(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

Size: px
Start display at page:

Download "(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]"

Transcription

1 CHEM 6371/4511 Name: The exam consists of interpretation of spectral data for compounds A-C. The analysis of each structure is worth points. Compound A (a) How many carbon atoms are in the molecular formula of compound A? [Consider the molecular ion cluster and 13 C NMR spectrum] (b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR] (c) Does the compound contain any of the following bonds: C=O C-O O-H [Circle all that apply] (d) What is the molecular formula of compound A? [Consider your answers to (a)-(c), and the molecular weight] (e) What is the value of SODAR? (f) How many of the following are present? sp 3 CH 3 C=O sp 3 CH 2 sp 2 CH 2 sp 3 C with no attached H sp 3 CH sp and sp 2 CH sp and sp 2 C with no attached H (excluding C=O) [These should sum to the number of signals in the 13 C NMR spectrum] (g) What is the substitution pattern of the benzene ring in this compound (e.g., monosubstituted, para (1,4-) disubstituted; 1,2,4-trisubstituted, etc)? [Consider the 1 H and 13 C NMR spectra] substitution pattern: (h) What feature (a fragment of the molecular structure) is consistent with the set of three multiplets (A, B and C) that appear between 2.0 and 3.0 in the 1 H NMR spectrum? (i) [8 points] Structure of compound A with letters next to each hydrogen atoms corresponding to the 1 H NMR signal (A-G).

2 Compound B, C 9 H 10 O (a) What is the value of SODAR? (b) Does the compound contain any of the following bonds: C=O C-O O-H [Circle all that apply] (c) How many of the following are present? sp 3 CH 3 C=O sp 3 CH 2 sp 2 CH 2 sp 3 C with no attached H sp 3 CH sp and sp 2 CH sp and sp 2 C with no attached H (excluding C=O) [These should sum to the number of signals in the 13 C NMR spectrum] (d) What is the substitution pattern of the benzene ring in this compound (e.g., monosubstituted, para (1,4-) disubstituted; 1,2,4-trisubstituted, etc)? [Consider the 1 H and 13 C NMR spectra] substitution pattern: (e) Determine the multiplicity and coupling constants of signals A ( 4.69), B ( 5.31) and C ( 5.43) in the 1 H NMR spectrum. [Remember that a multiplet of multplets has two coupling constants.] multiplicity J / Hz int. [e.g., q, dt, ddq, etc] [e.g., 10,3] A B C (h) Which 13 C signals (t-z) correspond to: [i] vinylic carbon atoms: _ [ii] carbon atoms in the benzene ring (f) The protons giving rise to signals A, B and C all couple to one another. Which other signal corresponds to a hydrogen that couples to all of the hydrogen atoms that give rise to signals A, B and C? (g) Describe the multiplicity and provide the coupling constants of signal D ( 6.). Multiplicity: Coupling constants (Hz): (i) [8 points] Structure of compound B with letters next to each hydrogen atoms corresponding to the 1 H NMR signal (A-F).

3 Compound C (a) Does the compound contain any of the following bonds: C=O C-O O-H [Circle all that apply] (b) What is the formula of the molecule? (consider the molecular ion cluster, NMR spectra and your response to (a)) (c) What is the value of SODAR? (d) What specific combination of features gives rise to this value of SODAR in this compound (i.e., specific functional groups, and number of rings)? (e) How many of the following are present? sp 3 CH 3 C=O sp 3 CH 2 sp 2 CH 2 sp 3 C with no attached H sp 3 CH sp and sp 2 CH sp and sp 2 C with no attached H (excluding C=O) [These should sum to the number of signals in the 13 C NMR spectrum] (f) Consider signal G ( 4.36) in the 1 H NMR spectrum. It looks like a pentet. [i] Which 13 C signal (u-z) corresponds to the carbon atom to which the hydrogen giving rise to signal G is attached? [ii] Which 1 H signals (A-G) correspond to the hydrogen atoms that give rise to splitting of signal G? [iii] Which 13 C signals (u-z) correspond to the carbon atoms that are attached to the hydrogen atoms which give rise to the signals you identified in [ii]? [iv] Which 1 H signals (A-G) correspond to hydrogen atoms that give rise to splitting of the 1 H NMR peak for the methyl group in this compound? (g) Propose a fragment of the molecule that is fully consistent with the information in part (f) about the appearance of 1 H NMR signal G and about the methyl group. (h) [8 points] Structure of compound C with letters next to each carbon atoms corresponding to the 13 C NMR signal (u-z)

4 [Blank page]

5 compound A _ mass spectrum molecular ion cluster 146: % 147: 11.1% 148: 0.75%

6 Exercise H NMR 0 MHz Hz Hz Hz Hz Hz Hz C/DEPT 1.9 MHz

7 Exercise COSY 0 MHz F HMQC 0 MHz F

8 Problem 8.31A MASS 134 % of Base Peak IR 40 m/z %Transmittance H NMR 0 MHz Wavenumber (cm-1) Hz Hz Hz Hz C/DEPT NMR MHz

9 Problem 8.31B COSY 0 MHz F HMQC 0 MHz F

10 Problem 8.33A MASS 85 % of Base Peak IR m/z %Transmittance H NMR 0 MHz Wavenumber (cm-1) C/DEPT NMR MHz

11 Problem 8.33B COSY 0 MHz F HMQC 0 MHz F

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014 NANYANG TECHNOLOGICAL UNIVERSITY DIVISION OF CHEMISTRY AND BIOLOGICAL CHEMISTRY SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES CM 3011 - Chemical Spectroscopy and Applications Final Examination Solution Manual

More information

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W CHEM 2423. Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W Short Answer 1. For a nucleus to exhibit the nuclear magnetic resonance phenomenon, it must be magnetic. Magnetic nuclei include: a. all

More information

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set 1. Draw an NMR spectrum for each of the following compounds. Indicate each peak by a single vertical line (for example, a quartet would be

More information

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field: Spin-Spin Splitting in Alkanes The signal arising from a proton or set of protons is split into (N+1) lines by the presence of N adjacent nuclei Example 1: Bromoethane The resonance frequency of the H

More information

Organic Chemistry II (CHE ) Examination I March 1, Name (Print legibly): _KEY _. Student ID#: _

Organic Chemistry II (CHE ) Examination I March 1, Name (Print legibly): _KEY _. Student ID#: _ Organic Chemistry II (CHE 232-002) Examination I March 1, 2007 Name (Print legibly): _KEY _ (last) (first) Student ID#: _ PLEASE observe the following: You are allowed to have scratch paper (provided by

More information

Organic Chemistry II* (CHE ) Examination I March 1, Name (Print legibly): KEY. Student ID#:

Organic Chemistry II* (CHE ) Examination I March 1, Name (Print legibly): KEY. Student ID#: Organic Chemistry II* (CHE 232-002) Examination I March 1, 2007 Name (Print legibly): KEY (last) (first) Student ID#: PLEASE observe the following: You are allowed to have scratch paper (provided by me),

More information

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1 Chemistry 14C Winter 2017 Exam 2 Solutions Page 1 Statistics: High score, average, and low score will be posted on the course web site after exam grading is complete. Some questions have more than one

More information

Chem 213 Final 2012 Detailed Solution Key for Structures A H

Chem 213 Final 2012 Detailed Solution Key for Structures A H Chem 213 Final 2012 Detailed Solution Key for Structures A H COMPOUND A on Exam Version A (B on Exam Version B) C 8 H 6 Cl 2 O 2 DBE = 5 (aromatic + 1) IR: 1808 cm 1 suggests an acid chloride since we

More information

Hour Examination # 4

Hour Examination # 4 CHEM 346 Organic Chemistry I Fall 2014 Exam # 4 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I Fall 2014 Instructor: Paul Bracher Hour Examination # 4 Wednesday, December 3 rd, 2014 6:00 8:00

More information

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra 1 Interpreting NMR spectra There are two kinds: Low-resolution NMR spectra High-resolution NMR spectra In both cases the horizontal scale is labelled in terms of chemical shift, δ, and increases from right

More information

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSIN A Answer multiple choice questions on the green computer sheet provided with a PENCIL. Be sure to encode both your NAME and Registration Number (V#). You will

More information

CHEM 213 FALL 2018 MIDTERM EXAM 2 - VERSION A

CHEM 213 FALL 2018 MIDTERM EXAM 2 - VERSION A CEM 213 FALL 2018 MIDTERM EXAM 2 - VERSIN A Answer multiple choice questions on the green computer sheet provided with a PENCIL. Be sure to encode both your NAME and Registration Number (V#). You will

More information

Your Name: Question 1. 2D-NMR: C 6 H 10 O 2. (20 points)

Your Name: Question 1. 2D-NMR: C 6 H 10 O 2. (20 points) Question 1. 2D-NMR: C 6 H 10 O 2. (20 points) Integrations show signals 3H 1 & 5, 2H for signal 4, and 1H each for signals 2 and 3. - Draw the structure. - Assign the hydrogens to signals 1 5 (that is,

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY A STUDENT SHOULD BE ABLE TO: 1. Identify and explain the processes involved in proton ( 1 H) and carbon-13 ( 13 C) nuclear magnetic resonance

More information

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic Spectroscopy in Organic Chemistry Spectroscopy Spectrum dealing with light, or more specifically, radiation Scope to see Organic Spectroscopy therefore deals with examining how organic molecules interact

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

Proton NMR. Four Questions

Proton NMR. Four Questions Proton NMR Four Questions How many signals? Equivalence Where on spectrum? Chemical Shift How big? Integration Shape? Splitting (coupling) 1 Proton NMR Shifts Basic Correlation Chart How many 1 H signals?

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject hemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 34: ombined problem on UV, IR, 1 H NMR, 13 NMR and Mass- Part 6 HE_P12_M34 TABLE OF ONTENTS 1. Learning

More information

Answers to Problem Set #2

Answers to Problem Set #2 hem 242 Spring 2008 Answers to Problem Set #2 1. For this question we have been given the molecular formula, 3 5 l. Looking at the IR, the strong signal at 1720 cm 1 tells us that we have a carbonyl (we

More information

CHEM311 FALL 2005 Practice Exam #3

CHEM311 FALL 2005 Practice Exam #3 CHEM311 FALL 2005 Practice Exam #3 Instructions: This is a multiple choice / short answer practice exam. For the multiple-choice questions, there may be more than one correct answer. If so, then circle

More information

Benzene-d 6. Acetone-d 6

Benzene-d 6. Acetone-d 6 Problem R-98B (C 12 O 2 ) 270 Mz 1 NMR Spectrum in acetone-d6 The signal at 7.3 is strongly solvent dependent ( 5.5 in CDCl 3 ) Source: I. L. Reich /19 (digitized hard copy) g O Eugenol Benzene-d 6 0 z

More information

PLT ex gq.plt

PLT ex gq.plt Problem R-06 ( 1 18 O ) 200 Mz 1 NMR spectrum in l Source: Yuntao Song, huck eap-burke (Reich digitized hard copy 28-10) g 97.6 968.8 967. 961. 941.8 90.4 926.2 914.8 0 20 10 0 z O O Ph O.4..2 4.9 4.8

More information

CHEM 242 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHAP 14B ASSIGN

CHEM 242 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHAP 14B ASSIGN CHEM 242 NUCLEAR MAGNETIC RESNANCE SPECTRSCPY CHAP 14B ASSIGN 1. A proton NMR spectrum is observed to contain following the pattern below; what do you conclude? A. This must be a quartet that is part of

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 31: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part III CHE_P12_M31 TABLE OF CONTENTS 1.

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

CHEM311 FALL 2005 Practice Exam #3

CHEM311 FALL 2005 Practice Exam #3 EM311 FALL 2005 Practice Exam #3 Instructions: This is a multiple choice / short answer practice exam. For the multiple-choice questions, there may be more than one correct answer. If so, then circle as

More information

Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1

Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1 Chem 14C Lecture 1 Spring 2017 Final Exam Part B Page 1 1. (2) Write the letter of the structure that best fits the following 13 C-NMR spectrum: 51 ppm (doublet), 44 ppm (triplet), 27 ppm (quartet), 26

More information

Chemistry 14C Summer 2017 Second Midterm Exam Page 1

Chemistry 14C Summer 2017 Second Midterm Exam Page 1 Chemistry 14C Summer 2017 Second Midterm Exam Page 1 Begin this exam by gently removing the last two pages of this exam. Nothing o n these pages will be graded. They will be discarded before grading. Please

More information

Chem 14C Lecture 1 Spring 2016 Exam 2 Solutions Page 1

Chem 14C Lecture 1 Spring 2016 Exam 2 Solutions Page 1 Chem 14C Lecture 1 Spring 2016 Exam 2 Solutions Page 1 Statistics: High score, average, and low score will be posted on the course web site after exam grading is complete. Some questions have more than

More information

The Final Learning Experience

The Final Learning Experience Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser The Final Learning Experience Monday, December 15, 1997 3:00-5:00 pm Name: Answer Key Maximum Question 1 (Combination I) 20 Question 2 (Combination

More information

*Assignments could be reversed. *

*Assignments could be reversed. * Name Key 5 W-Exam No. Page I. (6 points) Identify the indicated pairs of hydrogens in each of the following compounds as (i) homotopic, (ii) enantiotopic, or (iii) diastereotopic s. Write the answers as

More information

NMR Spectroscopy: Determination of Molecular Structures

NMR Spectroscopy: Determination of Molecular Structures Experiment 2 NMR Spectroscopy: Determination of Molecular Structures Reading: Handbook for Organic Chemistry Lab, chapters on NMR Spectroscopy (Chapter 18) and Identification of Compounds (Chapter 20).

More information

UCF - ORGANIC CHEMISTRY 2 - PROF. GERASIMOVA UCF PROF. GERASIMOVA EXAM REVIEW 1.

UCF - ORGANIC CHEMISTRY 2 - PROF. GERASIMOVA UCF PROF. GERASIMOVA EXAM REVIEW 1. UCF PROF. GERASIMOVA EXAM REVIEW 1 www.clutchprep.com 1 PRACTICE: Determine the index of hydrogen deficiency (degrees of unsaturation) for the following molecule. Antipsychotic - Haloperidol = C 21 H 23

More information

CHEMISTRY 216 WINTER TERM 2007 END OF TERM EXAM. Time Allowed 2 hours

CHEMISTRY 216 WINTER TERM 2007 END OF TERM EXAM. Time Allowed 2 hours EMISTRY 216 WITER TERM 2007 ED F TERM EXAM Time Allowed 2 hours ame KEY GSI ame ID umber Lab Section Write legibly. Illegible or messy answers will not be graded. Read these instructions carefully. In

More information

Spin-spin coupling I Ravinder Reddy

Spin-spin coupling I Ravinder Reddy Spin-spin coupling I Ravinder Reddy Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Exchange Chemical shifts J-coupling Spin Diffusion Dipolar

More information

Name: 1. Ignoring C-H absorptions, what characteristic IR absorption(s) would be expected for the functional group shown below?

Name: 1. Ignoring C-H absorptions, what characteristic IR absorption(s) would be expected for the functional group shown below? Chemistry 262 Winter 2018 Exam 3 Practice The following practice contains 20 questions. Thursday s 90 exam will also contain 20 similar questions, valued at 4 points/question. There will also be 2 unknown

More information

IR, MS, UV, NMR SPECTROSCOPY

IR, MS, UV, NMR SPECTROSCOPY CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET All Sections CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET General Instructions for the 318 Spectroscopy Problem Set Consult the Lab Manual,

More information

Look for absorption bands in decreasing order of importance:

Look for absorption bands in decreasing order of importance: 1. Match the following to their IR spectra (30 points) Look for absorption bands in decreasing order of importance: a e a 2941 1716 d f b 3333 c b 1466 1.the - absorption(s) between 3100 and 2850 cm-1.

More information

Chem 2320 Exam 1. January 30, (Please print)

Chem 2320 Exam 1. January 30, (Please print) Chem 2320 Exam 1 January 30, 2006 Name: (first) (last) (Please print) Last 4 digits of I.D. I. Multiple Choice ( /20) Score /60 II /15 III /25 Total score /100 I. Multiple choice questions. (3 points each).

More information

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD The following guidelines should be helpful in assigning a structure from NMR (both PMR and CMR) and IR data. At the end of this

More information

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C- framework Four Factors of Proton NMR (PMR OR NMR):. Symmetry: Number of chemically different protons (symmetry) as shown by number

More information

2. Splitting: results from the influences of hydrogen s neighbors.

2. Splitting: results from the influences of hydrogen s neighbors. Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy: Eating up our jigsaw puzzle cake! :D 1 H-NMR spectroscopy tells us the molecular structure of the compound or the arrangement of the connectivity

More information

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Purpose: This is an exercise to introduce the use of nuclear magnetic resonance spectroscopy, in conjunction with infrared spectroscopy, to determine

More information

,QWURGXFWLRQ ([HUFLVH. Problem 1 7UDQVODWHG IURP $UW YDQ GHU (VW

,QWURGXFWLRQ ([HUFLVH. Problem 1 7UDQVODWHG IURP $UW YDQ GHU (VW Problem 1 Using the chemical shift rules for CH-, CH 2 - und CH 3 -Groups draw the stick spectrum for propionic acid chloride. There is no shift rule for acid chloride groups. Search for an acceptable

More information

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) NMR spectra of some simple molecules Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) N S H 0 H o Because the protons have a magnetic field associated with them, the field changes as across

More information

SYSTEMWIDE CHEM 2425 FINAL EXAM. Department Of Physical Sciences

SYSTEMWIDE CHEM 2425 FINAL EXAM. Department Of Physical Sciences SYSTEMWIDE CHEM 2425 FINAL EXAM Department f Physical Sciences Morphine NAME: RGANIC CHEM 2425 FINAL EXAM DIRECTINS- A periodic table is attached at the end of this exam. Please answer all questions in

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 16.1 Chapter 16: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

11. Proton NMR (text , 12.11, 12.12)

11. Proton NMR (text , 12.11, 12.12) 2009, Department of Chemistry, The University of Western Ontario 11.1 11. Proton NMR (text 12.6 12.9, 12.11, 12.12) A. Proton Signals Like 13 C, 1 H atoms have spins of ±½, and when they are placed in

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr.

CHEMISTRY Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. CHEMISTRY 2600 Topic #3: Using Spectroscopy to Identify Molecules: Radicals and Mass Spectrometry (MS) Spring 2018 Dr. Susan Findlay Mass Spectrometry: How Does It Work? In CHEM 1000, you saw that mass

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

NMR NEWS June To find tutorials, links and more, visit our website

NMR NEWS June To find tutorials, links and more, visit our website Department of Chemistry NMR Facilities Director: Dr. Carlos A. Steren NMR NEWS June 2014 To find tutorials, links and more, visit our website www.chem.utk.edu/facilities/nmr Computers and software updates

More information

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#:

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#: rganic hemistry II (HE 232-001) Examination I February 11, 2009 Name (Print legibly): Key (last) (first) Student ID#: PLEASE observe the following: You are allowed to have scratch paper (provided by me),

More information

(Refer Slide Time: 0:37)

(Refer Slide Time: 0:37) Principles and Applications of NMR spectroscopy Professor Hanudatta S. Atreya NMR Research Centre Indian Institute of Science Bangalore Module 3 Lecture No 14 We will start today with spectral analysis.

More information

Chapter 20: Identification of Compounds

Chapter 20: Identification of Compounds Chemists are frequently faced with the problem of identifying unknown compounds. Environmental scientists may have to identify pollutants in soils and water, synthetic chemists may want to confirm that

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE.

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE. !! www.clutchprep.com CONCEPT: 1 H NUCLEAR MAGNETIC RESONANCE- GENERAL FEATURES 1 H (Proton) NMR is a powerful instrumental method that identifies protons in slightly different electronic environments

More information

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

In a solution, there are thousands of atoms generating magnetic fields, all in random directions. Nuclear Magnetic Resonance Spectroscopy: Purpose: onnectivity, Map of - framework Process: In nuclear magnetic resonance spectroscopy, we are studying nuclei. onsider this circle to represent a nucleus

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 15.1 Chapter 15: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 16.1 Chapter 16: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

Chemistry 14C Spring 2016 Final Exam Part B Page 1

Chemistry 14C Spring 2016 Final Exam Part B Page 1 hemistry 14 Spring 2016 Final Exam Part B Page 1 In lecture we discussed the possibility that the first cells may have been formed in boiling mud puddles, which have been shown (in the lab) to produce

More information

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2:

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2: CFE ADVANCED HIGHER Unit 2 Organic Chemistry 2.3 Structural Analysis Part 2: Mass Spectroscopy Infra-red Spectroscopy NMR Proton Spectroscopy Answers to Questions in Notes Learning Outcomes Exam Questions

More information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) Spectroscopy Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) A)From a structure: B)From a molecular formula, C c H h N n O o X x, Formula for saturated hydrocarbons: Subtract the

More information

Vibrations. Matti Hotokka

Vibrations. Matti Hotokka Vibrations Matti Hotokka Identify the stuff I ve seen this spectrum before. I know what the stuff is Identify the stuff Let s check the bands Film: Polymer Aromatic C-H Aliphatic C-H Group for monosubstituted

More information

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data Problem solving session S. SANKARARAMAN DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI 600036 sanka@iitm.ac.in

More information

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts CEMISTRY 341 Final Exam Tuesday, December 16, 1997 Name NAID Problem 1 15 pts Problem 9 8 pts Problem 2 5 pts Problem 10 21 pts Problem 3 26 pts Problem 11 15 pts Problem 4 10 pts Problem 12 6 pts Problem

More information

Practice Exam 2 Answer

Practice Exam 2 Answer Chemistry 60 (Reich) SECND UR EXAM Thur. April 4, 20 Practice Exam 2 Answer Question/Points R-0F /2 R-0G /20 R-0 /0 R-0I /2 R-0J /20 Total /00 i 9 Average 6 Median 0 AB BC 0 CD 40 Name Grading Distribution

More information

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116

1. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = 116 Additional Problems for practice.. Predict the structure of the molecules given by the following spectral data: a Mass spectrum:m + = IR: weak absorption at 9 cm - medium absorption at cm - NMR 7 3 3 C

More information

Chemistry 14C Fall 2015 Final Exam Part B Page 1

Chemistry 14C Fall 2015 Final Exam Part B Page 1 Chemistry 14C Fall 2015 Final Exam Part B Page 1 Uric acid is a normal metabolic product derived from purine nucleosides. Gout is a painful arthritic condition in which excess uric acid precipitates as

More information

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

In a solution, there are thousands of atoms generating magnetic fields, all in random directions. Nuclear Magnetic Resonance Spectroscopy: Purpose: onnectivity, Map of - framework Process: In nuclear magnetic resonance spectroscopy, we are studying nuclei. onsider this circle to represent a nucleus

More information

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

More information

1.1. IR is part of electromagnetic spectrum between visible and microwave

1.1. IR is part of electromagnetic spectrum between visible and microwave CH2SWK 44/6416 IR Spectroscopy 2013Feb5 1 1. Theory and properties 1.1. IR is part of electromagnetic spectrum between visible and microwave 1.2. 4000 to 400 cm -1 (wave numbers) most interesting to organic

More information

Unit 3 Organic Chemistry. 3.3 Structural Analysis Part 2:

Unit 3 Organic Chemistry. 3.3 Structural Analysis Part 2: Unit 3 Organic Chemistry 3.3 Structural Analysis Part 2: Mass Spectroscopy Infra-red Spectroscopy NMR Proton Spectroscopy Answers to Questions in Notes Learning Outcomes Exam Questions & Answers MODIFIED

More information

Ethyl crotonate. Example of benchtop NMR on small organic molecules

Ethyl crotonate. Example of benchtop NMR on small organic molecules R Ethyl crotonate Example of benchtop NMR on small organic molecules Ethyl crotonate (C 6 H 10 O 2 ) is a colourless liquid at room temperature. It is soluble in water, and is used as a solvent for cellulose

More information

CH Exam #4 (Take Home) Date Due: 11/25,26/2013

CH Exam #4 (Take Home) Date Due: 11/25,26/2013 CH2710 - Exam #4 (Take Home) Date Due: 11/25,26/2013 Section I - Multiple Choice - Choose the BEST answer from the choices given and place the letter of you choice in the space provided. 1. Energy absorbed

More information

7. Nuclear Magnetic Resonance

7. Nuclear Magnetic Resonance 7. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is another method besides crystallography that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of

More information

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered. Name Key 216 W13-Exam No. 1 Page 2 I. (10 points) The goal of recrystallization is to obtain purified material with a maximized recovery. For each of the following cases, indicate as to which of the two

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 60 (Reich) SECD UR EXAM Sat. April 9, 0 Question/oints R-A /0 R-B / R-C /0 R-D / R-E /0 R-F /0 Total /00 Average 6 i 9 Mode Median 6 AB 7 BC Distribution from grade list (average: 6.; count:

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 605 (Reich) THIRD HOUR EXAM Wed. May 15, 2013 Question/Points R-12L /20 R-12M /15 R-12N /25 R-12O /10 R-12P /20 Total /90 Name If you place answers anywhere else except in the spaces provided,

More information

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted. Massachusetts Institute of Technology Organic Chemistry 5.13 Friday, September 26, 2003 Prof. Timothy F. Jamison Hour Exam #1 Name (please both print and sign your name) Official Recitation Instructor

More information

Ibuprofen. Example of benchtop NMR on small organic molecules

Ibuprofen. Example of benchtop NMR on small organic molecules R Ibuprofen Example of benchtop NMR on small organic molecules Ibuprofen (C 13 H 18 O 2 ) is a non-steroidal antiinflammatory drug (NSAID) and is commonly used for pain relief, fever reduction and against

More information

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products: Exam 1 Name CHEM 212 1. (18 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

Chem 360 Jasperse Chapter 13 Answers to in-class NMR Spectroscopy Problems

Chem 360 Jasperse Chapter 13 Answers to in-class NMR Spectroscopy Problems Chem 360 Jasperse Chapter 13 Answers to in-class NMR Spectroscopy Problems 1 1. 2. Cl integraton says CH2 beside Cl splitting says Cl-CH2 is beside another CH2 splitting says CH3 is beside a CH2. integraton

More information

CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts)

CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts) CHEM 344 Fall 2016 Spectroscopy and WebMO Exam (75 pts) Name: TA Name: Exam Length = 90 min DO NOT REMOVE ANY PAGES FROM THIS EXAM PACKET. Directions for drawing molecules, reactions, and electron-pushing

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information

Reassignment of the 13 C NMR spectrum of minomycin

Reassignment of the 13 C NMR spectrum of minomycin Reassignment of the 13 C NMR spectrum of minomycin Yoshito Takeuchi*, Yoko Imafuku, and Miki Nishikawa Department of Chemistry, Faculty of Science, Kanagawa University 2946 Tsuchiya, Hiratsuka, Japan 259-1293

More information

2. Examining the infrared spectrum of a compound allows us to:

2. Examining the infrared spectrum of a compound allows us to: CHEM 204 2010 Ass. 1 Problem 1. The amount of energy in infrared light corresponds to: a. the amount of energy needed to promote one electron from a bonding to an antibonding molecular orbital b. the amount

More information

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA Structure 9.1 Introduction Objectives 9.2 Principle 9.3 Requirements 9.4 Strategy for the Structure Elucidation

More information

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. Consider the following reaction sequence. CH 3 CH 3 CH 3 Step 1

More information

Qualitative Analysis of Unknown Compounds

Qualitative Analysis of Unknown Compounds Qualitative Analysis of Unknown Compounds 1. Infrared Spectroscopy Identification of functional groups in the unknown All functional groups are fair game (but no anhydride or acid halides, no alkenes or

More information

HWeb27 ( ; )

HWeb27 ( ; ) HWeb27 (9.1-9.2; 9.12-9.18) 28.1. Which of the following cannot be determined about a compound by mass spectrometry? [a]. boiling point [b]. molecular formula [c]. presence of heavy isotopes (e.g., 2 H,

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy Team Members: Unknown # CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy Purpose: You will learn how to predict the NMR data for organic molecules, organize this data

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Chapter 1: NMR Coupling Constants

Chapter 1: NMR Coupling Constants NMR can be used for more than simply comparing a product to a literature spectrum. There is a great deal of information that can be learned from analysis of the coupling constants for a compound. 1.1 Coupling

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I Subject Chemistry Paper No and Title Module No and Title Module Tag 12: rganic Spectroscopy 29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I CHE_P12_M29 TABLE F CNTENTS 1. Learning utcomes

More information

Technical Note. Introduction

Technical Note. Introduction Technical Note Characterization of Eleven 2,5-Dimethoxy-N-(2-methoxybenzyl)- phenethylamine (NBOMe) Derivatives and Differentiation from their 3- and 4- Methoxybenzyl Analogues - Part II Patrick A. Hays*,

More information

Br OAc. OAc. Problem R-11L (C 16 H 21 BrO 10 ) 270 MHz 1 H NMR spectrum in CDCl 3 Source: Ieva Reich (digitized hard copy) g. AcO. AcO H.

Br OAc. OAc. Problem R-11L (C 16 H 21 BrO 10 ) 270 MHz 1 H NMR spectrum in CDCl 3 Source: Ieva Reich (digitized hard copy) g. AcO. AcO H. Problem R-11L (C 16 21 O ) 270 Mz 1 NMR spectrum in CDCl 3 30 20 0 z 1541.1 1544.3 1530.9 1534.3 1501.8 1506.0 1509.4 1511.3 1512.6 1492.1 1476.0 1466.4 1456.8 1403.1 1406.8 1393.2 1397.2 1198.2 1201.9

More information