STEP-GROWTH POLYMERS AS MACRO CHAIN TRANSFER AGENTS AN EXPERIMENTAL AND THEORETICAL STUDY

Size: px
Start display at page:

Download "STEP-GROWTH POLYMERS AS MACRO CHAIN TRANSFER AGENTS AN EXPERIMENTAL AND THEORETICAL STUDY"

Transcription

1 T. Gegenhuber, L. De Keer, A. S. Goldmann, P.H.M. Van Steenberge, M.F. Reyniers, D. R. D hooge, C. Barner-Kowollik STEP-GROWTH POLYMERS AS MACRO CHAIN TRANSFER AGENTS AN EXPERIMENTAL AND THEORETICAL STUDY a university for the CRICOS No J real world

2 The Road into the Light? And if You feel that You can t go on, in the Light You will find the Road. ( In the Light, Physical Graffiti, Led Zeppelin 1975) Tetrazole to Nitrile-imine Methyl- Benzaldehyde to Photoenol Phenacylsulfide to Thioaldehyde Azirine to Nitrile-ylide 2 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

3 Reaction Pathway and Motivation Incorporation of RAFT group within the backbone of a stepgrowth polymer 3 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

4 General Polymerization Concept Step-growth polymerization using a bifunctional ortho-methyl benzaldehyde and a bisfumarate with a trithiocarbonate group M1 P1 Chain extension by conventional RAFT polymerization P th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

5 Monomer Stability and Homopolymerization Irradiation with conditions for step-growth polymerization of M1 and Determination of k side PS calibration Intensity/ a.u. M1 Simulation Normalized RI Response M1 M1 after irradiation after irradiation log(m) log(m) RAFT-fumarate M1 stable, benzaldehyde reacts with itself 5 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

6 Side Reactions and k side Determination Possible side reactions of activated ortho-quinodimethane and the carbonyl species of the benzaldehyde Determination of k main in relation to k side via small molecules F F--F 6 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

7 k main vs. k side and Off-Stoichiometry in Simulations Side reaction, imbalance and k values c X / mol L AA AF r = 1 k side = k main Time / min r = N A,0 N F,0 f AB k side / k main r = k side < k main k side = k main f AB k side > k main If k side = k main, still strong suppression of side reaction With excess A more side reaction occuring r 7 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

8 Small Molecule Reaction: k main Determination F r = 1 r = F--F r = 1 r = 1.43 Normalized RI Response normalized f m F log(m) log(m) Conversion (NMR): 93 % Conversion (NMR): 87 % r = 1 with k side = 0.2 k main 8 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

9 Step-Growth Polymerization Kinetics with Equimolarity Normalized RI Response r = 1 and k side = 0.2 k main t 0 10 min 20 min 30 min 45 min 1 h 4 h 8 h X w Experimental Simulation Retention time / min Conversion / % 9 13 th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

10 Step-Growth with Imbalance using the Side Reaction Increasing the amount of (photoenol) Highest M w for the 1/1.75 ratio of M1/ (excess photoenol) At ½ ratio decrease of the M w M1 r = N N M1 Normalized RI Response r = 0.99 r = 1.05 r = 1.20 r = 1.30 r = 1.50 r = 1.75 r = 2.00 M w / kg mol M w (exp.) 70 trendline Retention time / min r th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

11 Step-Growth Polymerization with Off-Stoichiometry Excess of (also increased concentration, c(m1) = const.) High molecular weight species formed due to coupling of further Experimental Simulation Normalized RI Response M1 M1 t 0 10 min 20 min 30 min 45 min 60 min 90 min 2 h 4 h 6 h Retention time / min X w mass fraction homopolymer Conversion / % r = 1 r = Conversion / % th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

12 Mechanistic Considerations Insertion of homopolymer in M1M1 (+M1) copolymer after exhaustion of Formation of high molecular species according to Carother M1 Homopolymer Copolymer th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

13 Chain Extension by RAFT Polymerization Conventional RAFT polymerization using step-growth polymer with ratio of 1/1.5 M1/ (1/1.75 polymer with solubility issues) Normalized Intensity Step-growth 0.25 h 0.5 h 1 h 1.5 h 2 h 3 h 4 h M n / kg mol log(m) Conversion / % th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

14 Mechanistic Considerations Symmetric trithiocarbonate fragmentation in a random fashion Up to 200 different reactions theoretical taken in account Statistical balancing of chain length by mixing long and short chains during the addition and fragmentation th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

15 Summary Step-growth polymerization by light-induced reactions Use of ortho-quinodimethanes and fumarates Side reaction and theoretical description of k side /k main Off-stoichiometry to obtain high molecular species Chain extension by RAFT polymerization Controlled reactio Calculations and simulations currently under investigation High molecular species obtained th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

16 Acknowledgements Barner-Kowollik Team Prof. Dagmar D hooge and colleagues Follow th April 2017 UNESCO IUPAC Conference on Macromolecules & Materials 2017, Stellenbosch

Kinetic Monte Carlo modeling to unravel the kinetics of light-driven step growth polymerization combined with RAFT polymerization

Kinetic Monte Carlo modeling to unravel the kinetics of light-driven step growth polymerization combined with RAFT polymerization Kinetic Monte Carlo modeling to unravel the kinetics of light-driven step growth polymerization combined with RAFT polymerization Lies De Keer, 1 Thomas Gegenhuber, 3 Paul H.M. Van Steenberge, 1 Anja S.

More information

Lies De Keer, 1 Paul H.M. Van Steenberge, 1 Marie-Françoise Reyniers, 1 Klaus-Dieter Hungenberg, 2,3 Dagmar R. D hooge, 1,4 Guy B.

Lies De Keer, 1 Paul H.M. Van Steenberge, 1 Marie-Françoise Reyniers, 1 Klaus-Dieter Hungenberg, 2,3 Dagmar R. D hooge, 1,4 Guy B. 10 TH WORLD CONGRESS OF CHEMICAL ENGINEERING, BARCELONA, 01-05/10/2017 THE RELEVANCE OF THE TERMINATION RATE COEFFICIENT MODEL TO ACCURATELY DESCRIBE THE CHAIN LENGTH DISTRIBUTION IN THE INDUSTRIAL PRODUCTION

More information

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions.

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Supporting Information to Narrow Molecular Weight and Particle Size Distributions of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Hazit A. Zayas, Nghia P. Truong, David Valade,

More information

c) fitting of the NMR intensity in dependence of the recycle delays 4

c) fitting of the NMR intensity in dependence of the recycle delays 4 Supporting Information Prediction of NMR magnetization for onflow experiments: According to Albert, the relaxation rate can be expressed under flow conditions as follows: T flow = T + τ (S-) with T as

More information

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information ph dependent thermoresponsive behavior of acrylamide-acrylonitrile

More information

SS Vorlesung Polymermaterialien Polymerisationsmethoden

SS Vorlesung Polymermaterialien Polymerisationsmethoden Professur Polymerchemie SS 2017 Vorlesung Prof. Michael Sommer 1 www.tu-chemnitz.de Content Free radical polymerization (PS, PMMA) Controlled radical polymerization Ionic polymerization (cationic, anionic)

More information

Accessory Publication

Accessory Publication 10.1071/CH10127_AC CSIRO 2010 Australian Journal of Chemistry 2010, 63(8), 1210 1218 Accessory Publication Synthesis of Core Shell Nanoparticles with Polystyrene Core and PEO Corona from Core-Crosslinked

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

ANALYSIS OF ETHYLENE/1-OLEFIN COPOLYMERS MADE WITH ZIEGLER-NATTA CATALYSTS BY DECONVOLUTION OF GPC-IR DISTRIBUTIONS

ANALYSIS OF ETHYLENE/1-OLEFIN COPOLYMERS MADE WITH ZIEGLER-NATTA CATALYSTS BY DECONVOLUTION OF GPC-IR DISTRIBUTIONS ANALYSIS OF ETHYLENE/1-OLEFIN COPOLYMERS MADE WITH ZIEGLER-NATTA CATALYSTS BY DECONVOLUTION OF GPC-IR DISTRIBUTIONS João BP Soares, Saeid Mehdiabadi Department of Chemical and Materials Engineering University

More information

Simulating Controlled Radical Polymerizations with mcpolymer A Monte Carlo Approach

Simulating Controlled Radical Polymerizations with mcpolymer A Monte Carlo Approach Polymers 2012, 4, 1416-1442; doi:10.3390/polym4031416 Article OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Simulating Controlled Radical Polymerizations with mcpolymer A Monte Carlo

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges

Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges Thomas Junkers Hasselt University Wetenschapspark 1 BE 3590 Diepenbeek www.polymatter.net

More information

A Little Bit on Polymers and More on Radical Polymerizations

A Little Bit on Polymers and More on Radical Polymerizations Leo Hendrick Baekeland The Bakelizer A Little Bit on Polymers and More on Radical Polymerizations Justin Barry Group Meeting 10/7/2015 Overview of Presentation Global demand Polymerization Basic nomenclature

More information

CHEM4. (JUN14CHEM401) WMP/Jun14/CHEM4/E6. General Certificate of Education Advanced Level Examination June 2014

CHEM4. (JUN14CHEM401) WMP/Jun14/CHEM4/E6. General Certificate of Education Advanced Level Examination June 2014 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Chemistry General Certificate of Education Advanced Level Examination June 2014 CHEM4 Question

More information

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Polymer Chemistry manuscript: Synthesis and characterization

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

Unravelling Polymerization Kinetics via Precision Size Exclusion Chromatography

Unravelling Polymerization Kinetics via Precision Size Exclusion Chromatography Unravelling Polymerization Kinetics via Precision Size Exclusion Chromatography Dr. Alexander P. Hähnel Institute for Chemical Technology and Polymer Chemistry KIT University of the State of Baden-Württemberg

More information

Size exclusion chromatography of branched polymers: Star and comb polymers

Size exclusion chromatography of branched polymers: Star and comb polymers Macromol. Theory Simul. 8, 513 519 (1999) 513 Size exclusion chromatography of branched polymers: Star and comb polymers Hidetaka Tobita*, Sadayuki Saito Department of Materials Science and Engineering,

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Ellison * McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX,

Ellison * McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, SUPPORTING INFORMATION FOR: Designing intrablock attractions to increase the χ parameter of a symmetric diblock copolymer Sunshine X. Zhou, Dustin W. Janes, Chae Bin Kim, C. Grant Willson, Christopher

More information

Synthesis of Arborescent Polybutadiene. Ala Alturk and Mario Gauthier, IPR Symposium, University of Waterloo, N2L 3G1 Canada

Synthesis of Arborescent Polybutadiene. Ala Alturk and Mario Gauthier, IPR Symposium, University of Waterloo, N2L 3G1 Canada Synthesis of Arborescent Polybutadiene Ala Alturk and Mario Gauthier, IPR Symposium, University of Waterloo, N2L 3G1 anada Arborescent polymers are characterized by a tree-like architecture and a high

More information

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Vesicles of double hydrophilic pullulan and poly(acrylamide) block

More information

Page 2. Q1.Repeating units of two polymers, P and Q, are shown in the figure below.

Page 2. Q1.Repeating units of two polymers, P and Q, are shown in the figure below. Q1.Repeating units of two polymers, P and Q, are shown in the figure below. (a) Draw the structure of the monomer used to form polymer P. Name the type of polymerisation involved. Monomer Type of polymerisation...

More information

Esterification of Hydroxylated Polymers with 2-Sulfobenzoic Acid Cyclic Anhydride

Esterification of Hydroxylated Polymers with 2-Sulfobenzoic Acid Cyclic Anhydride Esterification of Hydroxylated Polymers with 2-Sulfobenzoic Acid Cyclic Anhydride Peter D. Iddon, Duan C. Vo, and Steven P. Armes Department of Chemistry, University of Sheffield, UK Macro Group Meeting,

More information

Supporting Information

Supporting Information Supporting Information Palladium-Containing Polymers via a Combination of RAFT and Triazole Chemistry Christiane Lang, a Claude Kiefer, b Elise Lejeune, a,c Anja S. Goldmann, a Frank Breher,* b Peter Roesky,*

More information

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible

More information

Supporting Information for

Supporting Information for Supporting Information for Encapsulation and Controlled Release of L-Leuprolide from Poly(βhydroxyalkanoate)s: Impact of Microstructure and Chemical Functionalities Noureddine Ajellal, Christophe M. Thomas,*

More information

Supplementary Information. Supplementary Figures

Supplementary Information. Supplementary Figures upplementary Information upplementary Figures 0.0 64. 0.0 4. 64. 85.. 065. 4. 75. 45. 487. 556. 64. 768. 88. 58.7 7.4 76.5 8.5 50. 75.4 76.8 4.5 7.8 40. 4086.5 488.7 400.7 450.0 4684.4 47. 46.4 7. 500.

More information

Radical Polymerization and Click Chemistry. Surfaces using Gamma Irradiation. Supporting Information*

Radical Polymerization and Click Chemistry. Surfaces using Gamma Irradiation. Supporting Information* Synthesis of Block Copolymers via Atom Transfer Radical Polymerization and Click Chemistry grafted from Pre-functionalized Polypropylene Surfaces using Gamma Irradiation Supporting Information* Ollie Foster,

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

Supporting Information.

Supporting Information. Supporting Information. Materials. Polyethyleneglycol monomethylether methacrylate (PEGMA) (~475 Da), trifluoroethyl acrylate (tfea) and ethyleneglycol dimethacrylate (EGDMA) were purchased from Sigma

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation

Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation Peter D. Iddon, Kay L. Robinson and Steven P. Armes ACS Philadelphia Meeting August 2004 Email: P.Iddon@shef.ac.uk Introduction

More information

Supporting Information

Supporting Information Supporting Information UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-Acryloylglycinamide-co-Diacetone Acrylamide) Wenhui Sun, Zesheng An*, Peiyi Wu * Experimental Materials Glycinamide

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Self-assembled blends of AB/BAB block copolymers prepared through dispersion RAFT polymerization Chengqiang Gao, Jiaping Wu, Heng Zhou, Yaqing Qu, Baohui Li,*,, and Wangqing

More information

Living Radical Copolymerization of Styrene/Maleic Anhydride

Living Radical Copolymerization of Styrene/Maleic Anhydride Living Radical Copolymerization of Styrene/Maleic Anhydride EUN-SOO PARK, 1 MAL-NAM KIM, 3 IK-MO LEE, 2 HAN SUP LEE, 1 JIN-SAN YOON 1 1 Department of Applied Chemistry, Inha University, 402-751 Inchon,

More information

NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials

NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials NRT-16, Quarterly report, Mar2009-May2009, Page 1 of 9 NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials Aasheesh Srivastava and Galen D. Stucky Background and Motivation: The commercial

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Radical Polymerizations II Special Cases

Radical Polymerizations II Special Cases Radical Polymerizations II pecial Cases Devon A. hipp Department of Chemistry, & Center for Advanced Materials Processing Clarkson University Potsdam, NY 13699-5810 Tel. (315) 268-2393, Fax (315) 268-6610

More information

Novel Tri-Block Copolymer of Poly (acrylic acid)-b-poly (2,2,3,3,4,4,4- hexafluorobutyl acrylate)-b-poly (acrylic acid) Prepared via Two-Step

Novel Tri-Block Copolymer of Poly (acrylic acid)-b-poly (2,2,3,3,4,4,4- hexafluorobutyl acrylate)-b-poly (acrylic acid) Prepared via Two-Step Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins Electronic Supplementary Information (ESI) for Novel Tri-Block

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Nanomanufacturing of High-Performance

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Physical and Mechanical Properties of Polymers

Physical and Mechanical Properties of Polymers MATE 453/MSE 553 Physical and Mechanical Properties of Polymers Guided Lecture Notes for Fall 2012 Prof. Michael Kessler Department of Materials Science and Engineering Iowa State University PHYSICAL AND

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

Chapter 23 Aldehydes and Ketones

Chapter 23 Aldehydes and Ketones Chapter 23 Aldehydes and Ketones Ketones are common solvents for quickdrying paints. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison, and Susan

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 5 Step Growth Chain Growth Paul Flory Clears Things Up Polymer Structure is distinct from polymerization process Addition Polymerization H H Condensation Polymerization

More information

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline.

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline. Q1.(a) The structures and common names of two amino acids are shown. (i) Draw the structure of the zwitterion of proline. Draw the structure of the tripeptide formed when a proline molecule bonds to two

More information

polymerization of n-butyl acrylate

polymerization of n-butyl acrylate SUPPORTING INFORMATION Intermolecular transfer to polymer in the radical polymerization of n-butyl acrylate Nicholas Ballard, 1 Shaghayegh Hamzehlou, 1 José M. Asua 1* 1 POLYMAT and Kimika Aplikatua Saila,

More information

Self-Assembly and Multi-Stimuli Responsive. Behavior of PAA-b-PAzoMA-b-PNIPAM Triblock. Copolymers

Self-Assembly and Multi-Stimuli Responsive. Behavior of PAA-b-PAzoMA-b-PNIPAM Triblock. Copolymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Self-Assembly and Multi-Stimuli Responsive Behavior of PAA-b-PAzoMA-b-PNIPAM

More information

Supplemental Information

Supplemental Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplemental Information Influence of Less Active Initiator on the Living Performance of Atom

More information

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline.

The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline. Q1.(a) The structures and common names of two amino acids are shown. Draw the structure of the zwitterion of proline. Draw the structure of the tripeptide formed when a proline molecule bonds to two alanine

More information

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3 10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 31: Living Free adical Approaches: Stable Free adical Polymerization, Atom Transfer adical Polymerization odification of Solid Polymer Surface e.g.

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 25, 2018 Where: MEZ 1.306!! Final Exam When: Friday, May 11 th, 2:00 5:00 PM Do: Study lecture notes, homework, reading Practice: Hydrolysis, signatures and synthesis.

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) Effects of Poly(Vinyl Pivalate)-based Stabiliser Architecture on CO 2 -Solubility and Stabilising Ability in Dispersion Polymerisation of N-Vinyl Pyrrolidone

More information

Functionalization of Cellulose Nanocrystals with PEG-Metal- Chelating Block Copolymers via Controlled Conjugation in Aqueous.

Functionalization of Cellulose Nanocrystals with PEG-Metal- Chelating Block Copolymers via Controlled Conjugation in Aqueous. SUPPORTING INFORMATION Functionalization of Cellulose Nanocrystals with PEG-Metal- Chelating Block Copolymers via Controlled Conjugation in Aqueous Media Melinda Guo, 1 Sohyoung Her, 2 Rachel Keunen, 1

More information

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE Renata Jovanović, Doctoral student, Department of Chemical Engineering, University of Ottawa, Ottawa, Canada, (jovanovi@genie.uottawa.ca)

More information

Supporting Information

Supporting Information Supporting Information Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer Reversible-Addition Fragmentation Chain Transfer Polymerization (PET-RAFT) Jonathan

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

DEBONDING ON DEMAND IN PHOTOPOLYMER NETWORKS: AN IRREVERSIBLE APPROACH VIA THERMALLY INDUCED GAS FORMATION AND NETWORK REGULATION

DEBONDING ON DEMAND IN PHOTOPOLYMER NETWORKS: AN IRREVERSIBLE APPROACH VIA THERMALLY INDUCED GAS FORMATION AND NETWORK REGULATION DEBONDING ON DEMAND IN PHOTOPOLYMER NETWORKS: AN IRREVERSIBLE APPROACH VIA THERMALLY INDUCED GAS FORMATION AND NETWORK REGULATION Dipl.-Ing. Christoph Schnöll Institute of Applied Synthetic Chemistry,

More information

APC Hyphenated to SYNAPT-G2: Potential For The Analysis Of Complex Synthetic Polymers. Marie-Theres Picker Artjom Döring Dirk Kuckling

APC Hyphenated to SYNAPT-G2: Potential For The Analysis Of Complex Synthetic Polymers. Marie-Theres Picker Artjom Döring Dirk Kuckling APC Hyphenated to YAPT-G2: Potential For The Analysis f Complex ynthetic Polymers Marie-Theres Picker Artjom Döring Dirk Kuckling International ymposium on GPC/EC and Related Techniques Amsterdam, 2016

More information

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure Mina Namvari 1,2, Chandra S. Biswas 1,2, Massimiliano

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in Supporting Information Organized polymeric submicron particles via selfassembly and crosslinking of double hydrophilic poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in aqueous solution Jochen Willersinn,

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Effect of Molecular Structure of Side Chain Polymers on "Click" Synthesis of Thermosensitive Molecular Brushes

Effect of Molecular Structure of Side Chain Polymers on Click Synthesis of Thermosensitive Molecular Brushes University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2017 Effect of Molecular Structure

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

AP Biology: Biochemistry Learning Targets (Ch. 2-5)

AP Biology: Biochemistry Learning Targets (Ch. 2-5) Understand basic principles of chemistry. Distinguish between an element and a compound. Describe the structure of an atom. Compare the various types of chemical bonding. Describe what is meant by a covalent

More information

University of Groningen. Rheokinetics Cioffi, Mario

University of Groningen. Rheokinetics Cioffi, Mario University of Groningen Rheokinetics Cioffi, Mario IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Polymerization-induced Self-Assembly of Homopolymer and Diblock copolymer: A Facile Approach for preparing Polymer Nano-objects with Higher Order Morphologies Jianbo Tan *a,b, Chundong

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information

Aromatic Compounds and Amines

Aromatic Compounds and Amines Aromatic Compounds and Amines 22 8 Consider compound P shown below that is formed by the reaction of benzene with an electrophile. O C CH 2 CH 3 P 8 (a) Give the two substances that react together to form

More information

Engineering aspect of emulsion polymerization

Engineering aspect of emulsion polymerization Engineering aspect of emulsion polymerization Joong-In Kim Bayer Corp., Plastics, Technology Yonsei University Contents Free radical polymerization kinetics Emulsion polymerization Reactor configuration

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Chapter 4 Copolymerization

Chapter 4 Copolymerization Chapter 4 Copolymerization 4.1 Kinetics of Copolymerization 4.1.1 Involved Chemical Reactions Initiation I 2 + M 2R 1 r = 2 fk d I 2 R I Propagation Chain Transfer Termination m,n + k p m+1,n m,n + B k

More information

Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization. I. The Current Situation

Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization. I. The Current Situation HIGHLIGHT Mechanism and Kinetics of Dithiobenzoate-Mediated RAFT Polymerization. I. The Current Situation CHRISTOPHER BARNER-KOWOLLIK, 1 MICHAEL BUBACK, 2 BERNADETTE CHARLEUX, 3 MICHELLE L. COOTE, 4 MARCO

More information

Mechanistic Kinetic Modeling of Thiol Michael Addition Photopolymerizations via Photocaged Superbase Generators: An Analytical Approach

Mechanistic Kinetic Modeling of Thiol Michael Addition Photopolymerizations via Photocaged Superbase Generators: An Analytical Approach Supporting Information Mechanistic Kinetic Modeling of Thiol Michael Addition Photopolymerizations via Photocaged Superbase Generators: An Analytical Approach Mauro Claudino a, Xinpeng Zhang a, Marvin

More information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins Photo-Cleavage of Cobalt-Carbon Bond: Visible Light-Induced Living Radical Polymerization Mediated by Organo-Cobalt Porphyrins Yaguang Zhao, Mengmeng Yu, and Xuefeng Fu* Beijing National Laboratory for

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

IPR 2009 UNIVERSIDAD NACIONAL. Gabriel Jaramillo-Soto. Prof. Eduardo Vivaldo Lima

IPR 2009 UNIVERSIDAD NACIONAL. Gabriel Jaramillo-Soto. Prof. Eduardo Vivaldo Lima UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICOM PROGRAMA DE DOCTORADO EN INGENIERÍA FACULTAD DE QUÍMICA Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization in supercritical Carbon Dioxide (scco

More information

Limitations of Radical Thiol-ene Reactions for Polymer-Polymer. Conjugation

Limitations of Radical Thiol-ene Reactions for Polymer-Polymer. Conjugation Limitations of Radical Thiol-ene Reactions for Polymer-Polymer Conjugation Sandy P. S. Koo, 1 Milan M. Stamenović, 2 R. Arun Prasath, 2 Andrew J. Inglis, 1 Filip E. Du Prez, 2* Christopher Barner-Kowollik,

More information

Name: Final Exam, May 3, 2013, 100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M University, College Station, TX, USA

Name: Final Exam, May 3, 2013, 100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M University, College Station, TX, USA Name: Jprinted] "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work." _ [signature] Final Exam, May 3, 2013, 100 pts Polymer Chemistry, CHEM 466, Spring

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

Electronic Supporting Information. Oxygen Tolerant Photopolymerization for Ultralow. Volumes

Electronic Supporting Information. Oxygen Tolerant Photopolymerization for Ultralow. Volumes Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Electronic Supporting Information Oxygen Tolerant Photopolymerization for Ultralow Volumes

More information

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 4 Step-growth Polymerization (Refer Slide Time: 00:27) In the last lecture, we were discussing

More information

Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure.

Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure. Macromolecular colloids. Size and shape of linear macromolecules. Osmosis and osmotic pressure. What are macromolecules Macromolecules (macro = large, big) are large molecules Larger in solution than 1

More information

New Features of the Mechanism of RAFT Polymerization

New Features of the Mechanism of RAFT Polymerization Chapter 1 Downloaded via 148.251.232.83 on July 10, 2018 at 22:28:21 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. New Features of the Mechanism

More information

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Plasticheskie Massy, No.,, pp. 19 Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems Yu. V. Zelenev, V. A. Ivanovskii, and D.

More information

RAFT microemulsion polymerization with surfaceactive chain transfer agent

RAFT microemulsion polymerization with surfaceactive chain transfer agent Graduate Theses and Dissertations Graduate College 2013 RAFT microemulsion polymerization with surfaceactive chain transfer agent Ibrahim Adnan El-Hedok Iowa State University Follow this and additional

More information

Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms

Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms European Polymer Journal 38 2002) 151±156 www.elsevier.com/locate/europolj Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

Name: % monomer conversion

Name: % monomer conversion Name: fprintedl "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work." Exam III, April 9, 2013,100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M

More information

SELF-CONDENSING VINYL POLYMERIZATION: THEORETICAL ASPECTS AND APPLICATION TO GROUP TRANSFER POLYMERIZATION OF METHACRYLATES.

SELF-CONDENSING VINYL POLYMERIZATION: THEORETICAL ASPECTS AND APPLICATION TO GROUP TRANSFER POLYMERIZATION OF METHACRYLATES. SELF-CNDENSING VINYL PLYMERIZATIN: THERETICAL ASPECTS AND APPLICATIN T GRUP TRANSFER PLYMERIZATIN F METHACRYLATES. Peter. F. W. Simon, Wolfgang Radke, Deyue Yan, a) Axel H. E. Müller Institut für Physikalische

More information

Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains

Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains Supporting information Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains Markus Döbbelin, a,* Itxaso Azcune, a Mélanie Bedu, b Alaitz Ruiz de Luzuriaga,

More information

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College

More information