5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e

Size: px
Start display at page:

Download "5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e"

Transcription

1 5.4 Bond Enthalpies Bond breaking is endothermic and bond making is exothermic. Bond making produces greater stability because the resulting products have a lower energy state. bond making bond breaking CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e

2 During every chemical reaction sufficient energy needs to first be absorbed (endothermic) to break the bonds. This energy is called the activation energy and is defined as the minimum amount of energy required by the reactants before products will form. Some reactions have small activation energies, because there is enough energy in the surroundings at room temperature to get them started. Other reactions have higher activation energies and need to absorb much more heat energy in order to break the bonds. Burning / combusting a fuel is an example. Not all the bonds of the reactants need to break at the same time before products form. Once one or two bonds have broken new bonds can start to form and this usually releases enough energy to keep the reaction going. Recall that a covalent bond is an electrostatic attraction between positive protons in the nucleus (called the positive nuclear charge) of the bonded atoms and the negative shared electrons in the bond. To break this bond sufficient energy needs to be absorbed by the bond to overcome the attraction between the protons and electrons. The stronger the bond the greater the amount of energy required to break it. 2 P a g e

3 The factors that affect the strength of a bond are: 1. When the number of shared electrons in the bond increases the attraction between them and the protons in the nuclei of the bonded atoms increases. Triple bonds are stronger than double which are stronger than single bonds. (C-C, H = 348 kjmol -1 ; C=C, H = 612 kjmol -1 and C C, H = 837 kjmol -1 ) 2. When the radius of the bonded atoms decreases, the protons and electrons of the bond are closer to each other so the attraction between them increases, making the bond weaker. 3. When the number of protons in the nuclei of the bonded atoms increases the attraction between them and the bonding electrons increases, increasing the strength of the bond. So far we have calculated enthalpy changes the following ways: 1. H = (m x c x T) n 2. Hess s Law 3 P a g e

4 Another way to calculate enthalpy changes is using average bond enthalpies. Average bond enthalpy is defined as the average energy required to break one mole of gaseous covalent bonds. They are calculated by taking the average of the enthalpies for that specific bond obtained from a number of similar compounds. The average bond enthalpy provides an indication of the strength of a chemical bond. Average bond enthalpies values are not particularly accurate because they are average values. They are most accurate and most useful when only a few bonds are made and broken, when specific bond energies are used instead of averages and when the reactants and products are gases. Calculating Enthalpy Changes from Average Bond Enthalpies H = H (bonds broken in reactants ) - H (bonds made in products ) (kj mol -1 ) Tables of average bond enthalpies are found in the Chemistry data booklet. 4 P a g e

5 Questions Use the average bond enthalpy data above to calculate the enthalpy change, H for questions 1 to 8. For each calculation show all the steps and final units. Express your answer using the correct number of significant figures. Since addition and subtraction is involved follow the decimal place rule. Each question is worth 3 points. 1. CH 4 (g) + 4 Cl 2 (g) CCl 4 (g) + 4 HCl(g) 2. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(g) 3. CH 4 (g) + Cl 2 (g) CH 3 Cl(g) + HCl(g) 4. H 2 (g) + Br 2 (g) 2 HBr(g) 5. C 2 H 6 (g) + 3 ½ O 2 (g) 2 CO 2 (g) + 3 H 2 O(g) 6. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g) + 2 H 2 O(g) 7. C 2 H 2 (g) + 2 ½ O 2 (g) 2 CO 2 (g) + H 2 O(g) 8. 3 C(g) + 4 H 2 (g) C 3 H 8 (g) 9. Identify the enthalpy of combustion reactions in questions 1 to 8. Which is the best fuel and why? 10. Account for the differences in the strength of single, double and triple bonds by comparing the average bond enthalpies of the C-O, C=O and C N bonds. 11. Account for the differences in the enthalpies of combustion for ethane, C 2 H 6 (g), ethane, C 2 H 4 (g) and ethyne, C 2 H 2 (g) 12. (M99) Define the term average bond enthalpy. [3] 13. Determine the bond enthalpy for the HF bond in kjmol -1 in the reaction. H 2 (g) + F 2 (g) 2 HF (g) H = -521 kj 14. Given that the bond enthalpy of the carbon-oxygen bond in carbon monoxide and carbon dioxide are 1073 kjmol -1 and 743 kjmol -1 respectively and that of the bond in the oxygen molecule is 496 kjmol -1. Calculate the enthalpy change for the combustion of one mole of carbon monoxide. [3] 5 P a g e

6 15. Given that the enthalpy change for the reaction below is +688 kjmol -1. Calculate the bond enthalpy of the N-Cl given that the bond enthalpy in the nitrogen molecule and the chlorine molecule are 944 kjmol -1 and 242 kjmol -1 respectively. [3] N 2(g) + 3 Cl 2(g) 2 NCl 3(g) 16. Use bond energy data to calculate the enthalpy when cyclopropane, C 3 H 6 reacts with hydrogen to form propane, C 3 H 8. The actual value found is -159 kjmol -1. State one reason why you think this differs from the value you have calculated. [3] 17. (M04) Consider the following reaction. HL Only N 2 (g) + 3 H 2 (g) 2 NH 3 (g) Use the values in the Chemistry data booklet calculate the enthalpy change, Hº for the reaction. [3] 18. (M04) Enthalpies of reactions, for example combustion, can be calculated using average bond enthalpies or enthalpies of formation. The two methods give closer results for cyclohexane, C 6 H 12 than they do for benzene, C 6 H 6. Explain this difference. [3] 19. The bond enthalpy of the N-O bond in nitrogen dioxide is 305 kjmol -1. Those of the bonds in the oxygen molecule and the nitrogen molecule are 496 kjmol -1 and 944 kjmol -1 respectively. a) What will be the enthalpy change for the reaction? [3] N 2 (g) + 2 O 2 (g) 2 NO 2 (g) b) Explain why experimental results show the N-O bond lengths are the same in NO 2. 6 P a g e

7 Bibliography Clark, Jim. Chem Guide < Clugston, Michael and Rosalind Flemming. Advanced Chemistry. Oxford: Oxford University Press, Derry, Lanna, Maria Connor and Carol Jordan. Chemistry for use for the IB Diploma Standard level. Melbourne: Pearson Education, Green, John and Sadru Damji. Chemistry for use with the International Baccalaureate Programme. Melbourne: IBID Press, Neuss, Geoffrey. IB Diploma Programme Chemistry Course Companion. Oxford: Oxford University Press, IB Study Guides, Chemistry for the IB Diploma. Oxford: Oxford University Press, Organisation, International Baccalaureate. Online Curriculum Centre. < "Chemistry Data Booklet." International Baccalaureate Organisation, March "Chemistry Guide." International Baccalaureate Organisation, March "IB Chemistry Examination Papers." Cardiff: International Baccalaureate Organisation, P a g e

8 6.4 Bond Enthalpy ANSWERS kj mol kj mol kj mol kj mol ethane kj mol ethene kj mol ethyne kj mol C(g) + 4 H 2 (g) C 3 H 8 (g) H = 4(H-H) - 2(C-C) + 8(C-H) = kj mol Combustion reactions are those where a substance burns/combusts in oxygen. The combustion reactions are: 2, 5, 6, 7. A fuel is a substance that when combusted releases heat energy. Ethane is he best fuel as it releases more kilojoules of energy per mole. 10. When the number of shared electrons in the bond increases the attraction between them and the protons in the nucleus of the bonded atoms increases, increasing the amount bond dissociation energy. Triple bonds (6 e) are stronger than double (4 e) which are stronger than single bonds (2 e). 11. The enthalpy change increases from C 2 H 6 (C-C) to C 2 H 4 (C=C) to C 2 H 2 (C C) because the bond enthalpy to break the carbon carbon bond increases. 12. The energy needed to break ; one mole of covalent bonds; in their gaseous state; (bolded words must be used to get the mark) 8 P a g e

9 13. H = (H-H) + (F-F)) 2(HF) -521 = ( ) 2(HF); 2HF = 1115 kj mol -1 ; HF = = 558 kj mol -1 ; (Divide by two because the bond enthalpy of HF calculated is for two moles of bonds) 14. CO (g) + ½ O 2(g) CO 2(g) H(CO) = (C O) + ½ (O=O) 2(C=O); = (1073) + ½ (496) 2(743); = -165 kj mol -1 ; 15. H = 1(N N) + 4(Cl-Cl) 6(N-Cl); +688 = 1(944) + 3(242) H 6(N-Cl) ; H 6(N-Cl) = = 982 kj mol -1 ; H (N-Cl) = = 164 kj mol -1 ; 16. H = 3(C-C) + 6(C-C) + 1(H-H) 2(C-C) + 8(C-H)); = 3(348) + 6(412) + (436) - 2(348) + 8(412) = = - 40 kj mol -1 ; 17. The H has been calculated using average bond enthalpies. H = (N N) + 3(H-H) 6(N-H); = (436) 6(388); = - 76 (kj mol -1 ); 9 P a g e

10 HL 18. cyclohexane has single bonds of the same length / strength ; benzene has delocalized / resonance structure ; with intermediate length / strength / 1.5 bond order ; So average bond enthalpies for cyclohexane are more accurate / closer to the expected value ; a) H = (N N) + 2(O=O) 4(N-O); = (496) 4(305); = 716 (kj mol -1 ); b) NO 2 exists as a resonance hybrid due to it having delocalized π electrons. 10 P a g e

15.2 Born-Haber Cycle

15.2 Born-Haber Cycle 15.2 Born-Haber Cycle Our calculations of enthalpies so far have involved covalent substances. Now we need to look at the enthalpy changes involved in the formation of giant ionic lattices. Lattice enthalpy

More information

Step 1: Use the balanced chemical equation to determine the bonding of each substance.

Step 1: Use the balanced chemical equation to determine the bonding of each substance. Bond Energies Homework Answers pg.313# 1, 2, 4-13 Mrs. Giovannone 1. (a) Solution: H2(g) + Cl2(g) 2 HCl(g) Step 3: Calculate the enthalpy change, ΔH, of the. Statement: The ΔH for the is 183 kj. (b) Solution:

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

CHEM 101 Fall 08 Exam III(a)

CHEM 101 Fall 08 Exam III(a) CHEM 101 Fall 08 Exam III(a) On the answer sheet (scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

THERMODYNAMICS. Energy can be neither created nor destroyed but it can be converted from one form to another.

THERMODYNAMICS. Energy can be neither created nor destroyed but it can be converted from one form to another. Chemical Energetics 1 TERMODYNAMICS First Law Energy can be neither created nor destroyed but it can be converted from one form to another. all chemical reactions are accompanied by some form of energy

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law Topic 2.1 ENERGETICS Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies ess Law 1. Exothermic and endothermic reactions ENTALPY CANGES When a chemical reaction takes place, the

More information

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H.

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. Enthalpy Changes The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. During chemical reactions, the enthalpy can increase or decrease. The change in enthalpy during

More information

Energetics of Bond Formation

Energetics of Bond Formation BONDING, Part 4 Energetics of Bond Formation 167 Energetics of Covalent Bond Formation 168 1 169 Trends in Bond Energies the more electrons two atoms share, the stronger the covalent bond C C (837 kj)

More information

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2 Worked solutions hapter 5 Exercises 1 B If the temperature drops, the process must be endothermic. Δ for endothermic reactions is always positive. 2 B All exothermic reactions give out heat. While there

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

Chapter Nine. Chemical Bonding I

Chapter Nine. Chemical Bonding I Chapter Nine Chemical Bonding I 1 The Ionic Bond and Lattice Energies 2 Lewis Dot Symbols Consists of atomic symbol surrounded by 1 dot for each valence electron in the atom Only used for main group elements

More information

Bond Energies and Their Uses

Bond Energies and Their Uses Bond Energies and Their Uses Bond Energies Chemical reactions involve breaking bonds in reactant molecules and making new bonds to create the products. The Δ reaction can be estimated by comparing the

More information

IB Topics 5 & 15 Multiple Choice Practice

IB Topics 5 & 15 Multiple Choice Practice IB Topics 5 & 15 Multiple Choice Practice 1. Which statement is correct for this reaction? Fe 2O 3 (s) + 3CO (g) 2Fe (s) + 3CO 2 (g) ΔH = 26.6 kj 13.3 kj are released for every mole of Fe produced. 26.6

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

ENERGETICS. Energy changes which take place during a chemical reaction can be represented on an energy (enthalpy) profile diagram.

ENERGETICS. Energy changes which take place during a chemical reaction can be represented on an energy (enthalpy) profile diagram. ENERGETICS All types of chemical reaction involve changes in energy. When energy is emitted it can take a number of forms, but the most common form is as heat energy. Heat energy is called enthalpy. Enthalpy

More information

Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB 2.1 The nuclear atom

Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB 2.1 The nuclear atom Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB.1 The nuclear atom 1. State the number of protons, neutrons, and electrons in each of the following: a. 65 Cu b. 15 N 3- c. 137 Ba

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

Energetics. These processes involve energy exchanges between the reacting system and its surroundings.

Energetics. These processes involve energy exchanges between the reacting system and its surroundings. Energetics Chemical reactions involve: the breaking of bonds between atoms the making of new bonds between atoms These processes involve energy exchanges between the reacting system and its surroundings.

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding Consider the reaction between sodium and chlorine: Na(s) + ½ Cl 2 (g) NaCl(s) H o f

More information

More Chemical Bonding

More Chemical Bonding More Chemical Bonding Reading: Ch 10: section 1-8 Ch 9: section 4, 6, 10 Homework: Chapter 10:.31, 33, 35*, 39*, 43, 47, 49* Chapter 9: 43, 45, 55*, 57, 75*, 77, 79 * = important homework question Molecular

More information

Answers. Chapter 5. Exercises

Answers. Chapter 5. Exercises Answers Chapter 5 Exercises 1 B 2 B 3 A 4 D 5 C 6 q = mc T, so T = q mc = 100 = 7.25 C 100 0.138 T = 25.0 + 7.25 = 32.3 C 7 A 8 A 9 C 10 (a) ΔT = 36.50 25.85 = 10.65 C (or K) (b) q = mc T q = m(h 2 O)

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

120 [4] 2. C 6 H 11 OH + 8½O 2 6CO 2 + 6H 2 O/double or multiple equation (1) [1] 3. (a) by definition (1) 1

120 [4] 2. C 6 H 11 OH + 8½O 2 6CO 2 + 6H 2 O/double or multiple equation (1) [1] 3. (a) by definition (1) 1 0.0. moles methane = = 6.5 0 () 6 kj evolved = 6.5 0 890 = 5.56 () 5.56 0 joules = (mc) T () 5.56 0 T = = 6. K () 0 []. C 6 H OH + 8½O 6CO + 6H O/double or multiple equation () []. (a) by definition ()

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule When atoms or ions are strongly attracted to one another, we say that there is a chemical bond between them. In chemical

More information

Define the term enthalpy change of formation of a compound

Define the term enthalpy change of formation of a compound 1. Alkanes are important hydrocarbons since they are used as fuels in homes and in industry. It is important that the enthalpy changes involved in alkane reactions are known. Define the term enthalpy change

More information

Announcements. Chem 7 Final Exam Wednesday, Oct 10 1:30-3:30AM Chapter or 75 multiple choice questions

Announcements. Chem 7 Final Exam Wednesday, Oct 10 1:30-3:30AM Chapter or 75 multiple choice questions Exam III (Chapter 7-0) Wednesday, ctober 3, 202 Time 600PM - 730PM SEC A 24A and 25A SKIPPING THIS STUFF Announcements Chem 7 Final Exam Wednesday, ct 0 30-330AM Chapter -2 70 or 75 multiple choice questions

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes.

1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes. 1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes. The table below shows the values of some average bond enthalpies. bond average bond

More information

Thermodynamics. Standard enthalpy change, H

Thermodynamics. Standard enthalpy change, H Standard enthalpy change, H Thermodynamics Enthalpy change, H, is defined as the heat energy change measured under conditions of constant pressure. The value of the enthalpy change for a particular reaction

More information

Enthalpy Chapter 5.3-4,7

Enthalpy Chapter 5.3-4,7 Enthalpy Chapter 5.3-4,7 heat transfer in (endothermic), +q heat transfer out (exothermic), -q SYSTEM E = q + w w transfer in (+w) w transfer out (-w) Internal Energy at Constant Volume E = E K + E P ΔE

More information

Chemical Bonding. The Octet Rule

Chemical Bonding. The Octet Rule Chemical Bonding There are basically two types of chemical bonds: 1. Covalent bonds electrons are shared by more than one nucleus 2. Ionic bonds electrostatic attraction between ions creates chemical bond

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 6 Thermodynamics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

List, with an explanation, the three compounds in order of increasing carbon to oxygen bond length (shortest first).

List, with an explanation, the three compounds in order of increasing carbon to oxygen bond length (shortest first). T4-2P1 [226 marks] 1. Which statement best describes the intramolecular bonding in HCN(l)? A. Electrostatic attractions between H + and CN ions B. Only van der Waals forces C. Van der Waals forces and

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

F322: Chains, Energy and Resources Enthalpy Changes

F322: Chains, Energy and Resources Enthalpy Changes F322: Chains, Energy and Resources 2.3.1 Enthalpy Changes 1. Some reactions of 2 O 2 are exothermic. Use ideas about the enthalpy changes that take place during bond breaking and bond making to explain

More information

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds Types of Bonding : Ionic Compounds Ionic bonding involves the complete TRANSFER of electrons from one atom to another. Usually observed when a metal bonds to a nonmetal. - - - - - - + + + + + + + + + +

More information

10 Enthalpy changes Answers to Activity and Practice questions

10 Enthalpy changes Answers to Activity and Practice questions Page 150 151 Activity: Measuring the enthalpy change for the reaction of zinc with copper sulfate solution 1 The graph should have: axes with scales and labels points plotted accurately a clean, smooth

More information

Topic 5.1 THERMODYNAMICS. Born-Haber Cycles Solubility of Ionic Compounds in Water Entropy Changes

Topic 5.1 THERMODYNAMICS. Born-Haber Cycles Solubility of Ionic Compounds in Water Entropy Changes Topic 5.1 THERMODYNAMICS Born-Haber Cycles Solubility of Ionic Compounds in Water Entropy Changes CALCULATING ENTHALPY CHANGES a) atomisation enthalpy and bond dissociation enthalpy The enthalpy change

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Level 3 Chemistry Demonstrate understanding of thermochemical principles and the properties of particles and substances

Level 3 Chemistry Demonstrate understanding of thermochemical principles and the properties of particles and substances 1 ANSWERS Level 3 Chemistry 91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances Credits: Five Achievement Achievement with Merit Achievement with

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5 Contents Getting the most from this book... 4 About this book.... 5 Content Guidance Atomic structure......................................... 6 Amount of substance....................................

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Things you should know when you leave Discussion today:

Things you should know when you leave Discussion today: Chem 101 2016 Discussion #10 Chapter 7 TF s name: Discussion Day/Time: Things you should know when you leave Discussion today: Enthalpy of the reaction Δ rxn H o Calculating ΔrH of the reaction by using

More information

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry 1 P age Module 5: Combustion Technology Lecture 32: Fundamentals of thermochemistry 2 P age Keywords : Heat of formation, enthalpy change, stoichiometric coefficients, exothermic reaction. Thermochemistry

More information

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16 3..1 Energetics Bond Enthalpy 98 minutes 96 marks Page 1 of 16 Q1. (a) State what is meant by the term mean bond enthalpy. () (b) Ethanal has the structure Gaseous ethanal burns as shown by the equation

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1)

Bond Energies - Chemistry LibreTexts 2H 2 O 2 H 2 + O 2 (1.1) BOND ENERGIES Atoms bond together to form compounds because in doing so they attain lower energies than they possess as individual atoms. A quantity of energy, equal to the difference between the energies

More information

Topic 5 Test Energetics IB Chemistry 3/6/17 [30 marks]

Topic 5 Test Energetics IB Chemistry 3/6/17 [30 marks] Topic 5 Test Energetics IB Chemistry 3/6/7 [30 marks]. Which equation represents the standard enthalpy of formation of liquid methanol? A. B. C. D. C(g) + 2 H 2 (g) + (g) C OH(l) 2 O 2 H 3 C(g) + 4H(g)

More information

Entropy. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright.

Entropy. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright. Entropy Exothermic and Endothermic Reactions Most chemical reactions give out heat energy as they take place, so the products have less energy (and so are more stable) than the reactants. These are exothermic

More information

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or 17.4 Calculating Heats of Reaction Essential Understanding Heats of reaction can be calculated when it is difficult or impossible to measure them directly. Lesson Summary Hess s Law Hess s law provides

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS Introduction In this chapter, we discuss the First Law of Thermodynamics (energy cannot be created or destroyed). In our discussion, we will define some important

More information

The energy associated with electrostatic interactions is governed by Coulomb s law:

The energy associated with electrostatic interactions is governed by Coulomb s law: Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chapter 8 & 9 Concepts of Chemical. Bonding

Chapter 8 & 9 Concepts of Chemical. Bonding Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 8 & 9 Concepts of John D. Bookstaver St. Charles Community College St. Peters, MO 2006,

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding Consider the reaction between sodium and chlorine: Na(s) + ½ Cl 2 (g) NaCl(s) H o f

More information

Methane contains atoms of two elements, combined chemically. Methane is a mixture of two different elements.

Methane contains atoms of two elements, combined chemically. Methane is a mixture of two different elements. Q1.Methane (CH 4) is used as a fuel. (a) The displayed structure of methane is: Draw a ring around a part of the displayed structure that represents a covalent bond. (b) Why is methane a compound? Tick

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

The table below includes some values of standard enthalpies of formation ( H ).

The table below includes some values of standard enthalpies of formation ( H ). 1. A vessel and its contents of total heat capacity 120 J K 1 were heated using a methane burner. Calculate the maximum theoretical temperature rise when 0.10 g of methane was completely burned. The standard

More information

(02) WMP/Jun10/CHEM2

(02) WMP/Jun10/CHEM2 Energetics 2 Section A Answer all the questions in the spaces provided. 1 An equation for the equilibrium reaction between hydrogen, iodine and hydrogen iodide is shown below. H 2 (g) + I 2 (g) 2HI(g)

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates.

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates. Chemical Changes and Structure Learning Outcomes SECTION 1 Controlling the Rate. Subsection (a) Collision Theory 1. I can use Collision Theory to explain the effects of concentration, particle size, temperature,

More information

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy......... Standard enthalpy of formation............ (5) (b) Some mean bond enthalpies

More information

MgO. progress of reaction

MgO. progress of reaction Enthalpy Changes Enthalpy is chemical energy, given the symbol H. We are interested in enthalpy changes resulting from the transfer of energy between chemical substances (the system) and the surroundings

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

5 Energy from chemicals

5 Energy from chemicals 5 Energy from chemicals Content 5.1 Enthalpy 5.2 Hydrogen fuel cell Learning Outcomes Candidates should be able to: (a) (b) (c) (d) (e) describe the meaning of enthalpy change in terms of exothermic (H

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #4 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Chemical Bonding I. MCQ - Choose Appropriate Alternative 1. The energy required to break a chemical bond to

More information

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2 Worked solutions hapter 5 Exercises 1 B If the temperature drops, the process must be endothermic. Δ for endothermic s is always positive. 2 B All exothermic s give out heat. While there are examples of

More information

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 8 of Chemical John D. Bookstaver St. Charles Community College Cottleville, MO Chemical Bonds Chemical bonds are the forces that hold the atoms together in substances. Three

More information

CHEMISTRY LEVEL 4C (CHM415115)

CHEMISTRY LEVEL 4C (CHM415115) CHEMISTRY LEVEL 4C (CHM415115) THERMOCHEMISTRY & ENERGY CHANGES THEORY SUMMARY & REVISION QUESTIONS Tasmanian TCE Chemistry Revision Guides by Jak Denny are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

More information

Chapter 8 Concepts of Chemical. Bonding

Chapter 8 Concepts of Chemical. Bonding Chapter 8 Concepts of 8.1 Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms. Electrons are free

More information

Alberta Inquiry into Chemistry February 12, 2007

Alberta Inquiry into Chemistry February 12, 2007 Unit 5 Thermochemical Changes Chapter 0 Theories of Energy and Chemical Changes Solutions to Practice s. Ethene, C 2 H 4 (g), reacts with water to form ethanol, C 2 H 5 OH(l), as shown below: C 2 H 4 (g)

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts Section 3.0. The 1 st Law of Thermodynamics (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities 3.2. Definitions and Concepts 3.3. The First Law of THERMODYNAMICS 3.4. Enthalpy 3.5. Adiabatic Expansion

More information

Properties of substances are largely dependent on the bonds holding the material together.

Properties of substances are largely dependent on the bonds holding the material together. Basics of Chemical Bonding AP Chemistry Lecture Outline Properties of substances are largely dependent on the bonds holding the material together. Basics of Bonding A chemical bond occurs when atoms or

More information

Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown

Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown Chemistry 1411 Practice Exam 2, Chapters 5-8 Brown Some constants and equations: E = q + w q = C p T Heat = m T Cs h = 6.626 X 10 34 J. s c = 2.998 X 10 8 m/s R H = 2.18 X 10 18 J E = (2.18 X 10 18 J)(1/n

More information

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj

4. Based on the following thermochemical equation below, which statement is false? 2 NH 3 (g) N 2 (g) + 3 H 2 (g) H = kj CHEM 101 WINTER 09-10 EXAM 3 On the answer sheet (Scantron) write you name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on your

More information

Enthalpy changes

Enthalpy changes 3.2.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The products have less energy than the If an enthalpy change occurs then energy is

More information

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions Understand the arrangements, movements and energy of the particle in each of the 3 states of matter : solid, liquid and gas Describe how the inter-conversion of solids, liquids and gases are achieved and

More information

measure ΔT in water to get q = q surroundings and use q system = q surroundings

measure ΔT in water to get q = q surroundings and use q system = q surroundings example using water: Calculate the amount of energy required to heat 95.0 g of water from 22.5 C to 95.5 C. q = s m ΔT ( C (4.184 J g 1 C 1 ) (95.0 g) (73.0 = = 2.90 x 10 4 J or 29.0 kj Constant Pressure

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

Chapter Seven. Chemical Reactions: Energy, Rates, and Equilibrium

Chapter Seven. Chemical Reactions: Energy, Rates, and Equilibrium Chapter Seven Chemical Reactions: Energy, Rates, and Equilibrium Endothermic vs. Exothermic 2 Endothermic: A process or reaction that absorbs heat and has a positive ΔH. Exothermic: A process or reaction

More information

Chemical changes. All exothermic reactions release heat energy to the surroundings. Heat given out. Products. Progress of reaction

Chemical changes. All exothermic reactions release heat energy to the surroundings. Heat given out. Products. Progress of reaction Chemical changes 6.1 Energetics of a reaction All chemical reactions involve an energy change. Energy is taken in or given out in the form of heat. So the reactions are divided into 2 groups Exothermic

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS CHEM 150 Section 01, Q2 2016 Midterm 1 Student name... Student number... Time: 90 Mins ATTEMPT ALL THE QUESTIONS 1 Formulae and constants pv = nrt P 1 V 1 T 1 = P 2V 2 T 2 Ptotal = p1 + p2 + p3 +... U

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information