UNIT ONE BOOKLET 6. Thermodynamic

Size: px
Start display at page:

Download "UNIT ONE BOOKLET 6. Thermodynamic"

Transcription

1 DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic

2 Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that can be answered by applying the principles of chemical thermodynamics, the study of the energy relationships associated with chemical reactions. The term used to label a reaction that proceeds without continual energy input is spontaneous. A spontaneous reaction is one that will occur all by itself, once the activation energy has been provided so that it can get started. These reactions may be fast or extremely slow. The burning of hydrogen, for example, is a spontaneous reaction. H 2 H 2 Once you add a little bit of energy, like the heat from a match, the hydrogen continues to burn without any outside help, until there is no more hydrogen to burn. It is possible to change water back into hydrogen and oxygen by passing electricity through the water - the process is definitely NOT spontaneous. This apparatus will stop producing hydrogen and oxygen if the electricity supply is switched off. Once the external energy supply is removed a non spontaneous reaction will stop even if all the reactants have not been used up.

3 Just like the skier, chemical reactions tend to be spontaneous if the natural flow of energy is DOWNHILL and so reach their lowest, most stable, energy state. This situation happens in exothermic reactions, where energy is released to the surrounds. In an exothermic reaction the products have less stored energy {ENTHALPY, H} than the reactants. The difference in energy is the energy released to the surroundings and is labelled Consider the combustion of methane CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) The change in enthalpy can be seen in the following reaction progress diagram H The diagram clearly shows that the products have less enthalpy than the reactants and are therefore much more stable - a favourable condition for a reaction to be spontaneous. The enthalpy change is found using H = H products H reactants In this case : H = (-969) (-75) = kj mol -1. The activation energy, E a, is also shown on this diagram.

4 In an endothermic the enthalpy of the products is greater than the reactants. The additional energy comes from the surroundings and so an endothermic reaction is accompanied by a fall in temperature. Consider the cracking of ethane C 2 H 6 (g) C 2 H 4 (g) + H 2 (g) H Endothermic reactions occur and so they must be feasible, even although the products are LESS STABLE than the reactants this is not a favourable condition for a spontaneous process. The enthalpy change for this reaction is given by H = H products H reactants H = (52) (-85) = 137 kj mol -1 Both these diagrams illustrate the First Law of Thermodynamics as the total energy of the chemicals plus the energy released or absorbed from the surroundings is constant.

5 If H for a reaction is NEGATIVE this is a good indication that a reaction will be feasible. However, as endothermic reactions { H positive} happen, this cannot be the only condition to determine whether a reaction will occur. In its very simplest sense entropy is related to how ordered something is. Systems that are highly ordered have LOW ENTROPY. HIGH ENTROPY is associated with lots of DISORDER. The drawings show examples of order and disorder the idea of entropy. The diagrams are illustrating that the natural order of a system is towards a situation where entropy increases. It is more probable that things become disordered rather than more ordered. Imagine two boxes with a gap between them. One box has a blue gas atom in it, the other has a red gas atom in it. What is the chance (probability) of both atoms ending up in the right hand box if they are left to diffuse? Do the same thing with 3 different atoms, 4 different atoms and finally with Avogadro s number of atoms. Hint: there is a formula

6 Common sense tells us that gases are much more disordered than liquids and liquids are more disordered than solids. It should be fairly obvious that the molecules in steam have a far more random nature than the molecules in water. Ice is a much more ordered substance than water. The change in entropy as ice is heated is shown in the following graph. Entropy has the symbol (S) The units for entropy are usually quoted as Joules per Kelvin per mole (J K -1 mol -1 ) The graph shows that, in general, entropy increase with increasing temperature disorder gets larger when substances are heated because they obtain more energy the particles will move around more. The graph also shows that entropy increases when the water changes state from solid to liquid to gas.

7 The table shows some standard entropy values, S o the values at 25 o C. Analysis of the table of entropy values reveals some of the trends in entropy. 1. Entropy increases from solids to liquids to gases. 2. The values for methane, ethane, propane and butane suggest that entropy increases with increasing molecular size. Why? The atoms joined together in a molecule move in a variety of ways. The diagram shows some of these movements. If there are more atoms, the there will be an increase in the number of stretches, vibrations and rotations the atoms can make. In other words more disorder. In general entropy will increase as molecular size increases

8 As already stated entropy will increase with increasing temperature. This is due to increasing motion of the particles in the substance. As a substance cools this motion will slow down and if the temperature is low enough it will stop altogether. The lowest temperature possible is known as ABSOLUTE ZERO. It has a value of -273 o c or zero Kelvin, 0 K. At zero Kelvin the solid on the right will have no thermal energy and the atoms will have no motion, not even the smallest vibration. A crystal structure like this will be perfectly ordered and therefore have ZERO ENTROPY. This is summarised in the 3 rd law of thermodynamics. Use the table of entropy values on page 6 to help with these questions. 1. Which substance in the table is most ordered? 2. Why does the increasing trend in entropy from methane to butane NOT continue with pentane? 3. Calculate the entropy value for the following. a. 3.5 moles of sodium chloride b mole of butane gas c. 60 g of diamond 4. Calculate the increase in entropy if 2 moles of water are boiled. 5. Would you expect graphite to have a higher or lower entropy than diamond. Explain your answer.

9 In order for a chemical reaction to be feasible both enthalpy and entropy have to be taken into consideration. If a reaction is exothermic, this is an indication that the reaction will be spontaneous. If the entropy change in a reaction increases when reactants become products this is also a favourable condition to make a reaction spontaneous. Is the entropy change positive or negative in the following processes? 1. Mg(s) + ½O 2 (g) MgO(s) 2. N 2 (g) + 3H 2 (g) 2NH 3 (g) 3. H 2 O(g) H 2 O(l) 4. Na + Cl - (s) Na + (aq) + Cl - (aq) 5. NH 4 NO 3 (s) N 2 O(g) + 2H 2 O(g) The fact that both entropy and enthalpy are involved in reaction feasibility is summarised in the Second Law of Thermodynamics. Consider the burning of magnesium! This means for a reaction to be spontaneous there MUST be an increase in the overall entropy of the reaction system. As it produces a solid product form a gas the entropy will decrease this appears to contradict the 2 nd Law. However, the reaction produces heat and light which increase the entropy of the material surrounding the burning magnesium. When considered together the overall entropy increases this reaction is therefore spontaneous.

10 The American Mathematical Physicist J.Willard Gibb s derived an equation which brought together the idea that enthalpy and entropy were the driving forces in chemical reactions. His equation, called Gibb s Free Energy is as important to chemists as E=mc 2 is to physicists. This equation decides the feasibility of a chemical reaction. Very simply it indicates if a reaction will proceed at a particular temperature. We know that if a reaction is exothermic that this is a favourable sign the reaction will be spontaneous. If the entropy value of the reaction itself also increases this is another favourable sign. Including these facts in the equation means that a NEGATIVE H value and a POSITIVE S value will give a NEGATIVE value for G. It is this value which decides if a chemical reaction is FEASIBLE. Now - three calculations. 1. Calculate the three components of the Free Energy equation. 2. Use the Free Energy equation to determine reaction feasibility at a particular temperature 3. Use the Free energy equation to find the temperature at which a reaction becomes feasible.

11 The feasibility of a reaction can be predicted from a consideration of the signs of H and S. The table shows how free energy is affected by four possible conditions of enthalpy and entropy. Consider reaction A the combustion of methanol. The free energy value of this reaction is always negative no matter the temperature the reaction is always spontaneous. If the combustion of methanol is always spontaneous, why doesn t it burn at room temperature? 1. All reactions require their activation energy. At room temperature there is insufficient energy to start the reaction. 2. Spontaneous means that once started the reaction will continue on its own. 3. Another view is that it is burning just very slowly thermodynamics tell us nothing about the speed of the change just that the change is possible.

12 Before attempting Free Energy calculations we need to consider three important facts regarding thermodynamics. In data tables the values for free energy enthalpy and entropy are always quoted at what is known as STANDARD CONDITIONS. This is because the values can vary with temperature, pressure and concentration. Standard conditions are Temperature of 298 K (25 o C) Pressure of 1 atmosphere Concentration of 1 mol l -1 The symbols denoting standard conditions are G o, H o and S o o The standard enthalpy of formation, H f is often used to find the overall enthalpy change for a reaction. The enthalpy of formation is defined as the enthalpy change when 1 MOLE of a compound is formed from its elements under standard conditions. Equations can be written for the enthalpy of formation E.g Enthalpy of formation of methane is C(s) + 2H 2(g) CH 4(g) Enthalpy of formation of water is H 2(g) + ½ O 2(g) H 2O(l) Notice that state symbols must be used to show the equations complies with the definition and that the substance formed must be 1 mole. The enthalpy of formation of any ELEMENT is defined as ZERO. Given G o, H o or S o values for the chemicals in a reaction it is possible to calculate the G, H or S for the reaction in which they are involved. This is done by using the formula; Where is the sum of and X o is the free energy, enthalpy of entropy of the chemicals.

13 1. The equation for the reaction of ethyne and hydrogen chloride is C 2 H 2 + 2HCl CH 2 ClCH 2 Cl The thermochemical data for the substances involved in the reaction is shown in the table below. Compound S o /J K -1 mol -1 Hf o /kj mol -1 C2H HCl CH2ClCH2Cl Use the information to calculate both the enthalpy change and the entropy change for this reaction. We can use to calculate the enthalpy change H o reaction = H f [CH 2 ClCH 2 Cl] {2 H f [HCl] + H f [C 2 H 2 ]} = [-166] [2(-92.3) + (227)] = kj mol -1 The entropy change is calculated in exactly the same way... S o reaction = S [CH 2 ClCH 2 Cl] {2 S [HCl] + S [C 2 H 2 ]} = [208] [2(187) + (201)] = -367 J K -1 mol -1 Note that as the values are given per mole of substance the stoichiometric coefficients (balancing numbers) must be used in these calculations. These results indicate that this reaction is exothermic ( H is negative) and that there has been a decrease in entropy ( S is negative).

14 2. The equation for the decomposition of zinc carbonate is ZnCO 3 ZnO + CO 2 Calculate the free energy, G o, for this reaction given that H o is 71 kj mol -1 and S o is J K -1 mol -1 Use G o = (175.1/1000) = = 19 kj mol -1 In the free energy equation the value for temperature must be in Kelvin. In this example it appears that no value for the temperature has been given. However, as the standard state symbols have been used, we can assume a temperature of 298 K. Notice that the entropy value has been divided by This is done to match up the units. The units for enthalpy are given in kilojoules and the units for entropy are given in Joules. Both must be the same before being used in the free energy equation. Not doing this is a very common mistake in exams. As the free energy value is positive this reaction is not spontaneous at 298 K. For this reaction to occur the temperature would need to be much higher. This would increase the entropy value which would eventually overcome the unfavourable positive enthalpy value. Anyone trying to change zinc carbonate to zinc oxide at 298 K (room temperature) would probably have to wait a very long time indeed.

15 3. Barium carbonate decomposes on heating. BaCO 3 (s) BaO(s) + CO 2 (g) ΔH = +266 kj mol 1 a. Using the data from the table below, calculate the standard entropy change, ΔS, in J K 1 mol 1, for the reaction. S o reaction = {S [CO 2 ] + S [BaO]} - S [BaCO 3 ] = [ ] [112] = J K -1 mol -1 b. Calculate the temperature at which the decomposition of barium carbonate just becomes feasible. To answer this question we use a variation of the free energy formula... This formula relies on the fact that, at equilibrium, the value of G o is ZERO. Substituting the values into this expression gives This temperature provides the activation energy to make this reaction proceed at a reasonable rate.

16 1. Use the information in the table to calculate the free energy change in the following reactions a. 2Mg + CO2 2MgO + C b. 2CuO + C CO2 + 2Cu Explain wether both these reactions are feasible at 298 K 2. The equation for the decomposition of magnesium carbonate is shown below a. Use the thermodynamic data to calculate the free energy change, in kj mol -1 at 400K for the reaction. b. Is the reaction feasible at this temperature? 3. Consider the thermodynamic data shown for the Haber process. Use the data given above, along with data book values to calculate the temperature at which the Haber process becomes feasible. 4. Chloroform was one of the first anaesthetics used in surgery. Use the thermodynamic data to calculate a boiling point for chloroform. CHCl3(l) CHCl3(g) S = 94.2 J K -1 mol -1 H = 31.3 kj mol -1

17 5. Consider the reactions and their thermodynamic data. a. Why does the reaction between aluminium and oxygen have the largest difference between G o and H o? b. The reaction between hydrogen and chlorine is spontaneous at 298 K. Explain why there is no observable reaction between hydrogen and chlorine until the mixture is exposed to ultraviolet light. c. Why does the data confirm that ammonium chloride dissolves spontaneously in water and that the temperature of the water will decrease as the ammonium chloride dissolves?

18 10. This table contains some thermodynamic data for hydrogen, oxygen and water. a. Calculate the temperature above which the reaction between hydrogen and oxygen to form gaseous water is not feasible. b. State what would happen to a sample of gaseous water that was heated to a temperature higher than that of your answer to part a. Give a reason for your answer. 11. The oxides nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) both contribute to atmospheric pollution. The table gives some data for these oxides and for oxygen. Nitrogen monoxide is formed in internal combustion engines. When nitrogen monoxide comes into contact with air, it reacts with oxygen to form nitrogen dioxide. a. Calculate the enthalpy change for this reaction. b. Calculate the entropy change for this reaction. c. Calculate the temperature that this reaction becomes thermodynamically feasible.

19

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Entropy. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright.

Entropy. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright. Entropy Exothermic and Endothermic Reactions Most chemical reactions give out heat energy as they take place, so the products have less energy (and so are more stable) than the reactants. These are exothermic

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

(03) WMP/Jun10/CHEM4

(03) WMP/Jun10/CHEM4 Thermodynamics 3 Section A Answer all questions in the spaces provided. 1 A reaction mechanism is a series of steps by which an overall reaction may proceed. The reactions occurring in these steps may

More information

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes 1.8 Thermodynamics Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound is formed from

More information

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings 12A Entropy Entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result in products that

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Reaction Feasibility 1 Thermochemistry Thermochemistry is the study of energy changes in reactions. The First

More information

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below.

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. 1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. Ba(OH) 2 (s) + 2NH 4 Cl(s) BaCl 2 (s) + 2NH 3 (g) + 2H 2 O(l) ΔH ο = +51.1 kj mol 1

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

IB Topics 5 & 15 Multiple Choice Practice

IB Topics 5 & 15 Multiple Choice Practice IB Topics 5 & 15 Multiple Choice Practice 1. Which statement is correct for this reaction? Fe 2O 3 (s) + 3CO (g) 2Fe (s) + 3CO 2 (g) ΔH = 26.6 kj 13.3 kj are released for every mole of Fe produced. 26.6

More information

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes Thermochemistry Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes heat flows from high to low (hot cool) endothermic reactions: absorb energy

More information

Standard enthalpies and standard Gibbs energies of formation 4. Calculating enthalpy changes and Gibbs energy changes for reactions 5

Standard enthalpies and standard Gibbs energies of formation 4. Calculating enthalpy changes and Gibbs energy changes for reactions 5 Chemical Reactions as Sources of Energy Part 1: Thermodynamics Contents Standard enthalpies and standard Gibbs energies of formation 4 Calculating enthalpy changes and Gibbs energy changes for reactions

More information

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes

UNIT 15 - Reaction Energy & Reaction Kinetics. I. Thermochemistry: study of heat in chemical reactions and phase changes I. Thermochemistry: study of heat in chemical reactions and phase changes II. A. Heat equation (change in temperature): Q = m. C. p T 1. Q = heat (unit is Joules) 2. m = mass (unit is grams) 3. C p = specific

More information

1.8 Thermodynamics. Lattice formation enthalpy Enthalpy change when 1 mole of a solid ionic compound is formed from its gaseous ions

1.8 Thermodynamics. Lattice formation enthalpy Enthalpy change when 1 mole of a solid ionic compound is formed from its gaseous ions 1.8 Thermodynamics Review: In 1.3 we looked at ionic bonding and learned that: Giant ionic lattice structure Ionic bonding: Strong electrostatic force of attraction between oppositely charged ions that

More information

Unit 5 A3: Energy changes in industry

Unit 5 A3: Energy changes in industry 1. ENTHALPY CHANGES Unit 5 A3: Energy changes in industry 1.1 Introduction to enthalpy and enthalpy changes 2 1.2 Enthalpy profile diagrams 2 1.3 Activation energy 3 1.4 Standard conditions 5 1.5 Standard

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

F322: Chains, Energy and Resources Enthalpy Changes

F322: Chains, Energy and Resources Enthalpy Changes F322: Chains, Energy and Resources 2.3.1 Enthalpy Changes 1. Some reactions of 2 O 2 are exothermic. Use ideas about the enthalpy changes that take place during bond breaking and bond making to explain

More information

Energetics. These processes involve energy exchanges between the reacting system and its surroundings.

Energetics. These processes involve energy exchanges between the reacting system and its surroundings. Energetics Chemical reactions involve: the breaking of bonds between atoms the making of new bonds between atoms These processes involve energy exchanges between the reacting system and its surroundings.

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen CHAPTER 12: Thermodynamics Why Chemical Reactions Happen Useful energy is being "degraded" in the form of unusable heat, light, etc. A tiny fraction of the sun's energy is used to produce complicated,

More information

Enthalpy. The first law of thermodynamics simply states that energy cannot be created or destroyed and can only be changed from one form to another

Enthalpy. The first law of thermodynamics simply states that energy cannot be created or destroyed and can only be changed from one form to another Enthalpy When a chemical reaction takes place these two processes occur and there is often an exchange of heat energy between the reaction and its surroundings. This is called the enthalpy change (ΔH).

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

Representing Chemical Change

Representing Chemical Change Representing Chemical Change As we have already mentioned, a number of changes can occur when elements react with one another. These changes may either be physical or chemical. One way of representing

More information

MgO. progress of reaction

MgO. progress of reaction Enthalpy Changes Enthalpy is chemical energy, given the symbol H. We are interested in enthalpy changes resulting from the transfer of energy between chemical substances (the system) and the surroundings

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

AS Paper 1 and 2 Energetics

AS Paper 1 and 2 Energetics AS Paper 1 and 2 Energetics Q1.Nitric acid is produced industrially from ammonia, air and water using the following sequence of reactions: 4NH 3 (g) + 5O 2(g) 4NO(g) + 6H 2O(g) H = 909 kj mol 1 (2) 2NO(g)

More information

Chemical reactions. C2- Topic 5

Chemical reactions. C2- Topic 5 Chemical reactions C2- Topic 5 What is a chemical reaction? A chemical reaction is a change that takes place when one or more substances (called reactants) form one or more new substances (called products)

More information

ENTROPY. Definition: Entropy is the quantitative measure of disorder in a system

ENTROPY. Definition: Entropy is the quantitative measure of disorder in a system ENTROPY Definition: Entropy is the quantitative measure of disorder in a system This depends not only on the degree to which the molecules are randomly arranged, but also on the random distribution of

More information

Define the term enthalpy change of formation of a compound

Define the term enthalpy change of formation of a compound 1. Alkanes are important hydrocarbons since they are used as fuels in homes and in industry. It is important that the enthalpy changes involved in alkane reactions are known. Define the term enthalpy change

More information

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H.

The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. Enthalpy Changes The chemical potential energy of a substance is known as its ENTHALPY and has the symbol H. During chemical reactions, the enthalpy can increase or decrease. The change in enthalpy during

More information

Thermodynamics. Standard enthalpy change, H

Thermodynamics. Standard enthalpy change, H Standard enthalpy change, H Thermodynamics Enthalpy change, H, is defined as the heat energy change measured under conditions of constant pressure. The value of the enthalpy change for a particular reaction

More information

1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes.

1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes. 1. Enthalpy changes of reaction can be determined indirectly from average bond enthalpies and standard enthalpy changes. The table below shows the values of some average bond enthalpies. bond average bond

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Reaction Feasibility

Reaction Feasibility Unit 1 - Inorganic & Physical Chemistry 1.4 Reaction Feasibilty Enthalpy ( H) & Entropy ( S) Gibb's Free Energy ( G) Spontaneous Reactions Equilibrium Position Pupil Notes Learning Outcomes Questions &

More information

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made 1. Nitrogen dioxide, NO 2, and dinitrogen tetroxide, N 2 O 4, take part in the following equilibrium. 2NO 2 (g) N 2 O 4 (g) ΔH = 58 kj mol 1 (a) State le Chatelier s principle. (b) Describe, and explain,

More information

The reactions we have dealt with so far in chemistry are considered irreversible.

The reactions we have dealt with so far in chemistry are considered irreversible. 1. Equilibrium Students: model static and dynamic equilibrium and analyse the differences between open and closed systems investigate the relationship between collision theory and reaction rate in order

More information

Lesmahagow High School

Lesmahagow High School Lesmahagow High School Higher Chemistry Enthalpy - Tutorial Questions Energy Changes Tutorial Questions 1 1. A pupil found the enthalpy of combustion of propan-1-ol using the following apparatus: a. In

More information

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy)

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Unit 5 - Energetics Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Heating some water... You re job is to figure out how we can find the heat change for one mole

More information

AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. A Born Haber cycle for the formation of calcium sulphide is shown below. The cycle includes enthalpy changes for all

More information

Energy Changes in Chemical Reactions

Energy Changes in Chemical Reactions Unit 3 Energetics Unit 3-1 Section 3.1 Energy Changes in Chemical Reactions ( 1 ) Conservation of energy An object which is capable of doing work is said to possess energy. There are many forms of energy:

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths:

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths: A Level Chemistry Ribston Hall High School Pre Course Holiday Task Name: School: GCSE Grades in i) Chemistry or Science: ii) Maths: 1 The following are a series of questions on topics you have covered

More information

A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: slow fast (D) H 2 O

A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: slow fast (D) H 2 O Chemistry 112, Spring 2007 Prof. Metz Exam 2 Practice Use the following information to answer questions 1 through 3 A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: H 2

More information

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. Chemical Energetics First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. All chemical reactions are accompanied by some form of energy

More information

General Chemistry I Concepts

General Chemistry I Concepts Thermodynamics Thermodynamics The Three Laws of Thermodynamics (18.1) Spontaneous Processes (18.2) Entropy (18.3) The Second Law of Thermodynamics (18.4) Gibbs Free Energy (18.5) Free Energy and Chemical

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS

CHEM 150. Time: 90 Mins ATTEMPT ALL THE QUESTIONS CHEM 150 Section 01, Q2 2016 Midterm 1 Student name... Student number... Time: 90 Mins ATTEMPT ALL THE QUESTIONS 1 Formulae and constants pv = nrt P 1 V 1 T 1 = P 2V 2 T 2 Ptotal = p1 + p2 + p3 +... U

More information

Q1. Methane and oxygen react together to produce carbon dioxide and water.

Q1. Methane and oxygen react together to produce carbon dioxide and water. Q1. Methane and oxygen react together to produce carbon dioxide and water. The methane gas will not burn in oxygen until a flame is applied, but once lit it continues to burn. (a) Explain why energy must

More information

6. Place the following elements in order of increasing atomic radii: Mg, Na, Rb, Cl.

6. Place the following elements in order of increasing atomic radii: Mg, Na, Rb, Cl. CH141 Practice Problems/Practice Final Exam Page 1 of 12 Name: 1. What is the SO 4 2- concentration of a solution prepared by dissolving 3.00 g of Na 2 SO 4 in 1.00 L of water? 2. What is the hybridization

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 2. The energy needed to start a chemical reaction is

More information

THIS LAB IS CHAOS! 2. In liquids or gases? Explain.

THIS LAB IS CHAOS! 2. In liquids or gases? Explain. THIS LAB IS CHAOS! PRELAB INTRODUCTION Part 1 We are already familiar with the Enthalpy (H) for a reaction. We know that if a reaction gives off heat, that it is considered exothermic and has a negative

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

Amounts of substances can be described in different ways. One mole of a substance is the relative formula mass in ...

Amounts of substances can be described in different ways. One mole of a substance is the relative formula mass in ... Q1.This question is about atoms and isotopes. (a) Atoms contain protons, neutrons and electrons. A lithium atom has the symbol Explain, in terms of sub-atomic particles, why the mass number of this lithium

More information

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy)

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Unit 5 - Energetics Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy) Heating some water... You re job is to figure out how we can find the heat change for one mole

More information

So by applying Hess s law a = ΔH + b And rearranged ΔH = a - b

So by applying Hess s law a = ΔH + b And rearranged ΔH = a - b 3.12 Hess s Law Hess s law states that total enthalpy change for a reaction is independent of the route by which the chemical change takes place Hess s law is a version of the first law of thermodynamics,

More information

UNIVERSITY OF SIERRA LEONE FOURAH BAY COLLEGE. FIRST EXAMINATION FOR THE DEGREE OF B. Sc. HONOURS LEVEL I SECOND SEMESTER EXAMINATION

UNIVERSITY OF SIERRA LEONE FOURAH BAY COLLEGE. FIRST EXAMINATION FOR THE DEGREE OF B. Sc. HONOURS LEVEL I SECOND SEMESTER EXAMINATION UNIVERSITY OF SIERRA LEONE FOURAH BAY COLLEGE CHEM 121 INSTRUCTIONS: FIRST EXAMINATION FOR THE DEGREE OF B. Sc. HONOURS LEVEL I SECOND SEMESTER EXAMINATION WEDNESDAY 12 th SEPTEMBER 2018 13.30 16.45 CHEM

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

F322: Chains, Energy and Resources Rates and Equilibria

F322: Chains, Energy and Resources Rates and Equilibria F322: Chains, Energy and Resources 2.3.2 Rates and Equilibria 1. Dilute aqueous hydrogen peroxide, H 2 O 2 (aq), is used to sterilise contact lenses. Dilute H 2 O 2 (aq) slowly decomposes at room temperature

More information

Year 10 Chemistry Exam June 2011 Multiple Choice. Section A Multiple Choice

Year 10 Chemistry Exam June 2011 Multiple Choice. Section A Multiple Choice Year 10 Chemistry Exam June 2011 Multiple Choice Section A Multiple Choice 1 An aqueous solution is obtained when: a. a substance dissolves in any liquid b. a substance is dissolved in water c. when a

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

Chemical Reactions. Chemical changes are occurring around us all the time

Chemical Reactions. Chemical changes are occurring around us all the time Chemical changes are occurring around us all the time Food cooking Fuel being burned in a car s engine Oxygen being used in the human body The starting materials are called reactants The ending materials

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

(a) graph Y versus X (b) graph Y versus 1/X

(a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Lecture #13. Chapter 17 Enthalpy and Entropy

Lecture #13. Chapter 17 Enthalpy and Entropy Lecture #13 Chapter 17 Enthalpy and Entropy First Law of Thermodynamics Energy cannot be created or destroyed The total energy of the universe cannot change Energy can be transferred from one place to

More information

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention Entropy Spontaneity process a process that occurs without intervention can be fast or slow Entropy (s) the measure of molecular randomness or disorder Think of entropy as the amount of chaos Entropy Predict

More information

8 Chemical Equations. Flames and sparks result when aluminum foil is dropped into liquid bromine.

8 Chemical Equations. Flames and sparks result when aluminum foil is dropped into liquid bromine. 8 Chemical Equations Flames and sparks result when aluminum foil is dropped into liquid bromine. Chapter Outline 8.1 The Chemical Equation 8.2 Writing and Balancing Chemical Equations 8.3 Types of Chemical

More information

c. Methane and oxygen react to form carbon dioxide and water

c. Methane and oxygen react to form carbon dioxide and water Name: Date: Period: REVIEW CHAPTERS 10 AND 18 1. Identify the type of each of the following reactions: a. 2Mg + O 2 2 MgO Synthesis b. Fe + CuSO 4 FeSO 4 + Cu Single-Replacement (SR) c. CaCO 3 CaO + CO

More information

Class work on Calorimetry. January 11 and 12, 2011

Class work on Calorimetry. January 11 and 12, 2011 Class work on Calorimetry January 11 and 12, 2011 Name 1. The number of calories needed to raise the temperature of 100 grams of water 10 degrees Celsius is the same as the number of calories needed to

More information

7.2. Thermodynamics and Equilibrium. What Conditions Favour a Change? 328 MHR Unit 4 Chemical Systems and Equilibrium

7.2. Thermodynamics and Equilibrium. What Conditions Favour a Change? 328 MHR Unit 4 Chemical Systems and Equilibrium 7.2 Thermodynamics and Equilibrium Section Preview/ Specific Expectations In this section, you will identify qualitatively entropy changes that are associated with physical and chemical processes describe

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy......... Standard enthalpy of formation............ (5) (b) Some mean bond enthalpies

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Entropy is a measure of the number of equivalent ways in which a system may exist.

Entropy is a measure of the number of equivalent ways in which a system may exist. Chapter 17 1 ENTROPY (S) Entropy is a measure of the number of equivalent ways in which a system may exist. S = Units: -23 k = Boltzmann constant ( 1.38 x 10 J/K) Ù = number of equivalent ways for the

More information

# Ans Workings / Remarks

# Ans Workings / Remarks # Ans Workings / Remarks 1 B Atomic mass and temperature affects the rate of diffusion of gas. The lower the atomic mass, the lighter the substance. The higher the temperature, the higher the rate of collision

More information

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T Name Period Teacher Practice Test: OTHS Academic Chemistry Spring Semester 2017 The exam will have 100 multiple choice questions (1 point each) Formula sheet (see below) and Periodic table will be provided

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

17.2 Thermochemical Equations

17.2 Thermochemical Equations 17.2. Thermochemical Equations www.ck12.org 17.2 Thermochemical Equations Lesson Objectives Define enthalpy, and know the conditions under which the enthalpy change in a reaction is equal to the heat absorbed

More information

3.2.1 Energetics. Calorimetry. 121 minutes. 120 marks. Page 1 of 19

3.2.1 Energetics. Calorimetry. 121 minutes. 120 marks. Page 1 of 19 3..1 Energetics Calorimetry 11 minutes 10 marks Page 1 of 19 Q1. A 50.0 cm 3 sample of a 0.00 mol dm 3 solution of silver nitrate was placed in a polystyrene beaker. An excess of powdered zinc was added

More information

(E) half as fast as methane.

(E) half as fast as methane. Name AP Chem / / AP Chem Practice Exam #2 Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the BLUE SIDE of your scantron for each of the following.

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information