Ch. 14. ELECTRODES AND POTENTIOMETRY

Size: px
Start display at page:

Download "Ch. 14. ELECTRODES AND POTENTIOMETRY"

Transcription

1 Ch. 14. ELECTRODES AND POTENTIOMETRY 14.1 Analytical chemists design electrodes (voltage sensitive to conc. change) galvanic cells ion-selective electrodes ion-sensing field effect transistors potentiometry --- measurement of cell voltage indicator electrode : responds to activity of ANALYTE reference electrode : maintains a fixed potential = cell voltage : difference in two potentials Reference electrodes 14.2 Right e : Fe +3 + e - Fe +2 E +0 = V Left e : AgCl (s) + e - Ag(s) + Cl - E -0 = V since E +0 = V is more positive, reaction goes as written Fe +3 + e - Fe +2 the other is proceed to backward. E = E + - E - = [Cl - ] is constant (saturated KCl sol.) half-cell on the left --- reference thus, potential changes by

2 14-1. Reference electrodes ) Ag-AgCl reference electrode, dashed area in Fig 14-1 Fig 14-2 simplifies to Fig 14-3, 14-4 utilized as typical ref electrode Ag AgCl electrode : AgCl(s) + e - Ag(s) + Cl - E 0 = V since A clis not 1, E(sat. KCl) = V Reference electrodes ) Calomel electrode Hg Hg 2 Cl 2 electrode Metal Metal salt Hg 2 Cl 2 (s) + e - Hg (l) + Cl - E 0 = V E(sat. KCl) = V saturated calomel electrode (SCE) 3) Voltage conversion

3 14-2. Indicator electrode 14.5 the most common --- Pt (inert) metal electrode is best provided with large & clean surface for ref : use calomel electrode In case of silver, measure conc. of silver Ag + + e - Ag (s) E +0 = V for ref, SCE E - = V E = E + - E - = voltage measurement Since Ag + is related to AgCl (s) Ag + + Cl - K sp = Indicator electrode 14.6 ex) A mL solution containing M NaCl was titrated with M AgNO 3, and the voltage of the cell shown in Fig 15-6 was monitored. Calculate the 10 voltage after the addition of 65.0, 100.0, ml of AgNO x10 K sp Silver electrode = halide electrode [Ag + ] = K K E = log sp sp [ Cl ] [ Cl ] voltage --- [Cl - ] metal types : Ag, Cu, Zn, Cd, Hg can be used as indicator for their aqueous ions.

4 14-3. What is junction potential? 14.7 In case of two dissimilar electrolyte solutions basically, E measured = E cell + E junction (E j ) fundamental limitation in accuracy Cl - diffuses faster (higher mobility) than Na + excess negative charge at front potential difference build up KCl has the smallest E j since K + and Cl - have similar mobility thus, KCl is used in salt-bridge How ion-selective electrodes work? 14.8 ion-selective electrode - responds to only one species How ion-selective electrode works? membrane separates two C + solutions contains a ligand that can bind and transport C + but not R - (insoluble in water) C + diffuse to lower activity (conc.) region finally positive charge build up on low act. side. steady state is preventing further migration of C + liquid junction (constant pot. diff) Free energy difference L: ligand having high affinity for C + A membrane G = G solvation - RT ln = - n F E A outler E = const + log A outer n n=1 for C +

5 14-5. ph measurement with a glass electrode 14.9 most widely used ion-selective electrode : glass electrode for H + (ph) Ag(s) AgCl(s) Cl - (aq) H + (aq, outside) : H + (aq, inside), Cl - (aq) AgCl(s) Ag(s) outer ref. ele analyte inner H + inner ref. ele 14.10

6 14-5. ph measurement with a glass electrode Surface of a glass electrode? silicate lattice in glass Cross section of glass membrane of a ph electrode Si O Cations such as Li +, Na ph measurement with a glass electrode both sides - will be swollen by water (hydrated gel) : most of metal cations diffuse out H+ in sol. diffuses into the membr. The more H + in sol, the more H + will be bound to the glass surface. potential difference between inner & outer Response of glass electrode A H ( out ) : E = const + ( ) log A H ( in) ~ 1.00 (>0.98) electromotive efficiency const : asymmetry potential (two sides, inner and outer, are not identical) with calibration, all const is covered ph electrode must be calibrated before it is used

7 14-5. ph measurement with a glass electrode Errors in ph measurement 1) accuracy 0.01 ph unit 2) junction potential at porous plug near the bottom ~ 0.01 ph unit 3) when H + is very low (alkaline), electrode responds to Na + with H + apparent ph is lower than the true. alkaline error 4) when H + is very high, (strong acidic) measured ph is higher than 5) allowance time 6) dry electrode needs soaking 7) calibrated at same temp Types of ion-selective electrodes ) glass membranes for H + & monovalent cation 2) solid-state electrodes (salt crystal) 3) liquid-based : hydrophobic polymer membrane 4) compound electrodes 1) solid-state electrodes

8 14-6. Types of ion-selective electrodes inorganic crystal LaF 3 doped with Eu +2 in 0.1M NaF & 0.1M NaCl principle : F - ion in sol migrates to LaF 3 crystal anion vacancy from EuF 2 dopping in response : E = const - b ( ) log A F-(outside) ~ 1 [F - ] = 10-6 ~ 1 M Types of ion-selective electrodes Ag 2 S for membrane responds to Ag + & S -2 doping with CuS, CdS, PbS : sensitive to Cu +2, Cd +2, Pb +2 respectively

9 14-6. Types of ion-selective electrodes ) Liquid-based ion-selective electrodes membrane saturated with a hydrophobic liquid ion Exchanger a calcium chelator Ca +2 transport across the membrane to establish voltage difference E = const + log A =1 2 Ca ( outside) 2 ion exchanger : calcium dodecylphosphate in dioctylphenylphosphate Types of ion-selective electrodes ) compound electrodes CO 2 gas-sensing electrode conventional glass ph electrode surrounded by an electrolyte solution enclosed in a semipermeable membrane made of rubber, Teflon, PE When CO 2 diffuses through membrane, it lowers the ph - detected NH 3, SO 2, H 2 S, No x

10 14-7. Using ion-selective electrodes Advantage 1. wide range of linear response 2. non-destructive 3. non-contaminating 4. short response time 5. unaffected by color or turbidity cares must be required 1. precision (no better than 1 %) 2. electrode contamination by proteins, organic solutes - sluggish response, interference 3. fragile, limited shelf life concentration measurements? standard addition method

CHAPTER 14: ELECTRODES AND POTENTIOMETRY

CHAPTER 14: ELECTRODES AND POTENTIOMETRY CHAPTER 14: ELECTRODES AND POTENTIOMETRY Chapter 14 Electrodes and Potentiometry Potentiometry : The use of electrodes to measure voltages that provide chemical information. (The cell voltage tells us

More information

Chapter 14: Electrodes and Potentiometry

Chapter 14: Electrodes and Potentiometry Yonsei University Chapter 14: Electrodes and Potentiometry The use of electrodes to measure voltages that provide chemical information is called potentiometry (ion-selective electrode, ion-sensing field

More information

Chem 321 Lecture 17 - Potentiometry 10/24/13

Chem 321 Lecture 17 - Potentiometry 10/24/13 Student Learning Objectives Chem 321 Lecture 17 - Potentiometry 10/24/13 Electrodes The cell described in the potentiometric chloride titration (see 10/22/13 posting) consists of a Ag/AgCl reference electrode

More information

Unit 2 Electrochemical methods of Analysis

Unit 2 Electrochemical methods of Analysis Unit 2 Electrochemical methods of Analysis Recall from Freshman Chemistry: Oxidation: Loss of electrons or increase in the oxidation number Fe 2 e - Fe 3 Reduction: Gain of electrons or decreases in the

More information

Instrumental Chemical Analysis. Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013

Instrumental Chemical Analysis. Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013 0510212 Instrumental Chemical Analysis Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013 Chapter 1 Electroanalytical Methods Electroanalytical Chemistry Electroanalytical

More information

Chapter 3 Electrochemical methods of Analysis-Potentiometry

Chapter 3 Electrochemical methods of Analysis-Potentiometry Chapter 3 Electrochemical methods of Analysis-Potentiometry Electroanalytical chemistry Contents Introduction Galvanic and electrolytic cells Salt bridge Electrode potential and cell potential Indicator

More information

Electrochemistry. Redox reactions. Half Reactions. Nernst Equation Ion selective electrodes

Electrochemistry. Redox reactions. Half Reactions. Nernst Equation Ion selective electrodes Electrochemistry Nernst Equation Ion selective electrodes Redox reactions oxidation - loss of electrons M n+ M n+1 + e - M is oxidized - reducing agent reduction - gain of electrons N n+ + e - N n-1 N

More information

Reference electrode. Calomel electrode Hg in contact with Hg(I) chloride Ag/AgCl 15-2

Reference electrode. Calomel electrode Hg in contact with Hg(I) chloride Ag/AgCl 15-2 Potentiometry Potential measurements of electrochemical cells Ion selective methods Reference electrode Indicator electrode Potential measuring device Reference electrode Indicator electrodes Ion specific

More information

Chemistry Instrumental Analysis Lecture 22. Chem 4631

Chemistry Instrumental Analysis Lecture 22. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 22 Measures potential under very low currents. The cell is 2 half cells. Consist of a reference electrode, indicator electrode, and potential measuring device.

More information

Analytical Chemistry 3 rd EXAM. June 4, 2013

Analytical Chemistry 3 rd EXAM. June 4, 2013 Analytical Chemistry 3 rd EXAM. June 4, 2013 I. Suppose that we place a mixture of substances A and B in equal concentrations in the first box in column 2 (figure 1). Assume that substance A dissolves

More information

Analysis of cations and anions by Ion- Selective Electrodes (ISEs)

Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Purpose: The purpose of this assignment is to introduce potentiometric measurements of ionic species by ion selective electrodes (ISEs)

More information

Membrane Electrodes. Several types

Membrane Electrodes. Several types Membrane Electrodes Electrical connection Several types - Glass membrane electrode - Liquid membrane electrode - Solid State membrane electrode - Permeable membrane electrode seal 0.1 M HCl Filling solution

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Chapter 21. Potentiometry

Chapter 21. Potentiometry Chapter 21 Potentiometry 1 Potentiometric methods Potentiometric methods of analysis are based on measuring the potential of electrochemical cells without drawing appreciable currents. Applications: Determine

More information

Chapter 13 POTENTIOMETRIC ELECTRODES AND POTENTIOMETRY

Chapter 13 POTENTIOMETRIC ELECTRODES AND POTENTIOMETRY Chapter 13 POTENTIOMETRIC ELECTRODES AND POTENTIOMETRY POTENTIOMETRIC ELECTRODES AND POTENTIOMETRY Ch.13 In this chapter Understand the concept of the various types of electrodes that can be used for measuring

More information

Potentiometry fixes one of the half cells as a reference.

Potentiometry fixes one of the half cells as a reference. Page 1 of 1 Chem 201 Lecture 9a Summer 09 Return tests Last time: Potentiometry Today: 1. finish Potentiometry 2. Start analytical separations Potentiometry: cell potential represented by Nernst equation

More information

METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES

METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES ELECTROCHEMISTRY Basic principle Electrodes are used to selectively measure particular ions Instruments utilizing electrodes measure the potential

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Potentiometry (BF pp )

Potentiometry (BF pp ) (BF pp. 74-82) Measurement of a potential, E, that reflects the concentration of an analyte species in solution according to a Nernst-like equation. E = E 0 + (0.059/n)log[Ox]/[Red] Ion, internal solution

More information

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMISTY ELECTROCHEMISTRY IS THE STUDY OF CHEMICAL REACTIONS THAT RESULT IN THE FLOW OF ELECTRONS (CURRENT) OR THE DEVELOPMENT

More information

possesses negative potential & undergoes oxidation preferably act as ANODE

possesses negative potential & undergoes oxidation preferably act as ANODE ELECTROCHEMISTRY Introduction: Electrochemistry is the area of Chemistry dealing with the interconversion of electrical energy and chemical energy. There are many applications of this in every day life.

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

#13 Electrochemical Cells

#13 Electrochemical Cells #13 Electrochemical Cells If a copper strip is placed in a solution of copper ions, one of the following reactions may occur: Cu 2+ + 2e - Cu Cu Cu 2+ + 2e - The electrical potential that would be developed

More information

Solutions & Solubility: Net Ionic Equations (9.1 in MHR Chemistry 11)

Solutions & Solubility: Net Ionic Equations (9.1 in MHR Chemistry 11) Solutions & Solubility: Net Ionic Equations (9.1 in MHR Chemistry 11) 1 Solubility vs. Temperature 2 Solubility Table Anions SOLUBILITY Table 8.3 page 363 in MHR Cl Br I S OH SO CO 3 PO 3 SO 3 C 2 H 3

More information

Fig. Electrochemical Cell/ Potentiometric Titration

Fig. Electrochemical Cell/ Potentiometric Titration Fig. Electrochemical Cell/ Potentiometric Titration The accurate, precise and effective potentiometric measurements can be made with the help of the following two types of electrodes namely : REFERENCE

More information

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary ELECTROCHEMISTRY I The science concerned with the study of electron transfer across phase boundary Electrode: Is a conducting material immersed in a media. Electrode potential: Is the potential difference

More information

11.1. Galvanic Cells. The Galvanic Cell

11.1. Galvanic Cells. The Galvanic Cell Galvanic Cells 11.1 You know that redox reactions involve the transfer of electrons from one reactant to another. You may also recall that an electric current is a flow of electrons in a circuit. These

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

F- Cl- Br- I- CN- S2- NO3-

F- Cl- Br- I- CN- S2- NO3- Middle of the 60 s First ISE for fluoride Na+ K+ Ag+ Ca2+ NH + 4 Cu2+ Pb2+ F- Cl- Br- I- CN- S2- NO3- Environment Food industry and agriculture Medecine, pharmaceutical, cosmetics Power plants Fluoride

More information

CHAPTER II. POTENTIOMETRY AND REDOX TITRATIONS

CHAPTER II. POTENTIOMETRY AND REDOX TITRATIONS CHAPTER II. POTENTIOMETRY AND REDOX TITRATIONS I. Principles of Potentiometry Potentiometric methods of analysis are based upon measurements of the potential of electrochemical cells under conditions of

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells There are two types: Galvanic and Electrolytic Galvanic Cell: a cell in which a is used to produce electrical energy, i.e., Chemical energy is transformed into Electrical energy.

More information

PC-2(B):ELECTROCHEMISTRY-1(Contd ) Electrode

PC-2(B):ELECTROCHEMISTRY-1(Contd ) Electrode PC-2(B): ELECTROCHEMISTRY-1; L-2:Electrode ; DR.A.DAYALAN, Professor of Chemistry 1 PC-2(B):ELECTROCHEMISTRY-1(Contd ) LESSION-2 Electrode 1. STANDARD ELECTRODE : To determine electrode potential 2. STANDARD

More information

ph of natural waters

ph of natural waters ph of natural waters Na 2 CO 3 10H 2 O (natron) 2 Na + + CO 3 + 10H 2 O 4FeS 2 + 15O 2 + 14H 2 O 4 Fe(OH) 3 + 16H + + 8SO 4 4NaAlSi 3 O 8 + 11H 2 O 4Na + + 4OH - + Al 4 Si 4 O 10 (OH) 8 + 8Si(OH) 4 In

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

Chemistry 222 Exam 4: Chapters 11, 13, 14 Spring Points

Chemistry 222 Exam 4: Chapters 11, 13, 14 Spring Points Chemistry 222 Name Exam 4: Chapters 11, 13, 14 Spring 2014 80 Points Complete five (5) of the following problems. Each problem is worth 16 points. CLEARLY mark the problems you do not want graded. You

More information

Chapter 7 Electrochemistry

Chapter 7 Electrochemistry Chapter 7 Electrochemistry Outside class reading Levine: pp. 417 14.4 Galvanic cells: pp. 423 14.5 types of reversible electrodes 7.6.1 Basic concepts of electrochemical apparatus (1) Electrochemical apparatus

More information

Chapter 18. Solubility and Complex- Ionic Equilibria

Chapter 18. Solubility and Complex- Ionic Equilibria Chapter 18 Solubility and Complex- Ionic Equilibria 1 The common ion effect Le Chatelier Why is AgCl less soluble in sea water than in fresh water? AgCl(s) Ag + + Cl Seawater contains NaCl 2 Problem: The

More information

Chapter 16. Solubility and Complex Ion Equilibria

Chapter 16. Solubility and Complex Ion Equilibria Chapter 16 Solubility and Complex Ion Equilibria Section 16.1 Solubility Equilibria and the Solubility Product Solubility Equilibria Solubility product (K sp ) equilibrium constant; has only one value

More information

Electrical double layer

Electrical double layer Electrical double layer Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ 7. lecture Adsorption of strong electrolytes from

More information

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7

] [ SO 4 ] let sol y x x = x x be x = x 2 if sol y = 7.94 x 10 4 mol/l = 6.3 x 10 7 SCH 4U: UNIT 4 LESSONS Heterogeneous EQUILIBRIUM (Chap 17-pg 759) 1. Rationale: The principles of Chemical Equilibrium developed earlier (in Unit 3) also apply to weakly soluble salts. In this unit we

More information

Electrode Potentials and Their Measurement

Electrode Potentials and Their Measurement Electrochemistry Electrode Potentials and Their Measurement Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) No reaction Zn(s) + Cu 2+ (aq) Cu(s) + Zn 2+ (aq) In this reaction: Zn (s) g Zn 2+

More information

CHEM Pharmacy Week 9: Nernst Equation. Dr. Siegbert Schmid School of Chemistry, Rm 223 Phone:

CHEM Pharmacy Week 9: Nernst Equation. Dr. Siegbert Schmid School of Chemistry, Rm 223 Phone: CHEM1612 - Pharmacy Week 9: Nernst Equation Dr. Siegbert Schmid School of Chemistry, Rm 223 Phone: 9351 4196 E-mail: siegbert.schmid@sydney.edu.au Unless otherwise stated, all images in this file have

More information

Na+ K+ Ag+ Ca2+ NH + 4. F- Cl- Br- I- CN- S2- NO3-

Na+ K+ Ag+ Ca2+ NH + 4. F- Cl- Br- I- CN- S2- NO3- 1 1 HISTORY 2 Middle of the 60 s First ISE for fluoride Na+ K+ Ag+ Ca2+ NH + 4 Cu2+ Pb2+ F- Cl- Br- I- CN- S2- NO3- Until the 60 s the only ISE is in fact the ph electrode with a glass sensitive to protons.

More information

Electrochemical Cells

Electrochemical Cells CH302 LaBrake and Vanden Bout Electrochemical Cells Experimental Observations of Electrochemical Cells 1. Consider the voltaic cell that contains standard Co 2+ /Co and Au 3+ /Au electrodes. The following

More information

Electrodes for ph measurements. - when you need to be sure...

Electrodes for ph measurements. - when you need to be sure... Electrodes for ph measurements - when you need to be sure... Different types Combined Reference Glass Electrode working principle Glass electrode Reference electrode Electrode body Internal reference element

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

11-1 Notes. Chemical Reactions

11-1 Notes. Chemical Reactions 11-1 Notes Chemical Reactions Chemical Reactions In a chemical reaction 1 or more substances (the reactants) change into 1 or more new substances (the products). Reactants are always written on the left

More information

Chapter 5. Chemical reactions

Chapter 5. Chemical reactions Chapter 5 Chemical reactions Chemical equations CaO(s) + CO 2 (g) CaCO 3 (s) + CO(g) Chemical equation - representation of a chemical reaction; uses the symbols of the elements and formulae of the compounds

More information

Reactions in Aqueous Solutions

Reactions in Aqueous Solutions Copyright 2004 by houghton Mifflin Company. Reactions in Aqueous Solutions Chapter 7 All rights reserved. 1 7.1 Predicting if a Rxn Will Occur When chemicals are mixed and one of these driving forces can

More information

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit.

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit. Solubility Equilibrium The Basics (should be mostly review) Solubility is defined as the maximum amount of a substance which can be dissolved in a given solute at a given temperature. The solubility of

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

Electroanalytical methods

Electroanalytical methods Electroanalytical methods G. Galbács Electrochemical methods In electrochemical methods of instrumental analysis, one measures voltage (potential) and/or current signals. A variety of electrochemical methods

More information

Electrochemistry: Elektrolytic and galvanic cell

Electrochemistry: Elektrolytic and galvanic cell Electrochemistry: Elektrolytic and galvanic cell 1/26 Galvanic series (Beketov, cca 1860): Ca, Al, Mn, Cr, Zn, Cd, Fe, Pb, [H 2 ], Cu, Ag, Au Cell = system composed of two electrodes and an electrolyte.

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Electro Chemistry Part-II 1. Faraday s laws of electrolysis are related to the 1) Molar mass of the electrolyte 2) Equivalent weight of the cation or anion 3) Molecular mass of the electrolyte 4) Atomic

More information

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples:

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples: Ionic equations, calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds

More information

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is Surname 1 Name Course Instructor Date Electrochemistry 1. Faraday s Law Michael Faraday s law of electromagnetic induction says that whenever a conductor is positioned in a changeable magnetic field emf

More information

Solubility Equilibria

Solubility Equilibria Chapter 17 SOLUBILITY EQUILIBRIA (Part II) Dr. Al Saadi 1 Solubility Equilibria The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. 14.1 General Properties of Solutions 14.2 Solubility 14.3 Rate of Dissolving Solids 14.4 Concentration

More information

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2.

22. What is the maximum concentration of carbonate ions that will precipitate BaCO 3 but not MgCO 3 from a solution that is 2. PX312-1718 1. What is the solubility product expression for Th(IO 3 ) 4? A) K sp = [Th 4+ ][4IO 3 ] 4 B) K sp = [Th 4+ ][IO 3 ] C) K sp = [Th][IO 3 ] 4 D) K sp = [Th 4+ ][IO 3 ] 4 E) K sp = [Th 4+ ][IO

More information

2. Which of the following statements best describes the movement of electrons in an electrochemical cell?

2. Which of the following statements best describes the movement of electrons in an electrochemical cell? Exam 2 Chem 311 Evans Fall 2009 112: 2 pts each 1. Consider the following unbalanced redox equation: Pb (s) + PbO 2 (s) + 2 HSO 4 (aq) 2 PbSO 4 (s) Which species is being oxidized? A. HSO 4 B. Pb(s) C.

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

Chapter 19. Solubility and Simultaneous Equilibria p

Chapter 19. Solubility and Simultaneous Equilibria p Chapter 19 Solubility and Simultaneous Equilibria p. 832 857 Solubility Product ) The product of molar concentrations of the constituent ions, each raised ot the power of its stoichiometric coefficients

More information

S14-1. (a) Identify the oxidizing and reducing agents among the reactants below and write a balanced half-reaction for each.

S14-1. (a) Identify the oxidizing and reducing agents among the reactants below and write a balanced half-reaction for each. Chapter 14: Supplementary Problems 35 S141. (a) Identify the oxidizing and reducing agents among the reactants below and write a balanced halfreaction for each. 2S 2 O 2 4 + TeO 2 3 + 2OH 4SO 2 3 + Te(s)

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Unit IV: Chemical Equations & Stoichiometry

Unit IV: Chemical Equations & Stoichiometry Unit IV: Chemical Equations & Stoichiometry A. The chemical equation B. Types of chemical reactions A. Activity series of metals B. Solubility rules C. Rules for writing and balancing equations D. Calculations

More information

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook

Reference: Chapter 4 in textbook. PART 6B Precipitate. textbook PART 6A Solution Reference: Chapter 4 in textbook PART 6B Precipitate Reference: Chapter 16.5 16.8 in the textbook 1 Solution Solute, Solvent, and Solution Saturated solution and Solubility Saturated solution:

More information

Chemistry 112 Name Exam III Form A Section April 2,

Chemistry 112 Name Exam III Form A Section April 2, Chemistry 112 Name Exam III Form A Section April 2, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Oxidation loss of electrons (oxidation number increases) OIL RIG Reduction gain of electrons (oxidation number decreases)

More information

768 Lecture #11 of 18

768 Lecture #11 of 18 Lecture #11 of 18 768 769 Q: What s in this set of lectures? A: B&F Chapter 2 main concepts: Section 2.1 : Section 2.3: Salt; Activity; Underpotential deposition Transference numbers; Liquid junction potentials

More information

AP* Chapter 16. Solubility and Complex Ion Equilibria

AP* Chapter 16. Solubility and Complex Ion Equilibria AP* Chapter 16 Solubility and Complex Ion Equilibria AP Learning Objectives LO 6.1 The student is able to, given a set of experimental observations regarding physical, chemical, biological, or environmental

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT)

SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) SOLUBILITY EQUILIBRIA (THE SOLUBILITY PRODUCT) Saturated solutions of salts are another type of chemical equilibria. Slightly soluble salts establish a dynamic equilibrium with the hydrated cations and

More information

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS Electrochemistry 1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu 2+ (aq) + 2e > Cu(s) Oxidation removal of electrons Zn(s) > Zn 2+ (aq) + 2e HALF CELLS these are systems involving oxidation or

More information

Introducing Driving Force #3 - Formation of a Solid

Introducing Driving Force #3 - Formation of a Solid Introducing Driving Force #3 - Formation of a Solid A solid that forms in an aqueous reaction is called a precipitate Precipitation reactions are also known as double replacement reactions Cations trade

More information

1.11 Electrochemistry

1.11 Electrochemistry 1.11 Electrochemistry Recap from 1.7: Oxidation and Reduction: Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Definitions:

More information

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste Experiment ISE: Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste 67 You have been hired by the government to check the fluoride concentration labelling on some major

More information

AP Chemistry. Chapter 4

AP Chemistry. Chapter 4 AP Chemistry Chapter 4 1 Properties of Aqueous Solution Solutions Definition: Any substance (solid, liquid or gas) EVENLY distributed throughout another substance. Solutions have 2 parts: 1) Solvent the

More information

Potentials and Thermodynamics of Cells (Ch. 2)

Potentials and Thermodynamics of Cells (Ch. 2) Potentials and Thermodynamics of Cells (Ch. 2) Basic Electrochemical Thermodynamics: potential vs. chemical information Reversibility Free energy Half-potential and cell potential Nernst equation Electrochemical

More information

REDUCTION - OXIDATION TITRATION REDOX TITRATION

REDUCTION - OXIDATION TITRATION REDOX TITRATION References REDUCTION OXIDATION TITRATION REDOX TITRATION 1 Fundamentals of analytical chemistry, Skoog. 2 Analytical chemistry, Gary D. Christian. الكيمياء التحليلية الجامعية تأليف د.هادي حسن جاسم 3 Oxidation

More information

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline

Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Aqueous Equilibria, Part 2 AP Chemistry Lecture Outline Name: The Common-Ion Effect Suppose we have a weak acid and a soluble salt of that acid. CH 3 COOH NaCH 3 COO CH 3 COOH CH 3 COO + H + Since NaCH

More information

NET IONIC REACTIONS in AQUEOUS SOLUTIONS AB + CD AD + CB

NET IONIC REACTIONS in AQUEOUS SOLUTIONS AB + CD AD + CB NET IONIC REACTIONS in AQUEOUS SOLUTIONS Double replacements are among the most common of the simple chemical reactions. Consider the hypothetical reaction: AB + CD AD + CB where AB exists as A + and B

More information

Types of chemical reactions

Types of chemical reactions PowerPoint to accompany Types of chemical reactions Chapters 3 & 16.1 M. Shozi CHEM110 / 2013 General Properties of Aqueous Solutions Solutions are mixtures of two or more pure substances. The solvent

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry Chem 110 General Principles of Chemistry Chapter 3 (Page 88) Aqueous Reactions and Solution Stoichiometry In this chapter you will study chemical reactions that take place between substances that are dissolved

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

CHAPTER 7: Solutions & Colloids 7.2 SOLUBILITY. Degrees of Solution. Page PHYSICAL STATES of SOLUTIONS SOLUTION

CHAPTER 7: Solutions & Colloids 7.2 SOLUBILITY. Degrees of Solution. Page PHYSICAL STATES of SOLUTIONS SOLUTION CHAPTER 7: Solutions & Colloids Predict the relative solubility of materials on the basis of polarity Describe solution formation in terms of solutesolvent interactions Calculate solution concentrations

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

Stoichiometry. Percent composition Part / whole x 100 = %

Stoichiometry. Percent composition Part / whole x 100 = % Stoichiometry Conversion factors 1 mole = 6.02 x 10 23 atoms (element) 1 mole = 6.02 x 10 23 molecules (covalent compounds) 1 mole = 6.02 x 10 23 formula units (ionic compounds) 1 mole (any gas @ STP)

More information

Chapter 11. Electrochemical Methods. In Chapter 10 we examined several spectroscopic techniques that take advantage of the.

Chapter 11. Electrochemical Methods. In Chapter 10 we examined several spectroscopic techniques that take advantage of the. Chapter 11 Electrochemical Methods Chapter Overview Section 11A Overview of Electrochemistry Section 11B Potentiometric Methods Section 11C Coulometric Methods Section 11D Voltammetric and Amperometric

More information

Chem 321 Lecture 16 - Potentiometry 10/22/13

Chem 321 Lecture 16 - Potentiometry 10/22/13 Student Learning Objectives Chem 321 Lecture 16 - Potentiometry 10/22/13 In lab you will use an ion-selective electrode to determine the amount of fluoride in an unknown solution. In this approach, as

More information

Double Bond: C 2 H 4. An sp 2 hybridized C atom has one electron in each of the three sp 2 lobes

Double Bond: C 2 H 4. An sp 2 hybridized C atom has one electron in each of the three sp 2 lobes Double Bond: C 2 H 4 An sp 2 hybridized C atom has one electron in each of the three sp 2 lobes Top view of the sp 2 hybrid Side view of the sp 2 hybrid + the unhybridized p orbital 1 Double Bond: C 2

More information