Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms

Size: px
Start display at page:

Download "Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms"

Transcription

1 European Polymer Journal ) 151±156 Copolymerization of butyl vinyl ether and methyl methacrylate by combination of radical and radical promoted cationic mechanisms Harald Braun a, Yusuf Yagci b, Oskar Nuyken a, * a Technische Universitat Munchen, Lehrstuhl fur Makromolekulare Sto e, Lichtenbergstrasse 4, D Garching Bei Munchen, Germany b Department of Chemistry, Istanbul Technical University, Maslak, Istanbul TR-80626, Turkey Received 15 August 2000; received in revised form 26 January 2001; accepted 27 June 2001 Abstract Butyl vinyl ether BVE) and methyl methacrylate MMA) mixtures were polymerized by using free radical initiators in conjunction with a cationic initiator such as diphenyl iodonium salt. Polymerization mechanism involves free radical polymerization of MMA which is switched to cationic polymerization of BVE by addition of growing poly MMA) radicals to BVE and subsequent oxidation of electron donating polymeric radicals to the corresponding cations by iodonium ions. Two representative bifunctional monomers, ethylene glycol divinyl ether EGDVE) and ethylene glycol dimethacrylate EGDMA) were also used together with MMA and BVE, respectively, in photo and thermal crosslinking polymerizations. Vinyl ether and methacrylate type monomers can successfully be copolymerized by this double-mode polymerization under photochemical conditions. Ó 2001Elsevier Science Ltd. All rights reserved. Keywords: Copolymerization; Butyl vinyl ether; Methyl methacrylate; Free radical polymerization; Free radical promoted cationic polymerization 1. Introduction Vinyl ethers [1] and derivatives have received revitalized interest due to their readiness to undergo complete polymerization by a cationic mechanism induced by photochemical [2], thermal and chemical methods and excellent properties of their corresponding polymers. They can also be polymerized in a controlled/living [3] manner to yield polymers with well de ned and * Corresponding author. Tel.: ; fax: addresses: bzw.harald.braun@ch.tum.de H. Braun), yusuf@itu.edu.tr Y. Yagci), oskar.nuyken@ch.tum.de O. Nuyken). predetermined structures. Despite their high reactivity towards cationic initiators, vinyl ethers, however, do not undergo free radical homopolymerization because of the highly nucleophilic nature of the double bond caused by the alkoxy group present in the structure [4]. In the literature, it is often claimed that these monomers e ciently copolymerize with monomers that polymerize by a free radical mechanism. However, recent detailed studies [5] on the copolymerization activity of vinyl ethers revealed that these monomers exhibit very little tendency to undergo polymerization with acrylates and even less with styrenic monomers. On the other hand, vinyl ethers can undergo e cient copolymerization with electron-de cient vinyl monomers such as maleates and fumarates [6]. In this case, spontaneous thermal and photoinduced polymerizations is initiated via donor± acceptor complexes formed between the corresponding monomer components /01/$ - see front matter Ó 2001Elsevier Science Ltd. All rights reserved. PII: S )

2 152 H. Braun et al. / European Polymer Journal ) 151±156 Vinyl ethers are also important monomers for UV curable coatings as they o er environment friendly formulations alternative to commonly used acrylate monomers which possess strong odor and skin irritating properties [7]. Vinyl ether/acrylate hybrid systems were also found to polymerize upon irradiation in the presence of both radical and cationic photoinitiators. With a cationic photoinitiator such as triphenyl sulfonium salt, photochemically generated sul nium radical cations or protonic acids react with vinyl ether while free radicals formed concomitantly polymerize acrylates according to the following reactions [7]: 2. Experimental 2.1. Materials All monomers and solvents were puri ed with conventional drying and distillation procedures. 2,2 0 -Azobis isobutyronitrile) AIBN) Aldrich) was recrystallized from ethanol. 2,4,6-trimethyl benzoyl-diphenylphosphine oxide TMPDO) BASF) was used as received. N-ethoxy-2-methyl-pyridinium hexa uoro antimonate [8] EMP SbF 6 ) and diphenyl iodonium hexa uorophosphate [9,10] Ph 2 I PF 6 ) were synthesized according to the literature Polymerization For thermal polymerizations, the monomer mixtures, the salt and AIBN were dissolved in methylene chloride in Pyrex tubes that were closed with a Te on stopcock after bubbling through with nitrogen. These tubes were immersed for a given time in an oil bath kept at 70 C. Photopolymerizations were performed in a similar manner. The mixtures containing TMDPO photoinitiator instead of AIBN were irradiated from Ushio UXM 200H Hg±Xe high pressure lamp using Schott 340 nm interference lter to avoid direct absorption by the salts. At the end of polymerization, the solutions were poured into ten-fold excess of methanol and the polymer was ltered o. The polymers were then dried at 60 C for 24 h at 10 mbar and analyzed by IR and H-NMR spectroscopy and GPC. When using bifunctional monomers, basically the same procedure was applied but at the end of reaction crosslinked polymers were formed Characterization 4 Interpenetrating networks were thus formed from the bifunctional monomers indicating that the two polymerizations proceeded independently and chemical bonding of the two types of polymeric chains is not achieved. Irradiation of the same mixture in the presence of a free radical photoinitiator resulted in the formation of a cured polymer containing large amount of unreacted vinyl ether groups. In this paper, on the basis of the above information, we inquire whether vinyl ethers can be copolymerized with acrylates by the combination of radical and radical promoted cationic polymerization. The IR spectra were recorded with a Bruker IFS 55 FT-IR spectrophotometer, while the NMR spectra were obtained with a Bruker ARX 300 d in ppm relative to TMS). The molecular weights of the linear polymers were determined with GPC Waters 510) equipped with RI and UV detectors. The eluent was chloroform. Molecular weights were determined by using polystyrene standards. 3. Results and discussion Free radical promoted cationic polymerization is an elegant method to initiate cationic polymerization by the use of free radical initiators [11±13]. This process is based on the oxidation of electron-donor radicals, generated by photochemical or thermal means from onium

3 H. Braun et al. / European Polymer Journal ) 151± salts On X ) such as diphenyl iodonium salts, to the corresponding cations capable of initiating cationic polymerization. 7 5 A similar mechanism involving the induced decomposition of diaryliodonium iodonium salts by free radicals generated by electron beam radiation has been proposed by Crivello et al. [14]. In the case of vinyl ether monomers, electron-donor radicals are obtained by the addition of the radicals to the monomer and subsequent oxidation then allows the initiation of cationic polymerization. 8 When the addition of the growing poly MMA) radical to vinyl ether occurs, the polymeric alkoxy alkyl radical thus formed is converted to the cation and polymerization proceeds further via a cationic mechanism. Probability of occurrence of back electron transfer is excluded since Ph 2 I radicals rapidly decomposes to phenyl radical and iodobenzene [11,14]. Notably, addition of MMA to the growing cation is also not possible since it polymerizes only by anionic and radical mechanism. 6 This prospect is particularly attractive since a wide range of free radical photoinitiators having absorbancies at wavelengths greater than 300 nm is commercially available and cationic polymerization can be activated by free radical initiators. This expands the use of cationic polymerization considerably in applications where high wavelength irradiation is required Free radical and radical promoted cationic polymerizations can be performed both thermally and photochemically. In thermal polymerizations, radicals derived from the thermal decomposition of AIBN initiate the free radical polymerization of methyl methacrylate MMA). The cationic initiation arising from the addition of low-molar mass radicals to vinyl ether monomer and subsequent oxidation can be neglected since vinyl ethers are much less reactive than MMA towards the 2-cyano-2-propyl radical. The corresponding rate constants for vinyl ethers was found [12] to be smaller by a factor of 12. The results on the polymerization of several monomer combinations are listed in Table 1. It should also be noted that the success of the free radical promoted cationic polymerization is related to the acceptor strengths of the cationic initiators employed in the system, as known from their reduction potentials. Iodonium salts appeared to be the most e ective oxidant while sulfonium salts do not participate in this redox process due to unfavorable redox potential Table 2). Compositions of the polymers were calculated from 1 H-NMR spectra using ratios of spectral area of signals near 3.6 ppm corresponding to the protons of OCH 3

4 154 H. Braun et al. / European Polymer Journal ) 151±156 Table 1 Polymerization of MMA and BVE at 60 C in methylene chloride, AIBNŠ ˆ mol l 1, Ph 2 I PF 6 Šˆ mol l 1 Run MMA/BVE in feed mmol/mmol) Conversion a %) M b n g mol ) M w =M n Composition c MMA mol%) / / / / / a Overall conversion. b Determined by GPC according to polystyrene standards. c Determined by 1 H-NMR. Table 2 Polymerization of MMA 4.68 mmol) and BVE 3.88 mmol) by using di erent cationic salts at 60 C; AIBNŠ ˆ mol l 1, OniumsaltŠ ˆ mol l 1 Run Initiator Redox potential V SCE) Conversion %) M n g mol 1 ) 6 Ph 2 I PF 6 0: EMP SbF 6 0:7 1 ± 8 Ph 3 S SbF 6 1:0 0 ± MMA) to the area of signals between 3.5 and 3.4 ppm corresponding to the protons of OCH 2 and OCH BVE). Fig. 1shows typical 1 H-NMR spectra of the related homopolymers and the products obtained from mixtures of the monomers Run 3). The GPC traces of the copolymers Fig. 2) usually exhibited a monomodal molecular weight distribution. However, a shoulder appeared in the polymer formed from the monomer mixture with equal volume ratio Run 3). The two homopolymers have similar solubility properties. Therefore, extraction could not be used to evaluate if the process resulted in copolymer formation. In order to obtain more convincing evidence for the successful copolymerization, experiments using acrylate and vinyl ether type bifunctional monomers as components in the system were performed. As can be seen from Table 3, in the presence of a bifunctional monomer, regardless of the type, crosslinked polymers are readily formed. In photopolymerization experiments, an acyl phosphineoxide type photoinitiator namely TMDPO was used as the free radical source for several reasons. First, it absorbs light at rather long wavelengths where the iodonium salt is transparent. Secondly, the radicals formed according to the following reaction, particularly phosponyl radicals, are quite reactive towards ole nic monomers [13] and do not undergo electron-transfer reactions with iodonium ions [14]. Thus direct cationic initiation leading to homopolymer formation can be excluded. 11 The IR spectra of the crosslinked copolymers exhibited characteristics of the both components. As can be seen from Fig. 3, both ester carbonyl and ether groups resonating at 1732 and 1092 cm 1, respectively, were detected. The treatment of the networks with methylene chloride removed uncrosslinked poly BVE) probably formed by H -transfer reactions taking place in the vinyl ether polymerization However, the networks formed by photopolymerization Table 4) were not soluble in methylene chloride. The complete insolubility suggests the formation of chemical bondings between vinyl ether and methacrylate segments in the network which was not achieved by using either cationic polymerization or free radical polymerization independently.

5 H. Braun et al. / European Polymer Journal ) 151± Fig. 1. a) H-NMR spectra of homopoly MMA) Table 1, Run 1), b) homopoly BVE) Table 1, Run 5) and c) polymer obtained by the polymerization of BVE and MMA 50=50; v/v) Table 1, Run 3). Fig. 2. GPC traces of the polymers Table 1, Run 1±5 a±e)). a) PMMA; b) P MMA co BVE) 71=29); c) P MMA co BVE) 31=69); d) P MMA co BVE) 12=88); e) PBVE. Fig. 3. IR spectrum of the crosslinked polymer Table 3, Run 9).

6 156 H. Braun et al. / European Polymer Journal ) 151±156 Table 3 Crosslinking polymerization of mono and bifunctional monomers a in methylene chloride Run Method Radical source) mol l 1 ) Monofunctional monomer Bifunctional monomer 9 Thermal c AIBN BVE EGDMA Thermal c AIBN MMA EGDVE Photo d TMDPO BVE EGDMA Photo d TMDPO MMA EGDVE 58.0 a 50=50 v/v mixtures, Ph 2 I PF 6 Šˆ310 2 mol l 1. b Soluble part <1%. c At 60 C. d k > 340 nm. Conversion b %) Table 4 Photocrosslinking a of MMA and EGDVE in methylenechloride, k > 340 nm, TMDPOŠ ˆ Ph 2 I PF 6 Šˆ310 2 mol l 1 Run MMA mmol) EGDVE mmol) Conversion %) a No soluble portion was detected. Acknowledgements One of the authors Y.Y.) is very grateful to Alexander von Humboldt-Stiftung for nancial support. References [1] Nuyken O, Crivello JV, Kricheldorf HR. Handbook of synthesis of polymer synthesis part A). New York: Marcel Decker; p [2] Crivello JV, Canlon DA. J Rad Curing 1983;1:6. [3] Sawamato M. Prog Polym Sci 1991;16:111. [4] Matsumato A, Nakane T, Oiawa M. Makromol Chem Rapid Commun 1983;4:277. [5] Bevington JC, Huckerby TN, Jenkins AD. J Macromol Sci Pure Appl Chem 1999;A36:1907. [6] Miller CW, Hoyle CE, Howard C. Polym Prepr 1996; 37 2):346. [7] Decker C, Decker D. J Macromol Sci Pure Appl Chem 1997;A34:605. [8] Botcher A, Hasebe K, Hizal G, Steberg P, Yagci Y, Schnabel W. Polymer 1991;32:2289. [9] Crivello JV, Lam JHW. J Polym Sci Polym Chem Ed 1980;18:2677. [10] Crivello JV, Lam JHW. J Polym Sci Polym Chem Ed 1980;18:2697. [11] Yagci Y, Reetz I. Prog Polym Sci 1998;23:1485. [12] Crivello JV, Liu S. J Polym Sci Polym Chem Ed 1999;37:1199. [13] Bi Y, Neckers DC. Macromolecules 1994;27:3633. [14] Crivello JV, Walton TC, Malik R. In: Yagci Y, Mishra MK, Nuyken O, Ito K, Wnek G, editors. Tailored polymers and applications. Utrecht: VSP; p. 265± 86.

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supplementary Information Rational Design of Soluble and Clickable Polymers Prepared by

More information

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization

Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators

More information

Figure 4.10 HPLC Chromatogram of the Carbazole-Phenoxy Based Methacrylate

Figure 4.10 HPLC Chromatogram of the Carbazole-Phenoxy Based Methacrylate The percent yield of the methacrylation was 85.2 %, with a purity of 98.2 % determined by HPLC (Figure 4.10). Elemental analysis gave excellent agreement to expected elemental ratios (Table 4.2). Disregarding

More information

Polymeric Side Chain Thioxanthone Photoinitiator for Free Radical Polymerization

Polymeric Side Chain Thioxanthone Photoinitiator for Free Radical Polymerization Polymer Bulletin 57, 51 56 (2006) DI 10.1007/s00289-006-0538-y Polymeric ide Chain Thioxanthone Photoinitiator for Free Radical Polymerization Gokhan Temel 1, Nergis Arsu 1 ( ), Yusuf Yagci 2 ( ) 1 Yildiz

More information

Supporting Information

Supporting Information Supporting Information UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-Acryloylglycinamide-co-Diacetone Acrylamide) Wenhui Sun, Zesheng An*, Peiyi Wu * Experimental Materials Glycinamide

More information

5. Photochemistry of polymers

5. Photochemistry of polymers 5. Photochemistry of polymers 5.1 Photopolymerization and cross-linking Photopolymerization The fundamental principle of photopolymerization is based on the photoinduced production of a reactive species,

More information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins Photo-Cleavage of Cobalt-Carbon Bond: Visible Light-Induced Living Radical Polymerization Mediated by Organo-Cobalt Porphyrins Yaguang Zhao, Mengmeng Yu, and Xuefeng Fu* Beijing National Laboratory for

More information

Photoinitiation, Photopolymerization, and Photocuring

Photoinitiation, Photopolymerization, and Photocuring Jean-Pierre Fouassier Photoinitiation, Photopolymerization, and Photocuring Fundamentals and Applications Hanser Publishers, Munich Vienna New York Hanser/Gardner Publications, Inc., Cincinnati Contents

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Abstract. Key words: iodonium salt; cationic macrophotoinitiator; UV curing; photoinitiation activity. Introduction

Abstract. Key words: iodonium salt; cationic macrophotoinitiator; UV curing; photoinitiation activity. Introduction A Copolymeric Cationic Macrophotoinitiator Polystyrene-iodonium hexafluoroantimonate Chaorong Xia, Xiaoya Liu*,Ren Liu, Shengwen Zhang, Jinqiang Jiang, (School of Chemical & Material Engineering, Jiangnan

More information

Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios

Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios Bull. Mater. Sci., Vol. 27, No. 3, June 2004, pp. 243 249. Indian Academy of Sciences. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios

More information

Block copolymers containing organic semiconductor segments by RAFT polymerization

Block copolymers containing organic semiconductor segments by RAFT polymerization Block copolymers containing organic semiconductor segments by RAFT polymerization Ming Chen, Matthias Häussler, Graeme Moad, Ezio Rizzardo Supplementary Material Radical polymerizations in the presence

More information

Synthesis of new polyesters with methacrylate pendant groups

Synthesis of new polyesters with methacrylate pendant groups Polymer Bulletin 56, 87 93 (2006) DI 10.1007/s00289-005-0471-5 Synthesis of new polyesters with methacrylate pendant groups Niyazi Bicak ( ), Bunyamin Karagoz Istanbul Technical University, Department

More information

Chemical initiation mechanism of maleic anhydride grafted onto styrene butadiene styrene block copolymer

Chemical initiation mechanism of maleic anhydride grafted onto styrene butadiene styrene block copolymer European Polymer Journal 39 (2003) 1291 1295 Short communication Chemical initiation mechanism of maleic anhydride grafted onto styrene butadiene styrene block copolymer Zhang Aimin *, Li Chao The State

More information

The Journal of American Science, 4(1), 2008, ISSN ,

The Journal of American Science, 4(1), 2008, ISSN , Free adical-induced Copolymerization of Norbornene and Methacrylate An-chi Yeh Department of Chemical and Material Engineering Chengshiu University, Niaosong, Kaohsiung, Taiwan, 833 C E-mail: acyeh1965@yahoo.com.tw

More information

Spectroscopic Quantification of Kinetic Rate Constants for Epoxy-Acrylate Hybrid Photopolymerization

Spectroscopic Quantification of Kinetic Rate Constants for Epoxy-Acrylate Hybrid Photopolymerization Spectroscopic Quantification of Kinetic Rate Constants for Epoxy-Acrylate Hybrid Photopolymerization Brian Dillman University of Iowa, Chemical and Biochemical Eng. Dept., Iowa City, USA Julie L. P. Jessop

More information

Synergistic Effect of Hydroxyl-containing Acrylates in Epoxide-Acrylate Hybrid Photopolymerizations Abstract Introduction Experimental Materials

Synergistic Effect of Hydroxyl-containing Acrylates in Epoxide-Acrylate Hybrid Photopolymerizations Abstract Introduction Experimental Materials Synergistic Effect of Hydroxyl-containing Acrylates in Epoxide-Acrylate Hybrid Photopolymerizations Gbenga I. Ajiboye, Julie L. P. Jessop* Department of Chemical & Biochemical Engineering, University of

More information

Accessory Publication

Accessory Publication 10.1071/CH10127_AC CSIRO 2010 Australian Journal of Chemistry 2010, 63(8), 1210 1218 Accessory Publication Synthesis of Core Shell Nanoparticles with Polystyrene Core and PEO Corona from Core-Crosslinked

More information

Synthesis of Random Copolymers Poly (methylmethacrylate-co-azo monomer) by ATRP-AGET

Synthesis of Random Copolymers Poly (methylmethacrylate-co-azo monomer) by ATRP-AGET Macromol. Symp. 2009, 283 284, 51 55 DI: 10.1002/masy.200950908 51 Synthesis of Random Copolymers Poly (methylmethacrylate-co-azo monomer) by ATRP-AGET M.A. ájera, L.E. Elizalde,* Y. Vázquez, G. de los

More information

Chapter 4. Results and Discussion. 4.1 Monomer Syntheses

Chapter 4. Results and Discussion. 4.1 Monomer Syntheses Chapter 4 Results and Discussion 4.1 Monomer Syntheses The syntheses of a family of novel, carbazole based methacrylate, dimethacrylate, and acrylate monomers, and subsequent purifications, were successful.

More information

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible

More information

Self-Curable Polyester by a Reaction of Glycidol with Maleic Anhydride

Self-Curable Polyester by a Reaction of Glycidol with Maleic Anhydride Self-Curable Polyester by a Reaction of Glycidol with Maleic Anhydride NIYAZI BICAK, BUNYAMIN KARAGOZ, UMIT TUNCA Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey

More information

Photocontrolled RAFT Polymerization Mediated by a

Photocontrolled RAFT Polymerization Mediated by a Supporting Information Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst Liangliang Shen, Qunzan Lu, Anqi Zhu, Xiaoqing Lv, and Zesheng An* Institute of Nanochemistry and Nanobiology,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of Poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT

More information

Rational design of a biomimetic glue with tunable strength and ductility

Rational design of a biomimetic glue with tunable strength and ductility Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Rational design of a biomimetic glue with tunable strength and

More information

Curing Properties of Cycloaliphatic Epoxy Derivatives

Curing Properties of Cycloaliphatic Epoxy Derivatives Curing Properties of Cycloaliphatic Epoxy Derivatives Hiroshi Sasaki Toagosei Co. Ltd. Nagoya, Japan Introduction UV-cationic-curing, based on the photo-generation of acid and consecutive cationic polymerization,

More information

Atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate with a,a-dichlorotoluene as initiator; a kinetic study

Atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate with a,a-dichlorotoluene as initiator; a kinetic study 980 Macromol. Chem. Phys. 201, 980 984 (2000) Full Paper: The atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate with a,adichlorotoluene (DCT) as initiator results in the respective

More information

Synthesis and polymerization of N,N-diallyl morpholinium bromide

Synthesis and polymerization of N,N-diallyl morpholinium bromide European Polymer Journal 36 (2000) 703±710 Synthesis and polymerization of N,N-diallyl morpholinium bromide Niyazi Bic ak*, Bahire Filiz Senkal Department of Chemistry, Istanbul Technical University, Maslak

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

Utilization of star-shaped polymer architecture in the creation of high-density polymer

Utilization of star-shaped polymer architecture in the creation of high-density polymer Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Utilization of star-shaped polymer architecture in the creation

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens Shun Mitsui, Mitsuo Hara, Shusaku Nagano, and Takahiro Seki S. Synthesis Materials Sodium

More information

UV-POLYMERIZATION IN THE PRESENCE OF NANOFILLERS CHAP Introduction

UV-POLYMERIZATION IN THE PRESENCE OF NANOFILLERS CHAP Introduction UV-POLYMERIZATION IN THE PRESENCE OF NANOFILLERS 3.1 Introduction The first problem in preparing UV-cured composites is the filler transparency towards UV-light. Otherwise it will be a competition of the

More information

Photostabilization of an epoxy resin by forming interpenetrating polymer networks with bisphenol-a diacrylate

Photostabilization of an epoxy resin by forming interpenetrating polymer networks with bisphenol-a diacrylate Polymer Degradation and Stability 66 (1999) 343±347 Photostabilization of an epoxy resin by forming interpenetrating polymer networks with bisphenol-a diacrylate Mu-Shih Lin*, Ming-Wei Wang, Lon-An Cheng

More information

Spontaneous Copolymerization of N-Butyl Maleimide and Ethyl -Phenyl Acrylate with High Alternating Tendency

Spontaneous Copolymerization of N-Butyl Maleimide and Ethyl -Phenyl Acrylate with High Alternating Tendency Spontaneous Copolymerization of N-Butyl Maleimide and Ethyl -Phenyl Acrylate with High Alternating Tendency Chao Liu, Xuewei Xu, Junlian Huang Department of Macromolecular Science, Key Laboratories of

More information

SYNTHESIS AND STRUCTURE OF 2-ETHYL-2-OXAZOLINE MACROMONOMERS WITH STYRYL END-GROUPS

SYNTHESIS AND STRUCTURE OF 2-ETHYL-2-OXAZOLINE MACROMONOMERS WITH STYRYL END-GROUPS U.P.B. Sci. Bull., Series B, Vol. 71, Iss. 2, 2009 ISSN 1454-2331 SYNTHESIS AND STRUCTURE OF 2-ETHYL-2-OXAZOLINE MACROMONOMERS WITH STYRYL END-GROUPS Valentin Victor JERCA 1, Florica Adriana NICOLESCU

More information

SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT

SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT Yanxin Liu, Zhongjie Du, Yan Li, Chen Zhang, Xiaoping Yang, Hangquan Li, The Key Laboratory of Beijing City on Preparation

More information

Photopolymerization and Physical Properties of Thiol-Vinyl Ether Hybrid

Photopolymerization and Physical Properties of Thiol-Vinyl Ether Hybrid Photopolymerization and Physical Properties of Thiol-Vinyl Ether Hybrid Huanyu Wei Qin Li Moriam jelade Samy Madbouly Joshua U. taigbe Charles E. Hoyle * School of Polymers and High Performance Materials

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information High-Strain Shape Memory Polymers with Movable Cross-Links

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Supporting Information.

Supporting Information. Supporting Information. Materials. Polyethyleneglycol monomethylether methacrylate (PEGMA) (~475 Da), trifluoroethyl acrylate (tfea) and ethyleneglycol dimethacrylate (EGDMA) were purchased from Sigma

More information

Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators

Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators adical Initiation Production of radicals (from initiator) to initiate chain polymerization. A variety of initiator systems can be used to bring about the radical polymerization. 1) Thermal Decomposition

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

Supporting Information

Supporting Information Supporting Information Azo Polymer Janus Particles and Their Photoinduced Symmetry-Breaking Deformation Xinran Zhou, Yi Du, Xiaogong Wang* Department of Chemical Engineering, Laboratory of Advanced Materials

More information

Living Radical Copolymerization of Styrene/Maleic Anhydride

Living Radical Copolymerization of Styrene/Maleic Anhydride Living Radical Copolymerization of Styrene/Maleic Anhydride EUN-SOO PARK, 1 MAL-NAM KIM, 3 IK-MO LEE, 2 HAN SUP LEE, 1 JIN-SAN YOON 1 1 Department of Applied Chemistry, Inha University, 402-751 Inchon,

More information

Synthesis and Radical Polymerization Behavior of Bifunctional Vinyl Monomer Derived from N-Vinylacetamide and p-chloromethylstyrene

Synthesis and Radical Polymerization Behavior of Bifunctional Vinyl Monomer Derived from N-Vinylacetamide and p-chloromethylstyrene Synthesis and Radical Polymerization Behavior of Bifunctional Vinyl Monomer Derived from N-Vinylacetamide and p-chloromethylstyrene TAKERU IWAMURA,* TOMOYUKI NAKAGAWA, TAKESHI ENDO Research Laboratory

More information

Extensive Dark Cure from Controlled Polymerization Based on a Method Using Visible-Light Activated Initiator System

Extensive Dark Cure from Controlled Polymerization Based on a Method Using Visible-Light Activated Initiator System Extensive Dark Cure from Controlled Polymerization Based on a Method Using Visible-Light Activated Initiator System Dongkwan Kim, and Jeffrey W. Stansbury University of Colorado-Denver, School of Dental

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE Renata Jovanović, Doctoral student, Department of Chemical Engineering, University of Ottawa, Ottawa, Canada, (jovanovi@genie.uottawa.ca)

More information

Dual UV-Curing System. Using a Dimethacrylate Containing a Chalcone Moiety

Dual UV-Curing System. Using a Dimethacrylate Containing a Chalcone Moiety Dual UV-Curing System Using a Dimethacrylate Containing a Chalcone Moiety Technical Paper By Haruyuki Okamura, Yuta Ueda, Masamitsu Shirai and Akikazu Matsumoto We have designed and synthesized a dimethacrylate

More information

Supporting Information

Supporting Information Supporting Information Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer Reversible-Addition Fragmentation Chain Transfer Polymerization (PET-RAFT) Jonathan

More information

ESI. Core-Shell Polymer Nanoparticles for Prevention of GSH Drug Detoxification and Cisplatin Delivery to Breast Cancer Cells

ESI. Core-Shell Polymer Nanoparticles for Prevention of GSH Drug Detoxification and Cisplatin Delivery to Breast Cancer Cells Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 ESI Core-Shell Polymer Nanoparticles for Prevention of GSH Drug Detoxification and Cisplatin Delivery

More information

Effect of Molecular Structure of Side Chain Polymers on "Click" Synthesis of Thermosensitive Molecular Brushes

Effect of Molecular Structure of Side Chain Polymers on Click Synthesis of Thermosensitive Molecular Brushes University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2017 Effect of Molecular Structure

More information

Synthesis and Characterization of Grafted Polystyrene with Acrylic Acid Using Gamma-Irradiation

Synthesis and Characterization of Grafted Polystyrene with Acrylic Acid Using Gamma-Irradiation Australian Journal of Basic and Applied Sciences, 7(8): 746-750, 2013 ISSN 1991-8178 Synthesis and Characterization of Grafted Polystyrene with Acrylic Acid Using Gamma-Irradiation Moayad abd al-hassan

More information

Supporting Information. Nitroxide Mediated Polymerization of methacrylates at moderate temperature

Supporting Information. Nitroxide Mediated Polymerization of methacrylates at moderate temperature Supporting Information Nitroxide Mediated Polymerization of methacrylates at moderate temperature Christophe Detrembleur, Christine Jérôme, Julien De Winter, Pascal Gerbaux, Jean-Louis Clément, Yohann

More information

A study of monomer s effect on adhesion strength of UV-curable resins

A study of monomer s effect on adhesion strength of UV-curable resins ARTICLE IN PRESS International Journal of Adhesion & Adhesives 26 (2006) 520 531 www.elsevier.com/locate/ijadhadh A study of monomer s effect on adhesion strength of UV-curable resins Tzu Hsuan Chiang

More information

Modern use of vinyl ethers, vinyl amides and vinyl esters in UV curable applications

Modern use of vinyl ethers, vinyl amides and vinyl esters in UV curable applications Modern use of vinyl ethers, vinyl amides and vinyl esters in UV curable applications Abstract M. Fies*, Y. Heischkel*, R. Sundar**, R.Schwalm* * BASF S.E., D-6756 Ludwigshafen, Germany, ** BASF Corporation,

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

The Sensitization of Aliphatic Epoxy Photopolymerization in Epoxy-Acrylate Interpenetrating Polymer Networks

The Sensitization of Aliphatic Epoxy Photopolymerization in Epoxy-Acrylate Interpenetrating Polymer Networks The Sensitization of Aliphatic Epoxy Photopolymerization in Epoxy-Acrylate Interpenetrating Polymer Networks Tetiana Samoilenko, Nataliia Iarova, Halyna Menzheres, Oleksandr Brovko Institute of Macromolecular

More information

Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species

Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species Living Cationic Polymerization of p-alkoxystyrenes by Free Ionic Species SHOKYOKU KANAOKA, TOSHINOBU HIGASHIMURA Department of Materials Science, School of Engineering, The University of Shiga Prefecture,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION A Novel Copper Containing Photoinitiator, Copper (II) Acylphosphinate, and Its Application in Both the Photomediated CuAAC Reaction and in Atom Transfer Radical Polymerization Tao Gong, Brian J. Adzima

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Controlled polymerization of methylmethacrylate and ethylacrylate using tris

Controlled polymerization of methylmethacrylate and ethylacrylate using tris Controlled polymerization of methylmethacrylate and ethylacrylate using tris(4,4'-dimethyl-2,2'-bipyridine) copper(ii) hexafluorophosphate complexes and aluminium isopropoxide Ulrich S. Schubert ( ), Georg

More information

Supporting Information

Supporting Information Supporting Information 2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly In The Presence Of Air Sihao Xu, a Gervase Ng, a Jiangtao

More information

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan,

Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School of Chemical Engineering, Yeungnam University, Dae-dong, Gyeongsan, Electronic Supplementary Information For M Amount of Fe (III)-mediated ATR of MMA with hosphorus Containing Ligands in the Absence of Any Additives Xiangxiong Chen, Mohd Yusuf Khan and Seok Kyun Noh* School

More information

Polymerization shrinkage by investigation of uv curable dental restorative composites containing multifunctional methacrylates

Polymerization shrinkage by investigation of uv curable dental restorative composites containing multifunctional methacrylates Polish Journal of Chemical Technology, 15, 2, 81 Pol. 85, J. 10.2478/pjct-2013-0027 Chem. Tech., Vol. 15, No. 2, 2013 81 Polymerization shrinkage by investigation of uv curable dental restorative composites

More information

Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification

Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification Supporting Information Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification Kazuhiro Nakatani, Yusuke Ogura, Yuta Koda, Takaya Terashima*,

More information

SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION

SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION T. Ohishi, 1 K. Imato, 2 T. Kanehara, 2 A. Takahara, 1,2 and H. Otsuka 1,2 1 Institute for Materials

More information

Supporting Information:

Supporting Information: Supporting Information: Visible Light Initiated Thiol-Michael Addition Polymerizations with Coumarin-based Photo-base Generators, Another Photoclick Reaction Strategy Xinpeng Zhang, Weixian Xi, Chen Wang,

More information

Supporting Information

Supporting Information Supporting Information Efficient Temperature Sensing Platform Based on Fluorescent Block Copolymer Functionalized Graphene Oxide Hyunseung Yang, Kwanyeol Paek, and Bumjoon J. Kim * : These authors contributed

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Induced Circular Dichroism of Stereoregular Vinyl Polymers

Induced Circular Dichroism of Stereoregular Vinyl Polymers Induced Circular Dichroism of Stereoregular Vinyl Polymers Lung-Chi Chen, Yung-Cheng Mao, Shih-Chieh Lin, Ming-Chia Li, Rong-Ming Ho*, Jing-Cherng Tsai* Supplementary Information Figure S1. 13 C NMR (125

More information

Epoxy Based Vinyl Ester Resins: Synthesis and Characterization

Epoxy Based Vinyl Ester Resins: Synthesis and Characterization International Journal of Chemical Engineering Research. ISSN 0975-6442 Volume 9, Number 1 (2017), pp. 99-104 Research India Publications http://www.ripublication.com Epoxy Based Vinyl Ester Resins: Synthesis

More information

Polymer Bulletin Springer-Verlag 1998

Polymer Bulletin Springer-Verlag 1998 Polymer Bulletin 41, 639 644 (1998) Polymer Bulletin Springer-Verlag 1998 Synthesis of poly(styrene-b-isobutylene-b-styrene) triblock copolymer by ATRP Katja Jankova 1, Jorgen Kops 1, Xianyi Chen 1, Bo

More information

Crosslinking during radical polymerization of dodecyl methacrylate

Crosslinking during radical polymerization of dodecyl methacrylate 88 Macromol. Mater. Eng. 2000, 283, 88 92 Full Paper: A much more efficient formation of crosslinks was observed in the free-radical polymerization of dodecyl methacrylate with respect to the amount of

More information

Radical Group-Transfer Polymerization of 2-Thiocyanatoethyl Vinyl Ether

Radical Group-Transfer Polymerization of 2-Thiocyanatoethyl Vinyl Ether 4166 Macromolecules 1999, 32, 4166-4172 Radical Group-Transfer Polymerization of 2-Thiocyanatoethyl Vinyl Ether Tsuneyuki Sato,* Kazuhiro Miki, and Makiko Seno Department of Chemical Science and Technology,

More information

Synthesis, Characterization, and Hydrolysis of PVAc-PS- PVAc via Charge Transfer Polymerization

Synthesis, Characterization, and Hydrolysis of PVAc-PS- PVAc via Charge Transfer Polymerization Synthesis, Characterization, and Hydrolysis of PVAc-PS- PVAc via Charge Transfer Polymerization ZAIJUN LU, XIAOYU HUANG, JUNLIAN HUANG Department of Macromolecular Science, Fudan University, The Open Laboratory

More information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

Molecular interaction studies of acrylic esters with alcohols

Molecular interaction studies of acrylic esters with alcohols Indian Journal of Pure & Applied Physics Vol. 43, December 2005, pp. 905-90 Molecular interaction studies of acrylic esters with alcohols P Sivagurunathan*, K Dharmalingam & K Ramachandran Department of

More information

SYNTHESIS AND MONOMER REACTIVITY RATIOS OF [3-(TRIMETHOXYSILYL) PROPYL METHACRYLATE/N- VINYL PYRROLIDONE] COPOLYMER

SYNTHESIS AND MONOMER REACTIVITY RATIOS OF [3-(TRIMETHOXYSILYL) PROPYL METHACRYLATE/N- VINYL PYRROLIDONE] COPOLYMER Int. J. Chem. Sci.: 4(4), 06, 79-9 ISSN 097-768X www.sadgurupublications.com SYNTHESIS AND MONOMER REACTIVITY RATIOS OF [3-(TRIMETHOXYSILYL) PROPYL METHACRYLATE/N- VINYL PYRROLIDONE] COPOLYMER AMEEN HADI

More information

UV-Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization

UV-Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization Supporting Information UV-Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization Arne Wolpers and Philipp Vana Institut für Physikalische Chemie, Georg-August-Universität

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information Synthesis of hydrocarbon-soluble, methyl-substituted highly branched

More information

Polymer 54 (2013) 4161e4170. Contents lists available at SciVerse ScienceDirect. Polymer. journal homepage:

Polymer 54 (2013) 4161e4170. Contents lists available at SciVerse ScienceDirect. Polymer. journal homepage: Polymer 54 (2013) 4161e4170 Contents lists available at SciVerse ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Synthesis and properties of de-cross-linkable acrylate polymers

More information

Preparation of poly(vinyl alcohol) hydrogels with radiation grafted citric and succinic acid groups

Preparation of poly(vinyl alcohol) hydrogels with radiation grafted citric and succinic acid groups Radiation Physics and Chemistry 55 (1999) 667±671 www.elsevier.com/locate/radphyschem Preparation of poly(vinyl alcohol) hydrogels with radiation grafted citric and succinic acid groups Hatice BodugoÈ

More information

Thiol-Enes: Fast Curing Systems with Exceptional Properties. Performance Materials, USA. Chemistry and Biochemistry, USA

Thiol-Enes: Fast Curing Systems with Exceptional Properties. Performance Materials, USA. Chemistry and Biochemistry, USA Thiol-Enes: Fast Curing Systems with Exceptional Properties Charles Hoyle, 1,2 Tolecial Clark, 2 Tai Yeon Lee, 1 Todd Roper, 1 Bo Pan, 1 Huanyu Wei, 1 Hui Zhou, 1 and Joe Lichtenhan 3 1 The University

More information

RAPID COMMUNICATION. Synthesis of Disyndiotactic Polylactide INTRODUCTION EXPERIMENTAL

RAPID COMMUNICATION. Synthesis of Disyndiotactic Polylactide INTRODUCTION EXPERIMENTAL RAPID COMMUNICATION Synthesis of Disyndiotactic Polylactide M. BERO, P. DOBRZYŃSKI, J. KASPERCZYK Centre of Polymer Chemistry, Polish Academy of Sciences, 41-800 Zabrze, Poland, ul. M. Curie Sklodowskiej

More information

A novel synthesis of acrylic acid containing polymers

A novel synthesis of acrylic acid containing polymers Macromol. Rapid Commun. 18,385-391 (I 997) 385 A novel synthesis of acrylic acid containing polymers Maoliang Xianga), Ming Jiang *a), Xiangming Kongb), Yiqing Yangb), Wenkui Lub) a) Institute of Macromolecular

More information

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties

Self-Healing Polymers with PEG Oligomer Side Chains. Based on Multiple H-Bonding and Adhesion Properties Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Self-Healing Polymers with PEG Oligomer Side Chains Based on Multiple

More information

Polymerization of ethylene oxide using yttrium isopropoxide

Polymerization of ethylene oxide using yttrium isopropoxide Macromol. Chem. Phys. 197,3623-3629 (1996) 3623 Polymerization of ethylene oxide using yttrium isopropoxide Young K. Choia), Willem M, Stevels, Marc J. K. Ankoni, Pieter J. Dekstra, Sung W Kima), Jan Feeen*

More information

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification Supporting Information to Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification by Tina I. Löbling, Olli Ikkala, André H. Gröschel *, Axel H. E. Müller * Materials

More information

Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride.

Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride. Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride. Kinetic aspects Marcel Popa a), Monica Arnautu a), Marc J. M. Abadie b) and Victor

More information

Electronic Supporting Information for

Electronic Supporting Information for Electronic Supporting Information for An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F -, CH 3 COO - -, and H 2 PO 4

More information

Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains

Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains Supporting information Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side-chains Markus Döbbelin, a,* Itxaso Azcune, a Mélanie Bedu, b Alaitz Ruiz de Luzuriaga,

More information

Supporting Information. Supramolecular Polymer Networks made by Solvent-Free Copolymerization of a Liquid 2-Ureido-4[1H]pyrimidinone Methacrylamide

Supporting Information. Supramolecular Polymer Networks made by Solvent-Free Copolymerization of a Liquid 2-Ureido-4[1H]pyrimidinone Methacrylamide Supporting Information Supramolecular Polymer Networks made by Solvent-Free Copolymerization of a Liquid 2-Ureido-4[1H]pyrimidinone Methacrylamide Christian Heinzmann, 1 Iris Lamparth, 2 Kai Rist, 2 Nobert

More information

Complete spectral assignments of methacrylonitrile-styrenemethyl methacrylate terpolymers by 2D NMR spectroscopy

Complete spectral assignments of methacrylonitrile-styrenemethyl methacrylate terpolymers by 2D NMR spectroscopy Complete spectral assignments of methacrylonitrile-styrenemethyl methacrylate terpolymers by 2D NMR spectroscopy A.S. Brar*, D.R. Pradhan Department of Chemistry, Indian Institute of Technology, Delhi,

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 1. Materials: Styrene (St), methyl methacrylate (MMA) and acrylic acid (AA) (Lingfeng Chemical reagent Co. Ltd, Shanghai, China) were distilled and stored at 4 ºC if not used immediately, ammonium persulfate

More information