11.1. Galvanic Cells. The Galvanic Cell

Size: px
Start display at page:

Download "11.1. Galvanic Cells. The Galvanic Cell"

Transcription

1 Galvanic Cells 11.1 You know that redox reactions involve the transfer of electrons from one reactant to another. You may also recall that an electric current is a flow of electrons in a circuit. These two concepts form the basis of electrochemistry, which is the study of the processes involved in converting chemical energy to electrical energy, and in converting electrical energy to chemical energy. As you learned in Chapter 10, a zinc strip reacts with a solution containing copper(ii) ions, forming zinc ions and metallic copper. The reaction is spontaneous. It releases energy in the form of heat; in other words, this reaction is exothermic. (s) + 2+ (aq) 2+ (aq) + (s) This reaction occurs on the surface of the zinc strip, where electrons are transferred from zinc atoms to copper(ii) ions when these atoms and ions are in direct contact. A common technological invention called a galvanic cell uses redox reactions, such as the one described above, to release energy in the form of electricity. The Galvanic Cell A galvanic cell, also called a voltaic cell, is a device that converts chemical energy to electrical energy. The key to this invention is to prevent the reactants in a redox reaction from coming into direct contact with each other. Instead, electrons flow from one reactant to the other through an external circuit, which is a circuit outside the reaction vessel. This flow of electrons through the external circuit is an electric current. An Example of a Galvanic Cell: The Daniell Cell Figure 11.1 shows one example of a galvanic cell, called the Daniell cell. One half of the cell consists of a piece of zinc placed in a zinc sulfate solution. The other half of the cell consists of a piece of copper placed in a copper(ii) sulfate solution. A porous barrier, sometimes called a semi-permeable membrane, separates these two half-cells. It stops the copper(ii) ions from coming into direct contact with the zinc electrode. Section Preview/ Specific Expectations In this section, you will identify the components in galvanic cells and describe how they work describe the oxidation and reduction half-cells for some galvanic cells determine half-cell reactions, the direction of current flow, electrode polarity, cell potential, and ion movement in some galvanic cells build galvanic cells in the laboratory and investigate galvanic cell potentials communicate your understanding of the following terms: electric current, electrochemistry, galvanic cell, voltaic cell, external circuit, electrodes, electrolytes,,, salt bridge, inert electrode, electric potential, cell voltage, cell potential, dry cell, battery, primary battery, secondary battery Figure 11.1 The Daniell cell is named after its inventor, the English chemist John Frederic Daniell ( ). In the photograph shown here, the zinc sulfate solution is placed inside a porous cup, which is placed in a larger container of copper sulfate solution. The cup acts as the porous barrier. Chapter 11 Cells and Batteries MHR 505

2 Web LINK chemistry12 Galvanic cells are named after the Italian doctor Luigi Galvani ( ), who generated electricity using two metals. These cells are also called voltaic cells, after the Italian physicist Count Alessandro Volta ( ), who built the first chemical batteries. To learn more about scientists who made important discoveries in electrochemistry, such as Galvani, Volta, and Faraday, go to the web site above. Click on Web Links to find out where to go next. In a Daniell cell, the pieces of metallic zinc and copper act as electrical conductors. The conductors that carry electrons into and out of a cell are named electrodes. The zinc sulfate and copper(ii) sulfate act as electrolytes. Electrolytes are substances that conduct electricity when dissolved in water. (The fact that a solution of an electrolyte conducts electricity does not mean that free electrons travel through the solution. An electrolyte solution conducts electricity because of ion movements, and the loss and gain of electrons at the electrodes.) The terms electrode and electrolyte were invented by the leading pioneer of electrochemistry, Michael Faraday ( ). The redox reaction takes place in a galvanic cell when an external circuit, such as a metal wire, connects the electrodes. The oxidation half-reaction occurs in one half-cell, and the reduction half-reaction occurs in the other half-cell. For the Daniell cell: Oxidation (loss of electrons): (s) 2+ (aq) + 2 Reduction (gain of electrons): 2+ (aq) + 2 (s) The electrode at which oxidation occurs is named the. In this example, zinc atoms undergo oxidation at the zinc electrode. Thus, the zinc electrode is the of the Daniell cell. The electrode at which reduction occurs is named the. Here, copper(ii) ions undergo reduction at the copper electrode. Thus, the copper electrode is the of the Daniell cell. Free electrons cannot travel through the solution. Instead, the external circuit conducts electrons from the to the of a galvanic cell. Figure 11.2 gives a diagram of a typical galvanic cell. voltmeter Figure 11.2 A typical galvanic cell, such as the Daniell cell shown here, includes two electrodes, electrolyte solutions, a porous barrier, and an external circuit. Electrons flow through the external circuit from the negative to the positive. porous barrier + (aq) (aq) Figure 11.3 Batteries contain galvanic cells. The + mark labels the positive. If there is a mark, it labels the negative. At the of a galvanic cell, electrons are released by oxidation. For example, at the zinc of the Daniell cell, zinc atoms release electrons to become positive zinc ions. Thus, the of a galvanic cell is negatively charged. Relative to the, the of a galvanic cell is positively charged. In galvanic cells, electrons flow through the external circuit from the negative electrode to the positive electrode. These electrode polarities may already be familiar to you. An example is shown in Figure Each half-cell contains a solution of a neutral compound. In a Daniell cell, these solutions are aqueous zinc sulfate and aqueous copper(ii) sulfate. How can these electrolyte solutions remain neutral when electrons are leaving the of one half-cell and arriving at the of the other half-cell? To maintain electrical neutrality in each half-cell, some ions migrate through the porous barrier, as shown in Figure 11.4, on the next page. Negative ions (anions) migrate toward the, and positive ions (cations) migrate toward the. 506 MHR Unit 5 Electrochemistry

3 porous barrier Figure 11.4 Ion migration in a Daniell cell. Some sulfate ions migrate from the copper(ii) sulfate solution into the zinc sulfate solution. Some zinc ions migrate from the zinc sulfate solution into the copper(ii) sulfate solution. The separator between the half-cells does not need to be a porous barrier. Figure 11.5 shows an alternative device. This device, called a salt bridge, contains an electrolyte solution that does not interfere in the reaction. The open ends of the salt bridge are plugged with a porous material, such as glass wool, to stop the electrolyte from leaking out quickly. The plugs allow ion migration to maintain electrical neutrality. voltmeter NH 4 + Cl salt bridge porous plug Figure 11.5 This Daniell cell includes a salt bridge instead of a porous barrier. In a diagram, the may appear on the left or on the right. (aq) (aq) Suppose the salt bridge of a Daniell cell contains ammonium chloride solution, NH 4 Cl (aq). As positive zinc ions are produced at the, negative chloride ions migrate from the salt bridge into the half-cell that contains the. As positive copper(ii) ions are removed from solution at the, positive ammonium ions migrate from the salt bridge into the half-cell that contains the. Other electrolytes, such as sodium sulfate or potassium nitrate, could be chosen for the salt bridge. Neither of these electrolytes interferes in the cell reaction. Silver nitrate, AgNO 3(aq), would be a poor choice for the salt bridge, however. Positive silver ions would migrate into the half-cell that contains the. Zinc displaces both copper and silver from solution, so both copper(ii) ions and silver ions would be reduced at the. The copper produced would be contaminated with silver. Chapter 11 Cells and Batteries MHR 507

4 Galvanic Cell Notation A convenient shorthand method exists for representing galvanic cells. The shorthand representation of a Daniell cell is as follows The phases or states may be included. (s) 2+ (aq) 2+ (aq) (s) As you saw in Figure 11.4 and Figure 11.5, the may appear on the left or on the right of a diagram. In the shorthand representation, however, the is always shown on the left and the on the right. Each single vertical line,, represents a phase boundary between the electrode and the solution in a half-cell. For example, the first single vertical line shows that the solid zinc and aqueous zinc ions are in different phases or states. The double vertical line,, represents the porous barrier or salt bridge between the half-cells. Spectator ions are usually omitted. Inert Electrodes The zinc and copper of a Daniell cell are both metals, and can act as electrical conductors. However, some redox reactions involve substances that cannot act as electrodes, such as gases or dissolved electrolytes. Galvanic cells that involve such redox reactions use inert electrodes. An inert electrode is an electrode made from a material that is neither a reactant nor a product of the cell reaction. Figure 11.6 shows a cell that contains one inert electrode. The chemical equation, net ionic equation, and half-reactions for this cell are given below. Chemical equation: Pb (s) + 2FeCl 3(aq) 2FeCl 2(aq) + PbCl 2(aq) Net ionic equation: Pb (s) + 2Fe 3+ (aq) 2Fe 2+ (aq) + Pb 2+ (aq) Oxidation half-reaction: Pb (s) Pb 2+ (aq) + 2 Reduction half-reaction: Fe 3+ (aq) + Fe 2+ (aq) The reduction half-reaction does not include a solid conductor of electrons, so an inert platinum electrode is used in this half-cell. The platinum electrode is chemically unchanged, so it does not appear in the chemical equation or half-reactions. However, it is included in the shorthand representation of the cell. Pb Pb 2+ Fe 3+, Fe 2+ Pt A comma separates the formulas Fe 3+ and Fe 2+ for the ions involved in the reduction half-reaction. The formulas are not separated by a vertical line, because there is no phase boundary between these ions. The Fe 3+ and Fe 2+ ions exist in the same aqueous solution. Figure 11.6 This cell uses an inert electrode to conduct electrons. Why do you think that platinum is often chosen as an inert electrode? Another common choice is graphite. Pb salt bridge Pt PbCl 2(aq) FeCl 2(aq) FeCl 3(aq) 508 MHR Unit 5 Electrochemistry

5 Practice Problems 1. (a) If the reaction of zinc with copper(ii) ions is carried out in a test tube, what is the oxidizing agent and what is the reducing agent? (b) In a Daniell cell, what is the oxidizing agent and what is the reducing agent? Explain your answer. 2. Write the oxidation half-reaction, the reduction half-reaction, and the overall cell reaction for each of the following galvanic cells. Identify the and the in each case. In part (b), platinum is present as an inert electrode. (a) Sn (s) Sn 2+ (aq) Tl + (aq) Tl (s) (b) Cd (s) Cd 2+ (aq) H + (aq) H 2(g) Pt (s) 3. A galvanic cell involves the overall reaction of iodide ions with acidified permanganate ions to form manganese(ii) ions and iodine. The salt bridge contains potassium nitrate. (a) Write the half-reactions, and the overall cell reaction. (b) Identify the oxidizing agent and the reducing agent. (c) The inert and are both made of graphite. Solid iodine forms on one of them. Which one? 4. As you saw earlier, pushing a zinc electrode and a copper electrode into a lemon makes a lemon cell. In the following representation of the cell, C 6 H 8 O 7 is the formula of citric acid. Explain why the representation does not include a double vertical line. (s) C 6 H 8 O 7(aq) (s) Introducing Cell Potentials You know that water spontaneously flows from a higher position to a lower position. In other words, water flows from a state of higher gravitational potential energy to a state of lower gravitational potential energy. As water flows downhill, it can do work, such as turning a water wheel or a turbine. The chemical changes that take place in galvanic cells are also accompanied by changes in potential energy. Electrons spontaneously flow from a position of higher potential energy at the to a position of lower potential energy at the. The moving electrons can do work, such as lighting a bulb or turning a motor. The difference between the potential energy at the and the potential energy at the is the electric potential, E, of a cell. The unit used to measure electric potential is called the volt, with symbol V. Because of the name of this unit, electric potential is more commonly known as cell voltage. Another name for it is cell potential. A cell potential can be measured using an electrical device called a voltmeter. A cell potential of 0 V means that the cell has no electric potential, and no electrons will flow. You know that you can generate electricity by connecting a zinc electrode and a copper electrode that have been inserted into a lemon. However, you cannot generate electricity by connecting two copper electrodes that have been inserted into the lemon. The two copper electrodes are the same and are in contact with the same electrolyte. There is no potential difference between the two electrodes. Electric potentials vary from one cell to another, depending on various factors. You will examine some of these factors in the next investigation. The cell voltage is sometimes called the electromotive force, abbreviated emf. However, this term can be misleading. A cell voltage is a potential difference, not a force. The unit of cell voltage, the volt, is not a unit of force. Chapter 11 Cells and Batteries MHR 509

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry 11.3 Electrolytic Cells Section Preview/ Specific Expectations In this section, you will identify the components of an electrolytic cell, and describe how they work describe electrolytic cells using oxidation

More information

Unit 12 Redox and Electrochemistry

Unit 12 Redox and Electrochemistry Unit 12 Redox and Electrochemistry Review of Terminology for Redox Reactions OXIDATION loss of electron(s) by a species; increase in oxidation number. REDUCTION gain of electron(s); decrease in oxidation

More information

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS Review: OXIDATION-REDUCTION REACTIONS the changes that occur when electrons are transferred between reactants (also known as a redox reaction)

More information

5.7 Galvanic Cells. Electrochemical Gizmos

5.7 Galvanic Cells. Electrochemical Gizmos 5.7 Galvanic Cells Have you ever accidentally bitten into a piece of aluminum foil? If you have silver amalgam fillings, you may have experienced a bit of a jolt (Figure 1). The aluminium, in contact with

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Electrochemical Cells Intro

Electrochemical Cells Intro Electrochemical Cells Intro Outcomes: Outline the historical development of voltaic (galvanic) cells. Explain the operation of a voltaic cell at the visual, particulate and symbolic levels. Vocabulary:

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry Today Galvanic Cells Spontaneous Electrochemistry Electrolytic Cells Backwards Electrochemistry Balancing Redox Reactions There is a method (actually several) Learn one (4.10-4.12) Practice (worksheet)

More information

Electrochemistry: Voltaic Cells

Electrochemistry: Voltaic Cells Name: Band: Date: An Overview and Review Electrochemistry: Voltaic Cells Electrochemistry is the field of chemistry that focuses on reactions involving electrical energy. All electrochemical reactions

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Section A: Summary Notes

Section A: Summary Notes ELECTROCHEMICAL CELLS 25 AUGUST 2015 Section A: Summary Notes Important definitions: Oxidation: the loss of electrons by a substance during a chemical reaction Reduction: the gain of electrons by a substance

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Chapter 19: Redox & Electrochemistry

Chapter 19: Redox & Electrochemistry Chapter 19: Redox & Electrochemistry 1. Oxidation-Reduction Reactions Definitions Oxidation - refers to the of electrons by a molecule, atom or ion Reduction - refers to the of electrons by an molecule,

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells There are two types: Galvanic and Electrolytic Galvanic Cell: a cell in which a is used to produce electrical energy, i.e., Chemical energy is transformed into Electrical energy.

More information

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Oxidation-Reduction Reactions and Introduction to Electrochemistry ADVANCED PLACEMENT CHEMISTRY Oxidation-Reduction Reactions and Introduction to Electrochemistry Students will be able to: identify oxidation and reduction of chemical species; identify oxidants and reductants

More information

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: www.austincc.edu/samorde Email: samorde@austincc.edu Lecture Notes Chapter 21 (21.1-21.25) Suggested Problems () Outline 1. Introduction

More information

Electrochemical Cell

Electrochemical Cell Electrochemical Cell Construction of Voltaic Cells Notation for Voltaic Cells Cell Potential Standard Cell Potentials and Standard Electrode Potentials Equilibrium Constants from Cell Potentials Dependence

More information

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells. Lecture 14 Thermodynamics of Galvanic (Voltaic) Cells. 51 52 Ballard PEM Fuel Cell. 53 Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

AP Questions: Electrochemistry

AP Questions: Electrochemistry AP Questions: Electrochemistry I 2 + 2 S 2O 2-3 2 I - + S 4O 2-6 How many moles of I 2 was produced during the electrolysis? The hydrogen gas produced at the cathode during the electrolysis was collected

More information

Introduction to Electrochemical reactions. Schweitzer

Introduction to Electrochemical reactions. Schweitzer Introduction to Electrochemical reactions Schweitzer Electrochemistry Create and or store electricity chemically. Use electricity to drive a reaction that normally would not run. Plating metal onto a metal

More information

Chapter 29. Simple chemical cells

Chapter 29. Simple chemical cells Chapter 29 Simple chemical cells 29.1 Simple chemical cells consisting of two metal electrodes and an electrolyte 29.2 The Electrochemical Series of metals 29.3 Simple chemical cells consisting of metal-metal

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

lect 26:Electrolytic Cells

lect 26:Electrolytic Cells lect 26:Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows:

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows: Example Exercise 17.1 Calculating Oxidation Numbers for Carbon Calculate the oxidation number for carbon in each of the following compounds: (a) diamond, C (b) dry ice, CO 2 (c) marble, CaCO 3 (d) baking

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion Chapter Objectives Larry Brown Tom Holme Describe at least three types of corrosion and identify chemical reactions responsible for corrosion. www.cengage.com/chemistry/brown Chapter 13 Electrochemistry

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Instructors Guide: Introduction to Voltaic Cells

Instructors Guide: Introduction to Voltaic Cells Instructors Guide: Introduction to Voltaic Cells Standards Connections: Connections to NSTA Standards for Science Teacher Preparation C.3.a.8 Oxidation reduction chemistry. Connections to the National

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Oxidation loss of electrons (oxidation number increases) OIL RIG Reduction gain of electrons (oxidation number decreases)

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Reducing Agent = a substance which "gives" electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized.

Reducing Agent = a substance which gives electrons to another substance causing that substance to be reduced; a reducing agent is itself oxidized. Oxidation = a loss of electrons; an element which loses electrons is said to be oxidized. Reduction = a gain of electrons; an element which gains electrons is said to be reduced. Oxidizing Agent = a substance

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

BATTERIES AND ELECTROLYTIC CELLS. Practical Electrochemistry

BATTERIES AND ELECTROLYTIC CELLS. Practical Electrochemistry BATTERIES AND ELECTROLYTIC CELLS Practical Electrochemistry How Batteries Work One of the most practical applications of spontaneous redox reactions is making batteries. In a battery, a spontaneous electron

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions Honors Chemistry Mrs. Agostine Chapter 19: Oxidation- Reduction Reactions Let s Review In chapter 4, you learned how atoms rearrange to form new substances Now, you will look at how electrons rearrange

More information

1.11 Redox Equilibria

1.11 Redox Equilibria 1.11 Redox Equilibria Electrochemical cells Electron flow A cell has two half cells. The two half cells have to be connected with a salt bridge. Simple half cells will consist of a metal (acts an electrode)

More information

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F

Introduction. can be rewritten as follows: Oxidation reaction. H2 2H + +2e. Reduction reaction: F2+2e 2F. Overall Reaction H2+F2 2H + +2F Electrochemistry is the study of chemical processes that cause electrons to move. This movement of electrons is called electricity, which can be generated by movements of electrons from one element to

More information

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases. Oxidation-Reduction Page 1 The transfer of an electron from one compound to another results in the oxidation of the electron donor and the reduction of the electron acceptor. Loss of electrons (oxidation)

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

ELECTROCHEMICAL CELLS NAME ROW PD

ELECTROCHEMICAL CELLS NAME ROW PD 4-26-12 NAME ROW PD (1) Which statement describes the redox reaction that occurs when an object is electroplated? The diagram below shows the electrolysis of fused KCl. A) It is spontaneous and requires

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions

Chemistry 132 NT. Electrochemistry. Oxidation-Reduction Reactions Chemistry 132 NT If you ever catch on fire, try to avoid seeing yourself in the mirror, because I bet that s what really throws you into a panic. Jack Handey 1 Chem 132 NT Electrochemistry Module 1 HalfReactions

More information

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p. 1 One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.) Standard temperature is 0 0 C or 273K and standard

More information

Chemistry 213. Electrochemistry I

Chemistry 213. Electrochemistry I 1 Chemistry 213 Electrochemistry I Electrochemical Cells Objective Oxidation/reduction reactions find their most important use in the construction of voltaic cells (chemical batteries). In this experiment,

More information

Redox Reactions and Electrochemistry

Redox Reactions and Electrochemistry Redox Reactions and Electrochemistry Redox Reactions and Electrochemistry Redox Reactions (19.1) Galvanic Cells (19.2) Standard Reduction Potentials (19.3) Thermodynamics of Redox Reactions (19.4) The

More information

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3

Spontaneous Redox Between Zinc Metal and Copper(II) Ions. Zn 2+ Zn + 2e- Cu 2+ NO 3 Spontaneous Redox Between Zinc Metal and Copper(II) Ions Zn 2+ Cu 2+ NO 3 _ Zn + 2e- Cu Zn 0 + Cu 2+ º Zn 2+ + Cu 0 spontaneous red 1 ox 2 ox 1 red 2 Spontaneous Redox Between Copper Metal and Silver Ions

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

Reactions in aqueous solutions Redox reactions

Reactions in aqueous solutions Redox reactions Reactions in aqueous solutions Redox reactions Redox reactions In precipitation reactions, cations and anions come together to form an insoluble ionic compound. In neutralization reactions, H + ions and

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Chemistry 30 Review Test 3 Redox and Electrochemistry /55

Chemistry 30 Review Test 3 Redox and Electrochemistry /55 Chemistry 30 Review Test 3 Redox and Electrochemistry /55 Part I Multiple choice / Numerical Response Answer the following multiple choice questions on the scantron sheet. Answer the numerical response

More information

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp )

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp ) Today s Objectives: 1. Identify the similarities and differences between a voltaic cell and an electrolytic cell 2. Predict the spontaneity of REDOX reactions based on standard cell potentials. 3. Recognize

More information

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful work. This is accomplished by constructing a voltaic

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy Electrochemistry C020 Electrochemistry is the study of the interconversion of electrical and chemical energy Using chemistry to generate electricity involves using a Voltaic Cell or Galvanic Cell (battery)

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s) 12.05 Galvanic Cells 1. In an operating voltaic cell, reduction occurs A) at the anode B) at the cathode C) in the salt bridge D) in the wire 2. Which process occurs in an operating voltaic cell? A) Electrical

More information

CHEMISTRY LEVEL 4C (CHM415115) ELECTROCHEMICAL CELLS THEORY SUMMARY & REVISION QUESTIONS

CHEMISTRY LEVEL 4C (CHM415115) ELECTROCHEMICAL CELLS THEORY SUMMARY & REVISION QUESTIONS CHEMISTRY LEVEL 4C (CHM415115) ELECTROCHEMICAL CELLS THEORY SUMMARY & REVISION QUESTIONS Tasmanian TCE Chemistry Revision Guides by Jak Denny are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

More information

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS Redox/Electrochemistry Regents Unit Review. ANSWERS 1. ½ red = Cr 3+ + 3e Cr 2. ½ ox = Zn Zn +2 + 2e 3. Balanced = 3Zn + 2Cr 3+ 3Zn +2 + 2Cr 4. Zn loses electrons, 2Cr 3+ gains electrons Zn + Cr 3+ Zn

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

Mathematics Education

Mathematics Education Redox reaction, Electrolysis and Electrochemistry group 8 1. Rini Kurniasih K1310069 2. Susi Cahyanti K1310076 3. Wahyu Nugroho K1310082 Mathematics Education Training Teacher and Education Faculty SEBELAS

More information

N Goalby chemrevise.org

N Goalby chemrevise.org Redox Equilibria Electrochemical cells This type of cell can be called a Voltaic cell or Galvanic cell. Voltaic cells convert energy from spontaneous, exothermic chemical processes to electrical energy.

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Redox Reactions, Chemical Cells and Electrolysis

Redox Reactions, Chemical Cells and Electrolysis Topic 5 Redox Reactions, Chemical Cells and Electrolysis Part A Unit-based exercise Unit 19 Chemical cells in daily life Fill in the blanks 1 chemical; electrical 2 electrolyte 3 voltmeter; multimeter

More information

Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book.

Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book. Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book. Early Booklet E.C.: + 2 Unit 13 Hwk. Pts.: / 32 Unit 13 Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets

More information

UHS Tutoring. (4) Redox Reactions (02)

UHS Tutoring. (4) Redox Reactions (02) UHS Tutoring (4) Redox Reactions (02) 8739 1844 www.uhsinternational.com UHS Tutoring 4. Oxidationreduction reactions are increasingly important as a source of energy Students learn to: A. Explain the

More information

ELECTROCHEMISTRY Chapter 14

ELECTROCHEMISTRY Chapter 14 ELECTROCHEMISTRY Chapter 14 Basic Concepts: Overview of Electrochemical Process at Constant T, P (14-1) ΔG = ΔG o + RT ln Q = w elec (maximum) = qe = ItE (exp) (E intensive parameter, q extensive) = nfe

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

Electrochemical methods : Fundamentals and Applications Introduction

Electrochemical methods : Fundamentals and Applications Introduction Electrochemical methods : Fundamentals and Applications Introduction March 05, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

1.11 Electrochemistry

1.11 Electrochemistry 1.11 Electrochemistry Recap from 1.7: Oxidation and Reduction: Oxidation and Reduction: Oxidation and reduction reactions can be identified by looking at the reaction in terms of electron transfer: Definitions:

More information

IB Topics 9 & 19 Multiple Choice Practice

IB Topics 9 & 19 Multiple Choice Practice IB Topics 9 & 19 Multiple Choice Practice 1. What are the oxidation states of chromium in (NH 4) 2Cr 2O 7 (s) and Cr 2O 3 (s)? 2. Which of the following is a redox reaction? 3Mg (s) + 2AlCl 3 (aq) 2Al

More information

Chemistry 213. Electrochemistry

Chemistry 213. Electrochemistry Chemistry 213 Electrochemistry Part A: Electrochemical Cells Objective Oxidation/reduction reactions find their most important use in the construction of voltaic cells (chemical batteries). In this experiment,

More information

Types of Cells Chemical transformations to produce electricity- Galvanic cell or Voltaic cell (battery)

Types of Cells Chemical transformations to produce electricity- Galvanic cell or Voltaic cell (battery) Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force Electrode Potentials Gibbs Free Energy Gibbs

More information

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions: ELECTROCHEMISTRY A. INTRODUCTION 1. Electrochemistry is the branch of chemistry which is concerned with the conversion of chemical energy to electrical energy, and vice versa. Electrochemical reactions

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Batteries. How does a battery (voltaic cell) work? Time Passes

Batteries. How does a battery (voltaic cell) work? Time Passes Why? Batteries How does a battery (voltaic cell) work? When we use portable devices like MP3 players and cell phones we need a ready source of electricity to provide a flow of electrons. Batteries are

More information

REDOX EQUILIBRIA AND FEASIBILITY OF A REACTION

REDOX EQUILIBRIA AND FEASIBILITY OF A REACTION REDOX EQUILIBRIA AND FEASIBILITY OF A REACTION Oxidizing agent Reducing agent Oxidation-Reduction Reactions Electron transfer reactions Electrons transferred from one substance to another Change in oxidation

More information

Electrochemical Reactions

Electrochemical Reactions 1 of 20 4/11/2016 1:00 PM Electrochemical Reactions Electrochemical Reactions Electrical Work From Spontaneous Oxidation- Reduction Reactions Predicting Spontaneous Redox Reactions from the Sign of E Line

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 7: Oxidation-reduction reactions and transformation of chemical energy Oxidation-reduction reactions

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity Chemical Dominoes Activity 6 Electrochemical Cells GALS In this activity you will: Determine if a substance will conduct electricity when dissolved in water. Construct a galvanic cell and explain the function

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information