices of seismic strong motion estimation at NPP sites

Actual practices of seismic strong motion estimation at NPP sites ANSN Regional Workshop on Site Selection and Evaluation for Nuclear Power Plants June 2010, Hanoi Vietnam IAEA/ISSC Actual practices of seismic strong motion estimation at NPP sites Yoshi. FUKUSHIMA (JNES)

More information

Tectonic Hazard Evaluations for Korean Nuclear Sites

Tectonic Hazard Evaluations for Korean Nuclear Sites Tectonic Hazard Evaluations for Korean Nuclear Sites June 13-17, 2011 Jakarta, INDONESIA Hyunwoo LEE (heanu@kins.re.kr) Korea Institute of Nuclear Safety 1 2 3 4 5 Introduction Tectonic Environment of

More information

6 Source Characterization

6 Source Characterization 6 Source Characterization Source characterization describes the rate at which earthquakes of a given magnitude, and dimensions (length and width) occur at a given location. For each seismic source, the

More information

Seismic Hazards in Site Evaluation for Nuclear Installations

Seismic Hazards in Site Evaluation for Nuclear Installations 27 November 2018 IAEA SAFETY STANDARDS for protecting people and the environment Step 8 Soliciting comments by Member States Seismic Hazards in Site Evaluation for Nuclear Installations DRAFT SAFETY GUIDE

More information

Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines

Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines Development of Probabilistic Seismic Hazard Analysis for International Sites, Challenges and Guidelines ABSTRACT Dr. Antonio Fernandez Ares Paul C. Rizzo Associates, Inc. 500 Penn Center Boulevard, Suite

More information

Probabilistic Tsunami Hazard Analysis. Hong Kie Thio AECOM, Los Angeles

Probabilistic Tsunami Hazard Analysis. Hong Kie Thio AECOM, Los Angeles Probabilistic Tsunami Hazard Analysis Hong Kie Thio AECOM, Los Angeles May 18, 2015 Overview Introduction Types of hazard analysis Similarities and differences to seismic hazard Methodology Elements o

More information

Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard

Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard Surface Fault Displacement Hazard Workshop PEER, Berkeley, May 20-21, 2009 Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard Maria Todorovska Civil & Environmental

More information

UPDATED PROBABILISTIC SEISMIC HAZARD MAPS FOR TURKEY

UPDATED PROBABILISTIC SEISMIC HAZARD MAPS FOR TURKEY UPDATED PROBABILISTIC SEISMIC HAZARD MAPS FOR TURKEY S. Akkar, T. Azak, T. Çan, U. Çeken, M.B. Demircioğlu, T.Y. Duman, M. Erdik, S. Ergintav, F.T. Kadirioğlu, D. Kalafat, Ö. Kale, R.F. Kartal, K. Kekovalı,

More information

Modelling Subduction Zone Seismogenic Hazards in Southeast Asia for Seismic Hazard Assessments

Modelling Subduction Zone Seismogenic Hazards in Southeast Asia for Seismic Hazard Assessments Modelling Subduction Zone Seismogenic Hazards in Southeast Asia for Seismic Hazard Assessments Vicki-Ann Dimas 1,2 and Gary Gibson 3 1. Corresponding Author. Seismic Hazard Analyst, Seismology Research

More information

I.D. Gupta. Central Water and Power Research Station Khadakwasla, Pune ABSTRACT

I.D. Gupta. Central Water and Power Research Station Khadakwasla, Pune ABSTRACT ISET Journal of Earthquake Technology, Paper No. 480, Vol. 44, No. 1, March 2007, pp. 127 167 PROBABILISTIC SEISMIC HAZARD ANALYSIS METHOD FOR MAPPING OF SPECTRAL AMPLITUDES AND OTHER DESIGN- SPECIFIC

More information

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Supervisor : Dr. Chyi-Tyi Lee and Dr. Kuo-Fong Ma Speaker : Jia-Cian Gao 2018/04/26 1 1. A

More information

Forecasting Hazard from Induced Earthquakes. Ryan Schultz

Forecasting Hazard from Induced Earthquakes. Ryan Schultz Forecasting Hazard from Induced Earthquakes Ryan Schultz Overview 1) Probabilistic Seismic Hazard Analysis (PSHA). Ground Motions Parameters Earthquake Catalogues & Recurrence Relations GMPEs Hazard Calculation

More information

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Mark D. Petersen (U.S. Geological Survey) http://earthquake.usgs.gov/hazmaps/ Seismic hazard analysis

More information

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for?

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for? GM1) What magnitude earthquake is DCPP designed for? The new design ground motions for DCPP were developed after the discovery of the Hosgri fault. In 1977, the largest magnitude of the Hosgri fault was

More information

PROBABILISTIC SEISMIC HAZARD MAPPING IN SLOVENIA

PROBABILISTIC SEISMIC HAZARD MAPPING IN SLOVENIA PROBABILISTIC SEISMIC HAZARD MAPPING IN SLOVENIA Janez K LAPAJNE 1, Barbara SKET-MOTNIKAR 2 And Polona ZUPANCIC 3 SUMMARY This study of probabilistic seismic hazard mapping in Slovenia is based on: 1 the

More information

Geotechnical Earthquake Engineering

Geotechnical Earthquake Engineering Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Humboldt Fellow, JSPS Fellow, BOYSCAST Fellow Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in

More information

Epistemic Uncertainty in Seismic Hazard Analysis for Australia

Epistemic Uncertainty in Seismic Hazard Analysis for Australia Australian Earthquake Engineering Society 2011 Conference, 18-20 November, Barossa Valley, South Australia Epistemic Uncertainty in Seismic Hazard Analysis for Australia Paul Somerville 1,2 and Hong Kie

More information

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States

Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States Seismic Source Characterization in Siting New Nuclear Power Plants in the Central and Eastern United States ABSTRACT : Yong Li 1 and Nilesh Chokshi 2 1 Senior Geophysicist, 2 Deputy Director of DSER Nuclear

More information

THE RESPONSE SPECTRUM

THE RESPONSE SPECTRUM (NBCC 25) Gail M. The Canadian Society for Civil Engineering, Vancouver Section THE RESPONSE SPECTRUM Seismic Hazard Analysis to obtain Uniform Hazard Response Spectrum (NBCC 25) Gail M. Department of

More information

PSHA Study Using EZ-Frisk Software Case Study Baychebaq Dam Site

PSHA Study Using EZ-Frisk Software Case Study Baychebaq Dam Site Current Research in Geosciences Original Research Paper PSHA Study Using EZ-Frisk Software Case Study Baychebaq Dam Site Hadi Jarahi Department of Geosciences, North Tehran Branch, Islamic Azad University

More information

The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground Motion Prediction Equations

The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground Motion Prediction Equations The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground otion Prediction Equations T. Ornthammarath Assistant Professor, Department of Civil and Environmental Engineering, Faculty of

More information

Documentation for the 2002 Update of the National Seismic Hazard Maps

Documentation for the 2002 Update of the National Seismic Hazard Maps 1 Documentation for the 2002 Update of the National Seismic Hazard Maps by Arthur D. Frankel 1, Mark D. Petersen 1, Charles S. Mueller 1, Kathleen M. Haller 1, Russell L. Wheeler 1, E.V. Leyendecker 1,

More information

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA ABSTRACT Y. Bozorgnia, M. Hachem, and K.W. Campbell Associate Director, PEER, University of California, Berkeley, California, USA Senior Associate,

More information

Seismic Hazard & Risk Assessment

Seismic Hazard & Risk Assessment Seismic Hazard & Risk Assessment HAZARD ASSESSMENT INVENTORY OF ELEMENTS AT RISK VULNERABILITIES RISK ASSESSMENT METHODOLOGY AND SOFTWARE LOSS RESULTS Event Local Site Effects: Attenuation of Seismic Energy

More information

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems :

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems : Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module Seismology Exercise Problems :.4. Estimate the probabilities of surface rupture length, rupture area and maximum

More information

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia Azlan Adnan, Patrick Liq Yee Tiong, Yue Eng Chow/ International Journal of Engineering Vol. 2 Issue 1, Jan-Feb 212, pp.639-644 Usability of the Next Generation Attenuation Equations for Seismic Hazard

More information

Procedure for Probabilistic Tsunami Hazard Assessment for Incomplete and Uncertain Data

Procedure for Probabilistic Tsunami Hazard Assessment for Incomplete and Uncertain Data Procedure for Probabilistic Tsunami Hazard Assessment for Incomplete and Uncertain Data A. Kijko (1), A. Smit (1), G.A. Papadopoulos (2), 1. University of Pretoria Natural Hazard Centre University of Pretoria,

More information

PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS

PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS PEER SURFACE FAULT DISPLACEMENT HAZARD WORKSHOP U.C. Berkeley May 20-21, 2009 Timothy Dawson California Geological

More information

Probabilistic Tsunami Hazard Assessment addressing the uncertainty of tsunami source

Probabilistic Tsunami Hazard Assessment addressing the uncertainty of tsunami source Probabilistic Tsunami Hazard Assessment addressing the uncertainty of tsunami source Pacific Rim Forum 2017 January 23, 2017 Yuta Abe, ITOCHU Techno-Solutions Corporation, Japan Copyright (c)2017 ITOCHU

More information

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations Arthur Frankel, William Stephenson, David Carver,

More information

Overview of Active Fault Research at Geological Survey of Japan

Overview of Active Fault Research at Geological Survey of Japan Overview of Active Fault Research at Geological Survey of Japan Yasuo. AWATA and Toshikazu. YOSHIOKA Active Fault Research Center, Geological Survey of Japan, AIST UJNR, November 10, 2006, Tokushima 1

More information

C05 Evaluation of Earthquake Hazard Parameters for the Different Regions in the Western Anatolia for Whole Time Periods

C05 Evaluation of Earthquake Hazard Parameters for the Different Regions in the Western Anatolia for Whole Time Periods C05 Evaluation of Earthquake Hazard Parameters for the Different Regions in the Western Anatolia for Whole Time Periods Y. Bayrak* (Karadeniz Technical University) & E. Bayrak (Karadeniz Technical University)

More information

PROBABILISTIC HAZARD ASSESSMENT OF FAULT DISPLACEMENTS

PROBABILISTIC HAZARD ASSESSMENT OF FAULT DISPLACEMENTS PROBABILISTIC HAZARD ASSESSMENT OF FAULT DISPLACEMENTS R. Sigbjörnsson, 1 J.Th. Snæbjörnsson, 2 S.M. Higgins, 3 S. Ólafsson 3 and B. Halldórsson 3 ABSTRACT: 1 Professor, EERC, School of Engineering and

More information

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S J A C K W. B A K E R Copyright 2015 Jack W. Baker Preferred citation for this document: Baker, Jack W. (2015)

More information

Seismic Microzonation via PSHA Methodology and Illustrative Examples

Seismic Microzonation via PSHA Methodology and Illustrative Examples Seismic Microzonation via PSHA Methodology and Illustrative Examples I.D. Gupta Central Water and Power Research Station, Khadakwasla, Pune idgrh4@yahoo.com A Workshop on Microzonation Interline Publishing,

More information

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions UCERF3 Task R- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions Bruce E. Shaw Lamont Doherty Earth Observatory, Columbia University Statement of the Problem In UCERF Magnitude-Area

More information

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants

Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Paleoseismic Investigations for Determining the Design Ground Motions for Nuclear Power Plants Russell A. Green Department of Civil and Environmental Engineering Purdue Geotechnical Society Workshop May

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2898 SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3)

More information

DETERMINATION OF THE SEISMIC INPUT IN FRANCE FOR THE NUCLEAR POWER PLANTS SAFETY: REGULATORY CONTEXT, HYPOTHESIS AND UNCERTAINTIES TREATMENT

DETERMINATION OF THE SEISMIC INPUT IN FRANCE FOR THE NUCLEAR POWER PLANTS SAFETY: REGULATORY CONTEXT, HYPOTHESIS AND UNCERTAINTIES TREATMENT DETERMINATION OF THE SEISMIC INPUT IN FRANCE FOR THE NUCLEAR POWER PLANTS SAFETY: REGULATORY CONTEXT, HYPOTHESIS AND UNCERTAINTIES TREATMENT C. Berge-Thierry, E. Cushing, O. Scotti and F. Bonilla Institute

More information

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Scott Lindvall SSC TI Team Lead Palo Verde SSC SSHAC Level 3 Project Tuesday, March 19, 2013 1 Questions from

More information

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Lynne S. Burks 1 and Jack W. Baker Department of Civil and Environmental Engineering,

More information

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Steve Thompson (LCI and SSC TI Team), for SWUS GMC Workshop 1, March 19, 2013 Questions from TI Team Summarize tectonic setting.

More information

An Approach for Seismic Design in Malaysia following the Principles of Eurocode 8

An Approach for Seismic Design in Malaysia following the Principles of Eurocode 8 An Approach for Seismic Design in Malaysia following the Principles of Eurocode 8 by Dr J. W. Pappin, Ms. P. H. I. Yim and Mr. C. H. R. Koo 1. INTRODUCTION Eurocode 8 is a useful document providing systematic

More information

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Proceedings of IOE Graduate Conference, 2016 pp. 115 122 Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Sunita Ghimire 1, Hari Ram Parajuli 2 1 Department of Civil Engineering,

More information

WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems

WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems Graeme Weatherill,

More information

Site-specific seismic hazard assessment for nuclear facilities in low seismicity regions

Site-specific seismic hazard assessment for nuclear facilities in low seismicity regions NPSAG Seismic PSA Workshop 13/14 March 2013 Radisson Blu Arlandia Hotel, Sweden Site-specific seismic hazard assessment for nuclear facilities in low seismicity regions Prof Willy Aspinall (Aspinall &

More information

Peak Ground Acceleration on Bedrock and Uniform Seismic Hazard Spectra for Different Regions of Golpayegan, Iran

Peak Ground Acceleration on Bedrock and Uniform Seismic Hazard Spectra for Different Regions of Golpayegan, Iran International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-4 Issue-5, October 2014 Peak Ground Acceleration on Bedrock and Uniform Seismic Hazard Spectra

More information

UPDATE OF THE PROBABILISTIC SEISMIC HAZARD ANALYSIS AND DEVELOPMENT OF SEISMIC DESIGN GROUND MOTIONS AT THE LOS ALAMOS NATIONAL LABORATORY

UPDATE OF THE PROBABILISTIC SEISMIC HAZARD ANALYSIS AND DEVELOPMENT OF SEISMIC DESIGN GROUND MOTIONS AT THE LOS ALAMOS NATIONAL LABORATORY F I N A L R E P O R T UPDATE OF THE PROBABILISTIC SEISMIC HAZARD ANALYSIS AND DEVELOPMENT OF SEISMIC DESIGN GROUND MOTIONS AT THE LOS ALAMOS NATIONAL LABORATORY Prepared for Los Alamos National Laboratory

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment

Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment Brendon A Bradley a) This paper investigates epistemic uncertainty in the results of seismic

More information

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL

More information

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS 1. Introduction CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS This section presents information on engineering seismology and engineering characterization of earthquakes. The key references for this module

More information

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India)

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) L. Kanagarathinam, G. R. Dodagoudar & A. Boominathan Indian Institute of Technology Madras, Chennai SUMMARY:

More information

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA Myo Thant 1, Hiroshi Kawase 2, Subagyo Pramumijoyo 3, Heru Hendrayana

More information

Professor Terje Haukaas University of British Columbia, Vancouver terje.civil.ubc.ca. Earthquakes

Professor Terje Haukaas University of British Columbia, Vancouver terje.civil.ubc.ca. Earthquakes Earthquakes In 1963 research concluded that sea floors and continents drift horizontally and soon after, in 1968, the term plate tectonics was established. This represented a paradigm shift in geology

More information

Earthquake maximum magnitude estimation considering regional seismotectonic parameters

Earthquake maximum magnitude estimation considering regional seismotectonic parameters Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Earthquake maximum magnitude estimation considering regional seismotectonic parameters

More information

Model Uncertainties of the 2002 Update of California Seismic Hazard Maps

Model Uncertainties of the 2002 Update of California Seismic Hazard Maps Bulletin of the Seismological Society of America, Vol. 95, No. 6, pp. 24 257, December 25, doi: 1.1785/12517 Model Uncertainties of the 22 Update of California Seismic Hazard Maps by Tianqing Cao, Mark

More information

Seismic Hazard Assessment for Specified Area

Seismic Hazard Assessment for Specified Area ESTIATION OF AXIU REGIONAL AGNITUDE m At present there is no generally accepted method for estimating the value of the imum regional magnitude m. The methods for evaluating m fall into two main categories:

More information

U.S. NUCLEAR REGULATORY COMMISSION March 2007 REGULATORY GUIDE OFFICE OF NUCLEAR REGULATORY RESEARCH

U.S. NUCLEAR REGULATORY COMMISSION March 2007 REGULATORY GUIDE OFFICE OF NUCLEAR REGULATORY RESEARCH U.S. NUCLEAR REGULATORY COMMISSION March 2007 REGULATORY GUIDE OFFICE OF NUCLEAR REGULATORY RESEARCH REGULATORY GUIDE 1.208 (Draft was issued as DG-1146, dated October 2006) A PERFORMANCE-BASED APPROACH

More information

BC HYDRO SSHAC LEVEL 3 PSHA STUDY METHODOLOGY

BC HYDRO SSHAC LEVEL 3 PSHA STUDY METHODOLOGY BC HYDRO SSHAC LEVEL 3 PSHA STUDY METHODOLOGY M. W. McCann, Jr. 1, K. Addo 2 and M. Lawrence 3 ABSTRACT BC Hydro recently completed a comprehensive Probabilistic Seismic Hazard Analysis (PSHA) to evaluate

More information

Opportunities for Source Modelling to Support the Seismic Hazard Estimation for NPP s SYP2016/NST2016 Vilho Jussila, Ludovic Fülöp

Opportunities for Source Modelling to Support the Seismic Hazard Estimation for NPP s SYP2016/NST2016 Vilho Jussila, Ludovic Fülöp VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Opportunities for Source Modelling to Support the Seismic Hazard Estimation for NPP s SYP2016/NST2016 Vilho Jussila, Ludovic Fülöp Content 1. Introduction of

More information

Uncertainties in a probabilistic model for seismic hazard analysis in Japan

Uncertainties in a probabilistic model for seismic hazard analysis in Japan Uncertainties in a probabilistic model for seismic hazard analysis in Japan T. Annaka* and H. Yashiro* * Tokyo Electric Power Services Co., Ltd., Japan ** The Tokio Marine and Fire Insurance Co., Ltd.,

More information

The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis

The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis The investigation of the design parameters of the Iranian earthquake code of practice based on hazard analysis G. Ghodrati Arniri & H. Rabet Es-haghi Department of Civil Engineering, Iran University of

More information

THE SEISMIC HAZARD MODELLER S TOOLKIT: AN OPEN- SOURCE LIBRARY FOR THE CONSTRUCTION OF PROBABILISTIC SEISMIC HAZARD MODELS

THE SEISMIC HAZARD MODELLER S TOOLKIT: AN OPEN- SOURCE LIBRARY FOR THE CONSTRUCTION OF PROBABILISTIC SEISMIC HAZARD MODELS THE SEISMIC HAZARD MODELLER S TOOLKIT: AN OPEN- SOURCE LIBRARY FOR THE CONSTRUCTION OF PROBABILISTIC SEISMIC HAZARD MODELS Graeme WEATHERILL 1, Luis RODRÍGUEZ 2, Marco PAGANI 3 ABSTRACT The methodology

More information

The Length to Which an Earthquake will go to Rupture. University of Nevada, Reno 89557

The Length to Which an Earthquake will go to Rupture. University of Nevada, Reno 89557 The Length to Which an Earthquake will go to Rupture Steven G. Wesnousky 1 and Glenn P. Biasi 2 1 Center of Neotectonic Studies and 2 Nevada Seismological Laboratory University of Nevada, Reno 89557 Abstract

More information

SEISMIC HAZARD ASSESSMENT IN ROMANIA

SEISMIC HAZARD ASSESSMENT IN ROMANIA Mircea Radulian, Magurele, Ilfov, Romania mircea@infp.ro SEISMIC HAZARD ASSESSMENT IN ROMANIA 13-14 March 2014 SciNetNatHaz Workshop Istanbul 1 Summary Seismic activity in Romania Input data A few significant

More information

Chapter 2 Strong Motion and Estimation of Seismic Hazard

Chapter 2 Strong Motion and Estimation of Seismic Hazard Chapter 2 Strong Motion and Estimation of Seismic Hazard 2.1. General The propagation of seismic waves and resulting ground displacement during an earthquake is picked up even at far off places. But scientists

More information

GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS

GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS 13 th orld Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2743 GLOBAL SOURCE PARAMETERS OF FINITE FAULT MODEL FOR STRONG GROUND MOTION SIMULATIONS OR PREDICTIONS

More information

PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR YANGON REGION, MYANMAR

PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR YANGON REGION, MYANMAR PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR YANGON REGION, MYANMAR Abstract Myo Thant Lecturer, Department of Geology, University of Yangon, Myanmar, 95-09-49333794, Email: myothant05@gmail.com Received

More information

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36)

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) Lecture 35 Topics Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) 7.4.4 Predictive Relationships 7.4.5 Temporal Uncertainty 7.4.6 Poisson Model 7.4.7 Other Models 7.4.8 Model Applicability 7.4.9 Probability

More information

Quantifying the effect of declustering on probabilistic seismic hazard

Quantifying the effect of declustering on probabilistic seismic hazard Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Quantifying the effect of declustering on probabilistic

More information

Uniform Hazard Spectrum(UHS) for performance based seismic design

Uniform Hazard Spectrum(UHS) for performance based seismic design Uniform Hazard Spectrum(UHS) for performance based seismic design *Jun-Kyoung Kim 1), Soung-Hoon Wee 2) and Seong-Hwa Yoo 2) 1) Department of Fire Protection and Disaster Prevention, Semyoung University,

More information

SEISMIC HAZARD AND SEISMIC DESIGN REQUIREMENTS FOR THE ARABIAN PENINSULA REGION

SEISMIC HAZARD AND SEISMIC DESIGN REQUIREMENTS FOR THE ARABIAN PENINSULA REGION SEISMIC HAZARD AND SEISMIC DESIGN REQUIREMENTS FOR THE ARABIAN PENINSULA REGION V. Pascucci 1, M.W. Free 2 and Z.A. Lubkowski 2 1 Seismic Engineer, Arup, London W1T 4BQ, UK 2 Associate Director, Arup,

More information

PSHA for seismicity induced by gas extraction in the Groningen Field

PSHA for seismicity induced by gas extraction in the Groningen Field PSHA for seismicity induced by gas extraction in the Groningen Field Dirk Kraaijpoel, Mauro Caccavale, Torild van Eck, Bernard Dost Schatzalp Workshop Induced Seismicity 2015-03-13 Groningen Field # events

More information

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3488 PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM

More information

Manila subduction zone

Manila subduction zone Manila subduction zone Andrew T.S. Lin SSC TI Team Member Taiwan SSHAC Level 3 PSHA Study Workshop #3, June 19 23, 2017 Taipei, Taiwan 1 1 Manila subduction zone Hazard Contribution Geometry Setting interface

More information

NEODETERMINISTIC SEISMIC HAZARD ASSESSMENT. Seismic hazard in Asia Trieste 4-8 December 2006

NEODETERMINISTIC SEISMIC HAZARD ASSESSMENT. Seismic hazard in Asia Trieste 4-8 December 2006 H4.SMR/1882-2 Seismic Hazard in Asia 4-8 December 2006 Neodeterministic Hazard Assessment G.F. Panza 1, 2 1 Department of Earth Sciences University of Trieste 2 ICTP SAND Group, Trieste NEODETERMINISTIC

More information

An earthquake is the result of a sudden displacement across a fault that releases stresses that have accumulated in the crust of the earth.

An earthquake is the result of a sudden displacement across a fault that releases stresses that have accumulated in the crust of the earth. An earthquake is the result of a sudden displacement across a fault that releases stresses that have accumulated in the crust of the earth. Measuring an Earthquake s Size Magnitude and Moment Each can

More information

ROSE SCHOOL SENSITIVITY ANALYSIS IN PROBABILISTIC SEISMIC HAZARD ASSESSMENT

ROSE SCHOOL SENSITIVITY ANALYSIS IN PROBABILISTIC SEISMIC HAZARD ASSESSMENT Istituto Universitario di Studi Superiori Università degli Studi di Pavia EUROPEAN SCHOOL FOR ADVANCED STUDIES IN REDUCTION OF SEISMIC RISK ROSE SCHOOL SENSITIVITY ANALYSIS IN PROBABILISTIC SEISMIC HAZARD

More information

Introduction to Probabilistic Seismic Hazard Analysis

Introduction to Probabilistic Seismic Hazard Analysis Introduction to Probabilistic Seismic Hazard Analysis (Extended version of contribution by A. Kijko, Encyclopedia of Solid Earth Geophysics, Harsh Gupta (Ed.), Springer, 2011). Seismic Hazard Encyclopedia

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK IN NORTH EAST INDIA

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK IN NORTH EAST INDIA 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 015 PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK

More information

COMPARE OF THE EMPIRICAL AND NUMERICAL TSUNAMI HAZARD ASSESSMENT RESULTS FOR THE EAST COAST OF KOREA. Min Kyu Kim 1, In-kil Choi 2

COMPARE OF THE EMPIRICAL AND NUMERICAL TSUNAMI HAZARD ASSESSMENT RESULTS FOR THE EAST COAST OF KOREA. Min Kyu Kim 1, In-kil Choi 2 COMPARE OF THE EMPIRICAL AND NUMERICAL TSUNAMI HAZARD ASSESSMENT RESULTS FOR THE EAST COAST OF KOREA Min Kyu Kim 1, In-kil Choi 2 1 Korea Atomic Energy Research Institute: 989-111 Daedeok-Daero Youseong

More information

Time-varying and long-term mean aftershock hazard in Wellington

Time-varying and long-term mean aftershock hazard in Wellington Time-varying and long-term mean aftershock hazard in Wellington A. Christophersen, D.A. Rhoades, R.J. Van Dissen, C. Müller, M.W. Stirling, G.H. McVerry & M.C. Gerstenberger GNS Science, Lower Hutt, New

More information

Seismic hazard map around Taiwan through a catalog-based deterministic approach

Seismic hazard map around Taiwan through a catalog-based deterministic approach Seismic hazard map around Taiwan through a catalog-based deterministic approach Duruo Huang & Jui-Pin Wang The Hong Kong University of Science and Technology, Hong Kong SUMMARY: This study developed a

More information

ONR Expert Panel on Natural Hazards

ONR Expert Panel on Natural Hazards ONR Expert Panel on Natural Hazards NS-TAST-GD-013 Annex 1 Reference Paper: Analysis of Seismic Hazards for Nuclear Sites Expert Panel Paper No: Sub-Panel on Seismic Hazards October 2018 For more information

More information