Simulation. Lizhu Tong 1 Co., Ltd Numerical. Model. 1. Introduction. flows. discussed. kinds. the maximum. plasma model.

Size: px
Start display at page:

Download "Simulation. Lizhu Tong 1 Co., Ltd Numerical. Model. 1. Introduction. flows. discussed. kinds. the maximum. plasma model."

Transcription

1 Simulation of the Plasma Generated a Gas Bubble Lizhu Tong 1 1 Keisoku Engeerg System Co., Ltd Uchikanda, Chiyoda-ku, Tokyo , Japan, tong@kesco.co.jp Abstract: The plasmas generated water volve various physical phenomena such as flows agitated by bubbles, high electric fields for breakdown, discharges bubbles with the size variation, and so on. In this paper, studies have been made on the simulation of plasmas generated bubbles with the size variation. The species taken account clude electrons, three kds of ions, and ten kds of neutral (molecule, radical, excited) species. 43 chemical reactions are considered. The time evolution of bubble size is simulated usg the movg mesh method provided COMSOL Multiphysics. The plasma properties durg the variation bubble size are obtaed. The effect of the duration for the variation bubble size and the maximum bubble size on discharge properties is examed. Keywords: Gas Bubble, Atmospheric Pressure Plasma, Movg Boundary. 1. Introduction Electrical discharges gas-liquid environ- ments and liquids (primarily water, but some cases also organic liquids) have been studied for a number of years for applications electrical transmission, chemical destruction pollution control, chemical synthesis, polymer surface treatment, biological activation, biomedical treatment, material and nanoparticle synthesis, and chemical analysis of liquid solutions [1]. Discharges directly side bubbles have presented an terestg case for fundamental studies and potential applications because of large surface areas and the presence of the gas phase for ease of discharge itiation [2-5]. Some model simulationss for discharges with humid air or jected gas bubbles have been reported [6-9]. Sce the bubble size varies durg discharge, the plasma simulation bubbles becomes complicated. Until now the studies are performed only for either bubble dynamics [6,7] or plasma properties ignorg the variation bubble size [8,9]. In this work, bubble dynamics and plasma properties are coupled to a one-dimensional ( 1-D) bubble plasma model. The plasma module and the movg mesh technique provided COMSOL Multiphysics are used. The plasma properties with bubbles are presented and discussed. 2. Numerical Model Figure 1. Schematic of 1-D bubble plasma model. The simulations are performed usg 1-D plasma model a 0% %H 2 O gas bubble at atmospheric pressure. The bubble radius is varied from 1 to 8.5 mm, which is taken from the previous research on bubble dynamics [ 7]. The study is made for the first period of the variation bubble radius [6,7]. The duration for the variation bubble radius is chosen = 0.8, 1.6, or 2.4 ms. The plasma species taken account clude the ions: H 2 O +, O H 2 O, H, OH, H 2, O( 1 2 +, H + 2, the neutrals: D), O, O 2, O 3, HO 2 2, H 2 O 2, as well as electrons. The reactions of electron impact collision and those of ions and neutral species are listed Table 1. The detailed formation for plasma modelg can be found our previous work [13,14]. 1-D bubble plasma model for the plasmas generated bubbles is shown Fig. 1. A dc power supplied voltage V and a ballast resistor R b are used. V dc is discharge voltage and j is discharge current density. V dc is solved by, (1) where V= - 1 kv, R b = k. A is set 0.03 cm 2 this work. The movg mesh technique, named as Arbitrary Langrangian Eulerian (ALE) method, Excerpt from the Proceedgs of the 2013 COMSOL Conference Boston

2 is used to trace the variation solved doma. Table 1: The chemical reactions cluded the model. No Reaction e +H 2 O e + H 2 O e +H 2 O e + H+ OH e +H 2 O e + H 2 + O( 1 D) e +H 2 O 2e + H 2 O + e +H 2 e + H 2 e +H 2 e + H + H e +H 2 2e + + H 2 e +O 2 e + O 2 e +O 2 e + O + O e +O 2 e + O + O( 1 D) e +O 2 2e + + O 2 e +O e + O( 1 D) O( 1 D) O 2O + O 2 O 3 +O O + 2O 2 O 3 +O 2 H +O + H 2 OH +H 2 H +O + H 2 O OH +H 2 O H +O 2 + H 2 HO 2 +H 2 H +O 2 + O 2 HO 2 +O 2 H +O 2 + H 2 O HO 2 +H 2 O H +OH+ H 2 H 2 O +H 2 H +OH+ O 2 H 2 O +O 2 H +O 3 OH +O 2 H +O 3 O + HO 2 H +HO 2 H 2 2O +O H +HO 2 O 2 +H 2 H +HO 2 2OH O +O( 1 D) 2O O( 1 D) +H 2 OH +H O( 1 D) +O 2 O+ O 2 O( 1 D) +O 3 2O 2 O( 1 D) +O 3 2O + O 2 O( 1 D) +OH H+ O 2 O +HO 2 OHH +O 2 O( 1 D) +HO 2 OH +O 2 O( 1 D) +H 2 O 2 2 H 2 O +O 2 O( 1 D) +H 2 O O +H 2 O O( 1 D) +H 2 O H 2 +O 2 OH +O 3 HOO 2 +O 2 2OH H 2 O 2 OH +HO 2 OO 2 +H 2 O OH +H 2 O 2 H 2 O +HO 2 2HO 2 H 2 O2+ O 2 Ref. The method enjoys the advantages of both Eulerand can capture the greater deformation with the higher ian and Langrangian frames of reference resolution [15]. ALE method comprises of two frames: a reference frame with X coordate for a 1-D formulation and a spatial frame with x coordate. The reference frame has fixed co- ordates while the spatial frame has coordates movg with time, subject to boundary conditions. The mesh displacement is obtaed by solvg the followg equation Results (2) Figure 2. Electron density, electron temperature, and electric potential at the different times for = 1.6 ms. Excerpt from the Proceedgs of the 2013 COMSOL Conference Boston

3 H 2 O + OH O 2 O 3 H 2 H 2 O 2 Figure 3. Densities of chemical speciess at the different times for = 1.6 ms. Figure 2 shows the electron density, electron temperature, and electric potential at the different times for = 1.6 ms. As the bubble size is enlarged, the electron density extends from the surface of cathode to anode grounded. At t = 0.8 ms, the largest bubble size reaches, which the electron density the neighborhood of cathode appears a large reduction. The highest electron temperature is located the region close to the cathode durg the whole discharge, which sustas the behavior of DC discharge. The density of H 2 O + ion is shown Fig. 3. The densities of H + 2 and O + 2 ions are found to be two orders lower than H 2 O +, so that both are not presented here. As shown Fig. 3, the distributions of neutral species have a common aspect, i.e., the high densities appear the neighborhood of cathode, but as the crease bubble size, the densities the region depart from cathode are dramatically reduced over two orders. After t = 0.8 ms, due to the reduction of solved doma, the densitiess start to rise up. The production efficiency of H 2 O 2 for discharge side gas bubble has been reported [2,4]. It is noted that OH radicals play some important roles, such as oxidation, decomposition of organic pollutants, and so on. The densities of H 2 2O 2 and OH obtaed this work are possessed of a high Excerpt from the Proceedgs of the 2013 COMSOL Conference Boston

4 = 0.8 ms = 2.4 ms Figure 4. Electron density at the different times for = 0.8 and 2.4 ms. Radius: 1~ ~4.8 mm level values, as shown Fig. 3. The density of O 3 is found to be five orders lower than other neutral species, which is similar to some previous researches, e.g., the density of O 3 has been reported to be dramatically reducedd as the crease of H 2 O concentration and the density of O 3 presents a very low value when H 2 O concentration rises up to only 6% [9]. Figure 4 shows the results for the duration for the variation bubble size of 0.8 and 2.4 ms. The electron density at = 0.8 ms is distctly lower than that at = 2.4 ms, especially for the time of small bubble size. This could be deduced that longer discharge times cause more ionizations so that the electron density is creased at = 2.4 ms. The results for different variations bubble radius are given Fig. 5. The bubble radius varies with 1~4.8 and 1~6.7 mm. As the reduction of maximum bubble radius, the electron density becomes relative uniform the bulk of discharge. The dampg phenomenon the region far from cathode is remitted. 4. Conclusions The simulation of the plasma generated a gas bubble is performed usg COMSOL Multiphysics 4.3a. The movg mesh technique is coupled for the first time with plasma simulation. The obtaed densities of chemical species, such as OH, H 2 O 2, and so on, would be beneficial to many further researches on environ- mental applications. The present research provides an efficient method to study plasmas generated bubbles, especially water. 5. References Radius: 1~ ~6.7 mm Figure 5. Electron density at the different times for the variations of bubble radius: 1~4.8 and 1~6.7 mmm at = 1..6 ms. 1. V.I. Parvulescu, M. Magureanu, P. Lukes, Plasma Chemistry and Catalysis Gases and Liquids, Wiley-VCH Verlag & Co. KGaA, Weheim, Germany (20). 2. K.Y. Shih, B.R. Locke, Effects of electrode protrusion length, pre-existg bubbles, solution conductivity and temperature, on liquid phase pulsed electrical discharge, Plasma Process. Polym., 6 (), (2009). 3. K. Yasuoka, K. Sato, Development of repeti- tive pulsed plasmas gas bubbles for water treatment, Int. J. Plasma Environ. Sci. Technol., 3 (1), (2009). Excerpt from the Proceedgs of the 2013 COMSOL Conference Boston

5 4. L. Němcová, A. Nikiforov, C. Leys, F. Krcma, Chemical efficiency of H 2 O 2 production and decomposition of organic compounds under action of DC underwater discharge gas bubbles, IEEE Trans. Plasma Sci., 39 (3), (20). 5. M. Kurahashi, S. Katsura, A. Mizuno, Radical formation due to discharge side bubble liquid, J. Electrostatics, 42, 93-5, (1997). 6. J.A. Cook, A.M. Gleeson, R.M. Roberts, A spark-generated bubble model with semiempirical mass transport, J. Acoust. Soc. Am., 1 (4), (1997). 7. X.P. Lu, One-dimensional bubble model of pulsed discharge water, J. Appl. Phys., 2, (4pp) (2007). 8. N.Y. Babaeva, M.J. Kushner, Structure of positive streamers side gaseous bubbles immersed liquids, J. Phys. D: Appl. Phys., 42, (5pp) (2009). 9. N. Takeuchi, Y. Ishii, K. Yasuoka, Modellg chemical reactions dc plasma side oxygen bubbles water, Plasma Sources Sci. Technol., 21, (8pp) (20).. LXcat, COMSOL Multiphysics 4.3a- Model library for Plasma Module.. D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Global model of low-temperature atmospheric-pressure He+H 2 O plasmas, Plasma Sources Sci. Technol. 19 (2), (20). 13. L.Z. Tong, Effect of gas flow rate and gas composition Ar/CH 4 ductively coupled plasmas, COMSOL Conference 20 Boston, USA (20). 14. L.Z. Tong, Numerical study of the effect of gas flow low pressure ductively coupled Ar/N 2 plasmas, Central European Journal of Physics (4), (20). 15. K.B. Deshpande, Validated numerical modellg of galvanic corrosion for couples: Magnesium alloy (AE44) mild steel and AE44 alumium alloy (AA6063) bre solution, Corrosion Sci. 52, (20). Excerpt from the Proceedgs of the 2013 COMSOL Conference Boston

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas COMSOL CONFERENCE BOSTON 2011 Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas Keisoku Engineering System Co., Ltd., JAPAN Dr. Lizhu Tong October 14, 2011 1 Contents 1.

More information

Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas

Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas Loughborough University Institutional Repository Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas This item was submitted to Loughborough

More information

Tertiary Current Distributions on the Wafer in a Plating Cell

Tertiary Current Distributions on the Wafer in a Plating Cell Tertiary Current Distributions on the Wafer in a Plating Cell Lizhu Tong 1 1 Kesoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan, tong@kesco.co.jp Abstract: The tertiary

More information

Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface

Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface LI Wenqin (o ), WEN Xiaoqiong ( ), ZHANG Jialiang (Ü[û) Center for Plasma Science and Engineering,

More information

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Lizhu Tong Keisoku Engineering System Co., Ltd., Japan September 18, 2014 Keisoku Engineering System Co., Ltd., 1-9-5 Uchikanda,

More information

Comparison of OH Radical Concentration Generated by Underwater Discharge Using Two Methods

Comparison of OH Radical Concentration Generated by Underwater Discharge Using Two Methods 24 International Journal of Plasma Environmental Science & Technology, Vol.10, No.1, MARCH 2016 Comparison of OH Radical Concentration Generated by Underwater Discharge Using Two Methods H. Hayashi, S.

More information

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation E A. El-Zein and M. Talaat Electrical Power & Machines Department, Faculty of Engineering, Zagazig University,

More information

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A 1. Mention the gases used as the insulating medium in electrical apparatus? Most of the electrical apparatus use air as the insulating

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Published in: Proceedings of the 31st International Conference of Phenomena in Ionized Gases(ICPIG2013), July 14-19, 2013, Granada, Spain

Published in: Proceedings of the 31st International Conference of Phenomena in Ionized Gases(ICPIG2013), July 14-19, 2013, Granada, Spain Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O Vasko, C.A.; van Veldhuizen, E.M.; Bruggeman, P.J. Published in: Proceedings of the 31st International

More information

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE SYNERGETI EFFET OF UV LIGHT ON TOLUENE DEOMPOSITION Y DIELETRI ARRIER DISHARGE R. Pyagay, 1 J-S. Kim, 2. Ahn, 2 Y-S. Yim 2 1 hemistry department, Lomonosov Moscow State University, Moscow 119-992, Russia

More information

Electrical Breakdown in Low-Pressure Nitrogen in Parallel Electric and Magnetic Fields

Electrical Breakdown in Low-Pressure Nitrogen in Parallel Electric and Magnetic Fields Electrical Breakdown in Low-Pressure Nitrogen in Parallel Electric and Magnetic Fields Karim Abu-Elabass Department of machinery and electrical equipment, Prince Sultan Industrial Institute, Military Industries

More information

All about sparks in EDM

All about sparks in EDM All about sparks in EDM (and links with the CLIC DC spark test) Antoine Descoeudres, Christoph Hollenstein, Georg Wälder, René Demellayer and Roberto Perez Centre de Recherches en Physique des Plasmas

More information

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

Comparison of hollow cathode and Penning discharges for metastable He production

Comparison of hollow cathode and Penning discharges for metastable He production INSTITUTE OF PHYSICS PUBLISHING Plasma Sources Sci. Technol. 11 (2002) 426 430 Comparison of hollow cathode and Penning discharges for metastable He production PLASMA SOURCES SCIENCE AND TECHNOLOGY PII:

More information

Modeling of a DBD Reactor for the Treatment of VOC

Modeling of a DBD Reactor for the Treatment of VOC Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Modeling of a DBD Reactor for the Treatment of VOC Lamia Braci, Stephanie Ognier, and Simeon Cavadias* Laboratoire de Génie des Procédés

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source

Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source Two-dimensional Numerical Simulation of a Planar Radio-frequency Atmospheric Pressure Plasma Source Lei Wang 1*, Gheorghe Dscu, Eusebiu-Rosini Ionita, Christophe Leys 1, Anton Yu Nikiforov 1 1 Department

More information

Influence of water vapour on acetaldehyde removal efficiency by DBD

Influence of water vapour on acetaldehyde removal efficiency by DBD JOURNAL OF OTPOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 1, February 6, p. 28-211 Influence of water vapour on acetaldehyde removal efficiency by DBD A. S. CHIPER a*, N. B.-SIMIAND b, F. JORAND b,

More information

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research Laboratories, Industrial Technology Research Institute,

More information

Atmospheric pressure plasmas: generation and delivery of reactive oxygen species for biomedical applications

Atmospheric pressure plasmas: generation and delivery of reactive oxygen species for biomedical applications Loughborough University Institutional Repository Atmospheric pressure plasmas: generation and delivery of reactive oxygen species for biomedical applications This item was submitted to Loughborough University's

More information

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes Simulation of Prebreakdown Phenomena in Air s of Rod Plane Configuration of Electrodes V. P. CHARALAMBAKOS, C. P. STAMATELATOS, D. P. AGORIS, E. C. PYRGIOTI Department of Electrical and Computer Engineering

More information

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE PLASMA PHYSICS THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE M. TOMA, I. A. RUSU, D. O. DOROHOI Plasma Physics Department, A. I. Cuza University,

More information

Exponential Expression of Relating Different Positive Point Electrode for Small Air Gap Distance

Exponential Expression of Relating Different Positive Point Electrode for Small Air Gap Distance Research Journal of Applied Sciences, Engineering and Technology 2(6): 512-518, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: April 17, 2010 Accepted Date: June 14, 2010 Published

More information

Generation of Three-Dimensionally Integrated Micro Solution Plasmas and Its Application to Decomposition of Organic Contaminants in Water

Generation of Three-Dimensionally Integrated Micro Solution Plasmas and Its Application to Decomposition of Organic Contaminants in Water Journal of Photopolymer Science and Technology Volume 26, Number 4 (2013) 507 511 2013SPST Generation of Three-Dimensionally Integrated Micro Solution s and Its Application to Decomposition of Organic

More information

Multi-scale simulation of functionalization of rough polymer surfaces using atmospheric pressure plasmas

Multi-scale simulation of functionalization of rough polymer surfaces using atmospheric pressure plasmas INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 39 (2006) 1594 1598 doi:10.1088/0022-3727/39/8/018 Multi-scale simulation of functionalization of rough polymer

More information

Advanced oxidation of organic pollutants in air non-thermal plasmas

Advanced oxidation of organic pollutants in air non-thermal plasmas UNIVERSITÀ DEGLI STUDI DI PADVA Department of Chemical Sciences Advanced oxidation of organic pollutants in air non-thermal plasmas Ester Marotta and Cristina Paradisi PlasTEP, Berlin, December 5-6, 212

More information

Some Aspects of Stress Distribution and Effect of Voids Having Different Gases in MV Power Cables

Some Aspects of Stress Distribution and Effect of Voids Having Different Gases in MV Power Cables IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 6 (May. - Jun. 2013), PP 16-22 Some Aspects of Stress Distribution and Effect of

More information

Investigation of electrode arrangement on ionic wind velocity for hole-type electrostatic precipitator

Investigation of electrode arrangement on ionic wind velocity for hole-type electrostatic precipitator Air Pollution XXII 177 Investigation of electrode arrangement on ionic wind velocity for hole-type electrostatic precipitator H. Kawakami 1, T. Inui 1, T. Sato 2, Y. Ehara 2 & A. Zukeran 3 1 Fuji Electric

More information

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics N. Lavesson *1 and C. B. Doiron 2 1 ABB Corporate Research, Västerås, Sweden, 2 ABB Corporate Research, Dättwil, Switzerland *Corresponding

More information

Application of Plasma Phenomena Lecture /3/21

Application of Plasma Phenomena Lecture /3/21 Application of Plasma Phenomena Lecture 3 2018/3/21 2018/3/21 updated 1 Reference Industrial plasma engineering, volume 1, by J. Reece Roth, Chapter 8-13. Plasma physics and engineering, by Alexander Fridman

More information

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS P.A. Litvinov, V.A. Baturin * Institute of Applied Physics, National Academy of Science of Ukraine, 58 Petropavlovskaya St. Sumy, 40030

More information

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n 20.2 Ion Sources electron ionization produces an M + ion and extensive fragmentation chemical ionization produces an M +, MH +, M +, or M - ion with minimal fragmentation MALDI uses laser ablation to transfer

More information

Sputter Ion Pump (Ion Pump) By Biswajit

Sputter Ion Pump (Ion Pump) By Biswajit Sputter Ion Pump (Ion Pump) By Biswajit 08-07-17 Sputter Ion Pump (Ion Pump) An ion pump is a type of vacuum pump capable of reaching pressures as low as 10 11 mbar under ideal conditions. An ion pump

More information

Unit 12 Conduction in Liquids and Gases

Unit 12 Conduction in Liquids and Gases Conduction in Liquids and Gases Objectives: Define positive and negative ions. Discuss electrical conduction in gases. Discuss electrical conduction in a liquid. Discuss several of the ionization processes.

More information

Experimental Study of Plasma Under-liquid Electrolysis in Hydrogen Generation

Experimental Study of Plasma Under-liquid Electrolysis in Hydrogen Generation 第 6 卷第 3 期 过程工程学报 Vol.6 No.3 2006 年 6 月 The Chinese Journal of Process Engineering June 2006 Experimental Study of Plasma Under-liquid Electrolysis in Hydrogen Generation YAN Zong-cheng( 严宗诚 ), CHEN Li(

More information

MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF)

MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF) MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF) C. LUKAS, M. SPAAN, V. SCHULZ VON DER GATHEN, H. F. DÖBELE Institut für Laser

More information

University of Technology Corrosion Engineering Lecturer: Basheer Ahmed Chemical Engineering Dept. 4 th Class

University of Technology Corrosion Engineering Lecturer: Basheer Ahmed Chemical Engineering Dept. 4 th Class Example 1 Determine the corrosion rate of carbon steel in salt solution from the following laboratory data. Consider the corrosion rate by a)mpy, b)mdd. C) Calculate the current density in μa/cm 2 Δ W

More information

OCR Chemistry Checklist

OCR Chemistry Checklist Topic 1. Particles Video: The Particle Model Describe the main features of the particle model in terms of states of matter. Explain in terms of the particle model the distinction between physical changes

More information

To the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase

To the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase To the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase Yohan Seepersad 1,2, Danil Dobrynin 1*, Mikhail Pekker 1, Mikhail N. Shneider 3 and Alexander Fridman 1,4 1 A. J. Drexel

More information

Residual resistance simulation of an air spark gap switch.

Residual resistance simulation of an air spark gap switch. Residual resistance simulation of an air spark gap switch. V. V. Tikhomirov, S.E. Siahlo February 27, 2015 arxiv:1502.07499v1 [physics.acc-ph] 26 Feb 2015 Research Institute for Nuclear Problems, Belarusian

More information

IEEE TRANSACTIONS ON PLASMA SCIENCE 1. Calculation of Secondary Electron Emission Yield From MgO Surface. Yasushi Motoyama and Fumio Sato

IEEE TRANSACTIONS ON PLASMA SCIENCE 1. Calculation of Secondary Electron Emission Yield From MgO Surface. Yasushi Motoyama and Fumio Sato IEEE TRANSACTIONS ON PLASMA SCIENCE 1 Calculation of Secondary Electron Emission Yield From MgO Surface Yasushi Motoyama and Fumio Sato Abstract Secondary electron emission yield values for rare-gas particles

More information

Relationship between production and extraction of D - /H - negative ions in a volume negative ion source

Relationship between production and extraction of D - /H - negative ions in a volume negative ion source J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Relationship between production and extraction of D - /H - negative ions in a volume negative ion source Takahiro Nakano, Shigefumi Mori, Yasushi Tauchi, Wataru

More information

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Journal of the Chinese Chemical Society, 2007, 54, 823-828 823 Communication A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Antonius Indarto, a,b * Jae-Wook Choi,

More information

49 56 (8 Q's) Solutions YOU WILL SKIP THIS SECTION ENTIRELY (8 Q's) Organic Chemistry 12 none

49 56 (8 Q's) Solutions YOU WILL SKIP THIS SECTION ENTIRELY (8 Q's) Organic Chemistry 12 none ACS Standardized Exam for CHM 122 Breakdown of Questions by Topic Question # Topic Covered Problem Set Section in ACS Book 1 12 (12 Q's) Kinetics 1, 2 Dynamics 13 24 (12 Q's) Equilibrium 3, 4, 5, 6, 7

More information

Detection of OH(A 2 Σ + ) and O( 1 D) Emission Spectrum Generated in a Pulsed Corona Plasma

Detection of OH(A 2 Σ + ) and O( 1 D) Emission Spectrum Generated in a Pulsed Corona Plasma 228 Bull. Korean Chem. Soc. 2000, Vol. 21, No. 2 Dong Nam Shin et al. Detection of OH(A 2 Σ + ) and O( 1 D) Emission Spectrum Generated in a Pulsed Corona Plasma Dong Nam Shin, Chul Woung Park, and Jae

More information

Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics

Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics Surface and Coatings Technology 174 175 (2003) 839 844 Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics M.C. Kim, S.H. Yang *, J.-H. Boo, J.G. Han

More information

Generic Detector. Layers of Detector Systems around Collision Point

Generic Detector. Layers of Detector Systems around Collision Point Generic Detector Layers of Detector Systems around Collision Point Tracking Detectors Observe particle trajectories in space with as little disturbance as possible 2 use a thin ( gm. cm ) detector Scintillators

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund Plasma and catalysts David Cameron Professor of Material Technology Advanced Surface technology Research Laboratory (ASTRaL) University of Lappeenranta Finland Part-financed by the European Union (European

More information

Programme of Assessment: Physical Science NCS Gr 10/2014

Programme of Assessment: Physical Science NCS Gr 10/2014 Programme of Assessment: Physical Science NCS Gr 10/2014 Task Date Scope SBA task: Chemistry 30/01/2014 Heating and cooling curve of water Informal class test 1 07/02/2014 States of matter, Atomic structure,

More information

Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size

Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size To cite this article: M H S Al Anbouri

More information

CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH

CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH 17 CHAPTER 2 ESTIMATION OF BREAKDOWN VOLTAGES IN SMALL INSULATION GAPS AN EMPIRICAL APPROACH 2.1 INTRODUCTION Insulation materials of different types viz. gaseous, liquid and solid are used to make the

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES SPECTRA PRODUCED BY DISCHARGE TUBES CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum

More information

Electron Transport Behavior in a Mirror Magnetic Field and a Non-uniform Electric Field

Electron Transport Behavior in a Mirror Magnetic Field and a Non-uniform Electric Field Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 207 212 c International Academic Publishers Vol. 35, No. 2, February 15, 2001 Electron Transport Behavior in a Mirror Magnetic Field and a Non-uniform

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A.

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt A.V. Simakin and G.A. Shafeev Wave Research Center of A.M. Prokhorov General Physics

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Experimental Studies in a Gas Embedded Z-pinch Operating at Mega Amperes Currents

Experimental Studies in a Gas Embedded Z-pinch Operating at Mega Amperes Currents 1 IC/P7-2 Experimental Studies in a Gas Embedded Z-pinch Operating at Mega Amperes Currents L. Soto 1), C. Pavez 2), J. Moreno 1), P. Silva 1), M. Zambra 1), G. Sylvester 1) 1) Comisión Chilena de Energía

More information

PLASMA immersion ion implantation (PIII) is a fledgling

PLASMA immersion ion implantation (PIII) is a fledgling IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 26, NO. 6, DECEMBER 1998 1661 Low Pressure Plasma Immersion Ion Implantation of Silicon Zhi-Neng Fan, Qing-Chuan Chen, Paul K. Chu, Member, IEEE, and Chung Chan

More information

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar HP Laboratories HPL-2009-234 Keyword(s): Townsend Discharge, Paschen Breakdown,

More information

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department

More information

Capacity calculation of the electrotechnical scheme of discharge gap replacement of the ozonizer in the СOMSOL environment

Capacity calculation of the electrotechnical scheme of discharge gap replacement of the ozonizer in the СOMSOL environment International Conference on Recent Trends in Physics 016 (ICRTP016) Journal of Physics: Conference Series 755 (016) 011001 doi:10.1088/174-6596/755/1/011001 Capacity calculation of the electrotechnical

More information

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) 1 POSTER JP1.00100 [Bull. APS 51, 165 (2006)] DPP06 Meeting of The American Physical Society Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) Su-Hyun Kim, Robert Merlino,

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Ion-Molecule Reactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds

Ion-Molecule Reactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds Ion-Molecule eactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds S. Williams, S. Arnold, A. Viggiano, and. Morris Air Force esearch Laboratory / Space Vehicles

More information

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth L. ZEGHICHI (), L. MOKHNACHE (2), and M. DJEBABRA (3) () Department of Physics, Ouargla University, P.O Box.5, OUARGLA 3,

More information

Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics

Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics 504 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 31, NO. 4, AUGUST 2003 Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics Woo Seok Kang, Jin Myung Park,

More information

Repetition: Ion Plating

Repetition: Ion Plating Repetition: Ion Plating Substrate HV (bis ca. 1kV) Optional ionization system Source Ionized filling gas Source material, ionized or neutral Repetition: Ion Plating Ion Species Separated ion source Ions

More information

Explosion Properties of Highly Concentrated Ozone Gas. 1 Iwatani International Corporation, Katsube, Moriyama, Shiga , Japan

Explosion Properties of Highly Concentrated Ozone Gas. 1 Iwatani International Corporation, Katsube, Moriyama, Shiga , Japan Explosion Properties of Highly Concentrated Ozone Gas Kunihiko Koike 1*, Masaharu Nifuku 2, Koichi Izumi 1, Sadaki Nakamura 1, Shuzo Fujiwara 2 and Sadashige Horiguchi 2 1 Iwatani International Corporation,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES*

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* Xudong Peter Xu and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL

More information

Topic: APPLIED ELECTROCHEMISTRY. Q.1 What is polarization? Explain the various type of polarization.

Topic: APPLIED ELECTROCHEMISTRY. Q.1 What is polarization? Explain the various type of polarization. Topic: APPLIED ELECTROCHEMISTRY T.Y.B.Sc Q.1 What is polarization? Explain the various type of polarization. Ans. The phenomenon of reverse e.m.f. brought about by the presence of product of electrolysis

More information

Journal of Electrostatics

Journal of Electrostatics Journal of Electrostatics xxx (20) e5 Contents lists available at SciVerse ScienceDirect Journal of Electrostatics journal homepage: www.elsevier.com/locate/elstat Effect of relative humidity on currentevoltage

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Numerical Analyze of Corona Discharge on HVDC Transmission Lines Numerical Analyze of Corona Discharge on HVDC Transmission Lines H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj Abstract This study and the field test comparisons were carried out on the Algerian

More information

Modelling Of Mathematical Equation for Determining Breakdown Voltage

Modelling Of Mathematical Equation for Determining Breakdown Voltage 2013 First International Conference on Artificial Intelligence, Modelling & Simulation Modelling Of Mathematical Equation for Determining Breakdown Voltage Muhammad S. Laili, Noradila Yusof School of Electrical

More information

Extremely far from equilibrium: the multiscale dynamics of streamer discharges

Extremely far from equilibrium: the multiscale dynamics of streamer discharges Extremely far from equilibrium: the multiscale dynamics of streamer discharges Ute Ebert 1,2 1 Centrum Wiskunde & Informatica Amsterdam 2 Eindhoven University of Technology http://www.cwi.nl/~ebert www.cwi.nl/~ebert

More information

3/4W, 2010 Low Resistance Chip Resistor

3/4W, 2010 Low Resistance Chip Resistor 1. Scope 3/4W, 2010 This specification applies to 2.5mm x 5.0mm size 3/4W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation RL2550 L - Where (1) (2)

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

In the exam, you will be asked to tackle questions such as the one below. 6 volt d.c. power supply

In the exam, you will be asked to tackle questions such as the one below. 6 volt d.c. power supply Get started AO1, AO2 3 Electrolysis Electrolysis is the decomposition (breakdown) of a compound using electricity. This unit will help you to explain what happens in electrolysis and to predict and explain

More information

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters -

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters - Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters - Osamu Fukumasa and Shigefumi Mori Department of Electrical and Electronic Engineering,

More information

Dynamics of streamer propagation in air

Dynamics of streamer propagation in air J. Phys. D: Appl. Phys. 32 (1999) 913 919. Printed in the UK PII: S0022-3727(99)96805-5 Dynamics of streamer propagation in air N L Allen and P N Mikropoulos Department of Electrical Engineering and Electronics,

More information

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) IOP Conference Series: Materials Science and Engineering A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) To cite this article: D A L Loch and A P Ehiasarian 2012 IOP Conf. Ser.:

More information

Proportional Counters

Proportional Counters Proportional Counters 3 1 Introduction 3 2 Before we can look at individual radiation processes, we need to understand how the radiation is detected: Non-imaging detectors Detectors capable of detecting

More information

AQA Chemistry Checklist

AQA Chemistry Checklist Topic 1. Atomic structure Video: Atoms, elements, compounds, mixtures Use the names and symbols of the first 20 elements in the periodic table, the elements in Groups 1 and 7, and other elements in this

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Multiphysicss. 1 Indian Institute of. Machining. materials. In. for the anode tool. metal which leads to. form: made to study the.

Multiphysicss. 1 Indian Institute of. Machining. materials. In. for the anode tool. metal which leads to. form: made to study the. Thermal Model for Single Discharge EDM Process Using COMSOL Multiphysicss K. Gajjar 1, U. Maradia 2, and K. Wegener 2 1 Indian Institute of Technology Bombay, Maharashtra, India 2 Institute for Process

More information

Simulating the Spontaneous Formation of Self-Organized Anode Spot Patterns in Arc Discharges

Simulating the Spontaneous Formation of Self-Organized Anode Spot Patterns in Arc Discharges Simulating the Spontaneous Formation of Self-Organized Anode Spot Patterns in Arc Discharges Juan Pablo Trelles Department of Mechanical Engineering and Energy Engineering Graduate Program University of

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine 1 AT/P5-05 H - Ion Source with Inverse Gas Magnetron Geometry for SNS Project V.A. Baturin, P.A. Litvinov, S.A. Pustovoitov, A.Yu. Karpenko Institute of Applied Physics, National Academy of Sciences of

More information

rf-generated ambient-afterglow plasma

rf-generated ambient-afterglow plasma JOURNAL OF APPLIED PHYSICS 99, 073303 2006 rf-generated ambient-afterglow plasma Shariff Shakir and Sandhya Mynampati Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale,

More information

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates WDS' Proceedings of Contributed Papers, Part II, 5 9,. ISBN 978-8-778-85-9 MATFYZPRESS The Computational Simulation of the Positive Ion Propagation to Uneven Substrates V. Hrubý and R. Hrach Charles University,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information