How to Test for Chloride Ions in Iron Treatment Solutions Using Quantab Test Strips Canadian Conservation Institute (CCI) Notes 4/4

Size: px
Start display at page:

Download "How to Test for Chloride Ions in Iron Treatment Solutions Using Quantab Test Strips Canadian Conservation Institute (CCI) Notes 4/4"

Transcription

1 How to Test for Chloride Ions in Iron Treatment Solutions Using Quantab Test Strips Canadian Conservation Institute (CCI) Notes 4/4

2 by Lyndsie Selwyn Also available in French. Également publié en français. Government of Canada, Canadian Conservation Institute, 2016 ISSN

3 Introduction As an iron object rusts, it becomes covered with iron oxides, which partly protect the iron underneath. This protection is disrupted by chloride ions, which greatly accelerate the corrosion rate. Chloride ions are a serious problem in archaeological iron objects, especially those recovered from a marine environment, and they must be removed to preserve the object. Usually, this removal involves soaking the object in an alkaline bath. A simple test for chloride ions is needed to monitor when the bath should be changed or when the treatment can be stopped. A test with silver nitrate can show the presence of chloride ions in the treatment solution and give rough concentrations over a limited range of chloride ion concentration, as outlined in CCI Note 4/5 How to Test for Chloride Ions in Iron Treatment Solutions Using Silver Nitrate. A more accurate measurement over a wider concentration range can be made with Chloride Quantab Test Strips. These test strips consist of a narrow column impregnated with silver dichromate. After the strip has been placed in the solution to be tested, the liquid enters through a small hole at the bottom of the column and then wicks up the column by capillary action. Chloride ions in the solution react with the silver dichromate, producing a white region of silver chloride on the column. The length of the white region can be converted to a chloride ion concentration using the calibration information supplied with the test strips. The test strips are available in two concentration ranges: 30 to 600 mg/l (30 to 600 parts per million [ppm]) and 300 to 6,000 mg/l (300 to 6,000 ppm). For more information on the reaction involved, see The science behind Quantab test strips. This CCI Note describes the procedure for using Chloride Quantab Test Strips to monitor chloride ion concentrations in treatment solutions. The first step in the procedure involves testing solutions of known chloride ion concentrations to get experience using the test strips and to confirm that the test strips are working properly. Then actual treatment solutions or other solutions of unknown chloride ion concentration can be tested. A laboratory and ventilation are not required for this procedure unless nitric acid is required to adjust the acidity of the solution. If nitric acid is to be used, then consult its Safety Data Sheet (SDS) for health and safety information prior to use. 3

4 Procedure: how to use Quantab test strips Equipment and materials required to test using Quantab strips Solutions with known and unknown chloride ion concentrations o Solutions with known chloride ion concentrations should be purchased or prepared with concentrations in the range of the Quantab strips: 30 to 600 ppm for low range and 300 to 6,000 ppm for high range. A procedure to prepare chloride ion solutions with 30 ppm, 300 ppm and 3,000 ppm is presented in CCI Note 4/5 How to Test for Chloride Ions in Iron Treatment Solutions Using Silver Nitrate. o Solutions with unknown chloride ion concentrations can include a desalination treatment solution or any other solution requiring testing. Test tubes, glass (e.g. 16 mm outer diameter x 125 mm length hold about 20 ml) Test tube rack Chloride Quantab Test Strips, low range and/or high range (consult Suppliers for information on obtaining these strips) Tweezers (to remove the Quantab test strips from the bottle) Pipettes (Pasteur or plastic) or eyedroppers Graduated cylinder (10 ml) Volumetric flask (100 ml) Dilute nitric acid (HNO3) solution, e.g. 5% (v/v) (optional); for preparation instructions, see Preparation of solution Glass storage bottle (125 ml) for the nitric acid solution (optional) ph indicator papers (optional) Filter paper (optional) Funnel (optional) Procedure to test using Quantab strips Exercise caution while using nitric acid and wear personal protective equipment such as gloves, goggles and protective clothing while handling it. Use proper ventilation, especially when working with concentrated nitric acid. For more information on making up chemical solutions, consult Odegaard et al. (2005) and Skoog et al. (2014). Preparation of solution If needed, prepare a 5% (v/v) nitric acid solution Work in a fume hood. 2. Partially fill a 100 ml volumetric flask with distilled water. 3. Measure 5 ml of concentrated nitric acid (68 70% HNO3 by weight) into a 10 ml graduated cylinder.

5 4. Transfer the nitric acid to the volumetric flask (Important: always add concentrated acid to water). 5. Swirl to mix. 6. Add more distilled water to the volumetric flask to fill it to the 100 ml mark. 7. Transfer to a glass bottle for storage and label the bottle. 8. This produces a solution that is approximately 0.8 M HNO3. Testing solutions using Quantabs: 1. If a solution contains suspended particulates, filter it using a funnel and filter paper. This will prevent the opening at the bottom of the strip from being clogged by particulates. 2. Using a pipette or eyedropper, add about 2 ml of a solution with a known chloride ion concentration to a 10 ml graduated cylinder. 3. Transfer the solution from the graduated cylinder to a clean test tube. 4. Insert one Quantab strip into the test tube and let the bottom of the strip sit in the liquid. 5. Wait for the liquid to wick up the column in the strip until the horizontal completion band at the top changes colour from yellow to black. 6. Note the time when the top completion strip turns black. 7. Wait at least 2 minutes (but no longer than 30 minutes) and then remove the Quantab strip from the test tube. 8. Locate the position of the uppermost white tip of the boundary between white and brown in the column, and read the position on the Quantab scale to the nearest division (0.2 units). 9. Refer to the conversion table on the outside of the Quantab container. Convert the number from the Quantab strip scale into a chloride ion concentration in parts per million. The conversion table varies from batch to batch so make sure to use the correct container to convert a reading. 10. Repeat steps 1 to 9 with other solutions of known or unknown chloride ion concentrations. 11. For solutions with unknown chloride ion concentrations, check a separate sample with ph paper. If the ph is above 10, the solution should be neutralized with 5% (v/v) nitric acid, as outlined in Modifying strongly alkaline solutions. 12. If the Quantab strip is to be saved for future reference, remove excess liquid by pressing down along the length of the strip to squeeze out as much liquid as possible, and let it dry. Quantab strips cannot be reused. 5

6 Results of this procedure The two Chloride Quantab Test Strips, available from Hach, are shown in Figure 1. Quantab strips come pre-calibrated, and a conversion chart is provided on the outside of the container (Figure 2). Government of Canada, Canadian Conservation Institute. CCI Figure 1: Chloride Quantab Test Strips, made by Hach, come in two Quantab ranges. The bottle and the strip on the left are examples of the low range, and those on the right are examples of the high range. Government of Canada, Canadian Conservation Institute. CCI Figure 2: Quantab conversion charts on the back of the bottles. The scales are unique for each batch of strips. Figure 3 shows an example of a high range Quantab strip in a test tube with 2 ml of solution at the beginning of the test. 6

7 Government of Canada, Canadian Conservation Institute. CCI Figure 3: High range Quantab strip in a test tube containing 2 ml of solution, at the beginning of the test. Once the column is saturated, a moisture-sensitive horizontal completion band at the top turns from yellow to black and signals the end of the test (Figures 4a and b). Government of Canada, Canadian Conservation Institute. CCI Figure 4a: Detail of a Quantab strip before exposure to a test solution. The horizontal completion band is yellow. Government of Canada, Canadian Conservation Institute. CCI Figure 4b: Detail of a Quantab strip after completion of a test for chloride ions. The completion band has turned black. 7

8 At the completion of the test, the chloride ion concentration can be determined by first reading the tip of the white section, as shown in Figure 5 for low range and Figure 6 for high range. This measurement is used to determine the chloride ion concentration from the calibration chart on the back of the bottle. Although the reading for 15 ppm solution in Figure 5 is below the lowest range in the calibration chart, the strip does indicate that some chloride ions are present in solution. Government of Canada, Canadian Conservation Institute. CCI Figure 5: Three examples of low range Quantab test strips in solutions containing (from left to right) 15 ppm, 35.5 ppm and 100 ppm chloride ions. Government of Canada, Canadian Conservation Institute. CCI Figure 6: Two examples of high range Quantab test strips in solutions containing (from left to right) 1,000 ppm and 3,545 ppm chloride ions. 8

9 Additional information Accuracy of Quantab test strips The manufacturer tests each lot of Quantab strips and certifies an accuracy of ±10% for the chloride ion concentration (Hach 2014). This means that if the reading is 200 ppm chloride ion, the actual concentration could be anywhere between 180 and 220 ppm. Interferences It may be necessary to filter the sample if it contains suspended solids. Such solids may clog the opening at the bottom of the test strip. In this case, the completion band at the top of the column will never turn black. The best filter papers are ashless ones because they contain only trace amounts of chloride ions. Do not use filter paper that contains chloride ions from any bleaching process. To test filter paper for chloride ions, cut up a piece, soak it in a small volume of water in a test tube, and test the solution with a Chloride Quantab Test Strip. Other ions that will interfere with this test and give false results are those that will also form a precipitate with silver nitrate, such as iodides and bromides. Nitrite and nitrate ions have no effect on the test. The reaction between silver dichromate and chloride ions may not work in strong acids and strong bases (Hach 2014). The instructions on the container for the Quantab strips warn not to immerse a strip to the point that the liquid on the outside is above the yellow completion band at the top of the strip. However, with the instructions in this procedure (using a test tube with 2 ml of liquid), this is not a concern. Storage of Quantab test strips Store the Quantab strips in their original container with the lid tightly closed to protect them from light and moisture. Each bottle of Quantab strips contains a small amount of desiccant to help keep the strips dry. Bottles should be stored below 30 C. Use Quantab strips before they expire; the expiry date is listed on the bottle. Expired strips may take longer to react, and the contrast between colours may be less. Modifying strongly alkaline solutions According to the manufacturer (Hach), Chloride Quantab Test Strips should not be used in a solution with a ph above 10. At high ph, silver hydroxide or silver oxide can precipitate, removing silver ions that would otherwise precipitate as silver chloride. The ph of a typical alkaline treatment solution made from 1% (w/v) sodium hydroxide (0.25M) is about Thus, a sample of the treatment solution should be neutralized to 9

10 ph below 10 before it is tested with the test strips. The following instructions outline how to do this. Take a sample of 2 ml of treatment solution. Measure the ph with a ph indicator paper. Add 5% (v/v) nitric acid until the ph is near 7. It should take roughly 0.4 ml of 5% (v/v) nitric acid to neutralize 2 ml of 1% (w/v) sodium hydroxide. If a volume of nitric acid (e.g. 0.4 ml) is added to the initial volume (e.g. 2 ml), then the chloride ion concentration in the initial sample is related to the measured concentration in the diluted sample with the following formula cinitial = cmeasured x (vintial + vadd) / vinitial where cinitial is the chloride ion concentration of the initial sample, cmeasured is the chloride ion concentration of the diluted sample, vinitial is the initial volume of the sample and vadd is the volume of nitric acid added. With the estimate of 0.4 ml of acid needed, then is and so (vintial + vadd) / vinitial ( )/2 = 1.2 cinitial = 1.2 cmeasured For a more accurate value of the sample s initial chloride ion concentration, keep track of the volume of nitric acid added, or measure the final volume of the neutralized solution. Other ways to test for chloride ions There are other ways to measure the chloride ion concentration in aqueous solutions. One simple (but less accurate) way to test for the presence of chloride ions is with silver nitrate, as outlined in CCI Note 4/5 How to Test for Chloride Ions in Iron Treatment Solutions using Silver Nitrate; this note also contains more information on sources of salts in objects and the damage they can cause, and monitoring desalination using conductivity. Semi-quantitative analysis can be done using EM Quant Chloride Test Strips (Odegaard et al. 2011). Another more accurate way is to carry out a titration with silver nitrate (Selwyn 2001). More methods are mentioned and studied by Wang et al. (2008) and Rimmer et al. (2012). 10

11 The science behind Quantab test strips The reaction between the Quantab test strip and chloride ions A Chloride Quantab Test Strip consists of a thin plastic strip with a capillary column impregnated with brown silver dichromate (Ag2Cr2O7) (Hach 2014). When the bottom of the Quantab strip is placed in an aqueous solution, liquid enters through a small hole in the bottom and then wicks up to the top by capillary action. Silver dichromate is slightly soluble in water, whereas silver chloride (AgCl) is insoluble in water. Chloride ions (Cl - ) in the solution react with silver ions (Ag + ) from the silver dichromate, precipitating silver chloride. As silver ions are removed from the solution, more of the silver dichromate dissolves to replace them, until all of the silver dichromate has dissolved and all of the silver ions have precipitated as silver chloride. The colour of the column changes from brown to white where silver chloride is precipitated. The overall reaction is the interchange of chloride ions in solution with dichromate ions (Cr2O7 2- ) from the solid, written as follows: 2Cl - (aqueous) + Ag2Cr2O7 (brown solid) 2AgCl (white solid) + Cr2O7 2- (aqueous) Definition of parts per million (ppm) Chloride ion concentrations are often given in parts per million (ppm). Parts per million is a unit of concentration defined as the weight of the solute (the ion or compound being added) divided by the weight of the solution (after the ion or compound is added) and then multiplied by one million (10 6 ). A common assumption for dilute aqueous solutions is that the added ions do not change the density of the water, so that the solution has the same density as pure water at room temperature (approximately 1 g/ml) (Skoog et al. 2014, p. 72). With this assumption, the definition of ppm simplifies to weight of parts per million volume of solute ( mg ) solution ( L) Note that the solute is the chloride ion. This means that a 1 ppm chloride ion solution contains 1 milligram (mg) chloride ions per litre (L) of solution. Acknowledgements Special thanks to Catherine Machado, Lucy t Hart and Meaghan Whalley, former CCI interns, for their help in developing this Note. 11

12 Suppliers Note: The following information is provided only to assist the reader. Inclusion of a company in this list does not in any way imply endorsement by the Canadian Conservation Institute. Chloride Quantab Test Strips The Quantab strips are made by Hach and distributed by chemical supply companies such as Fisher Scientific. Hach Fisher Scientific Chloride standards Three Orion brand chloride standards (0.1 M, 1,000 ppm, 100 ppm) are made by Thermo Scientific, and fourteen different chloride standards ranging from 1 ppm to 100,000 ppm are made by Ricca Chemical. These are distributed by chemical supply companies such as Fisher Scientific. Thermo Scientific Ricca Chemical Fisher Scientific References Hach, personal communication, 4 December Odegaard, N., S. Carroll and W.S. Zimmt. Material Characterization Tests for Objects of Art and Archaeology, 2nd ed. London, UK: Archetype Publications, Odegaard, N., P. Hill, B. Santarelli and W. Zimmt. Detecting and Identifying Salts During the Desalination Process with Spot Test Papers. WAAC (Western Association for Art Conservation) Newsletter 33 (2011), pp Rimmer, M., D. Watkinson and Q. Wang. The Efficiency of Chloride Extraction from Archaeological Iron Objects using Deoxygenated Alkaline Solutions. Studies in Conservation 57 (2012), pp Selwyn, L. Analysis of the Chloride Ion Concentration in Aqueous Solutions by Potentiometric Titration. CCI Research Report No. 2. Ottawa, ON: CCI, Skoog, D.A., D.M. West, F.J. Holler and S.R. Crouch. Fundamentals of Analytical Chemistry, 9th ed. Belmont, CA: Brooks/Cole,

13 Wang, Q., S. Dove, F. Shearman and M. Smirniou. Evaluation of Methods of Chloride Ion Concentration Determination and Effectiveness of Desalination Treatments using Sodium Hydroxide and Alkaline Sulphite Solutions. The Conservator 31 (2008), pp

Classification of Mystery Substances

Classification of Mystery Substances Classification of Mystery Substances This document supports the safety activity Mystery Substance Identification: The Identification of Unlabeled Chemicals Found on School Premises from Flinn Scientific.

More information

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Nitrate DOC316.53.01066 Cadmium Reduction Method Method 8039 0.3 to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows Nitrate DOC316.53.01067 Cadmium Reduction Method Method 8192 0.01 to 0.50 mg/l NO 3 N (LR) Powder Pillows Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856 Nickel DOC316.53.01065 Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

Tetraphenylborate Method Method to 7.0 mg/l K Powder Pillows

Tetraphenylborate Method Method to 7.0 mg/l K Powder Pillows Potassium DOC316.53.01127 Tetraphenylborate Method Method 8049 0.1 to 7.0 mg/l K Powder Pillows Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific information

More information

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride Naming salts A salt is any compound formed by the neutralisation of an acid by a base. The name of a salt has two parts. The first part comes from the metal, metal oxide or metal carbonate. The second

More information

Chemical Reactions: The Copper Cycle

Chemical Reactions: The Copper Cycle 1 Chemical Reactions: The Copper Cycle ORGANIZATION Mode: pairs assigned by instructor Grading: lab notes, lab performance and post-lab report Safety: Goggles, closed-toe shoes, lab coat, long pants/skirts

More information

NITROGEN, AMMONIA, High Range, Test N Tube

NITROGEN, AMMONIA, High Range, Test N Tube NITROGEN, AMMONIA, High Range, Test N Tube Method 10031 (0 to 50 mg/l NH 3 -N) For water, wastewater, and seawater Salicylate Method * 1. Enter the stored program number for nitrogen, ammonia, high range

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

Nitrogen, Total Inorganic

Nitrogen, Total Inorganic Nitrogen, Total Inorganic DOC316.53.01090 Titanium Trichloride Reduction Method Method 10021 0.2 to 25.0 mg/l N Test N Tube Vials Scope and application: For water, wastewater and seawater. Test preparation

More information

Chromotropic Acid Method Method to 30.0 mg/l NO 3 N (HR) Test N Tube Vials

Chromotropic Acid Method Method to 30.0 mg/l NO 3 N (HR) Test N Tube Vials Nitrate, HR DOC316.53.01068 Chromotropic Acid Method Method 10020 0.2 to 30.0 mg/l NO 3 N (HR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows Silver DOC316.53.01134 Colorimetric Method Method 8120 0.02 to 0.70 mg/l Ag Powder Pillows Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

Mercuric Thiocyanate Method Method to 25.0 mg/l Cl Reagent Solution

Mercuric Thiocyanate Method Method to 25.0 mg/l Cl Reagent Solution Chloride DOC316.53.01017 Mercuric Thiocyanate Method Method 8113 0.1 to 25.0 mg/l Cl Reagent Solution Scope and application: For water and wastewater. Test preparation Instrument-specific information Table

More information

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters)

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Nitrate, MR DOC316.53.01069 Cadmium Reduction Method Method 8171 0.1 to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Scope and application: For water, wastewater

More information

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials Nitrogen, Total DOC316.53.01086 Persulfate Digestion Method Method 10071 0.5 to 25.0 mg/l N (LR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific

More information

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials Nitrogen, Total DOC316.53.01085 Persulfate Digestion Method Method 10072 2 to 150 mg/l N (HR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Arsenic Former numbering: ECSS/CN 312-1982 & ESPA/CN-E-105-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01104 USEPA Reactor Digestion Method Method 10212 250 to 15,000 mg/l COD (UHR) TNTplus 823 Scope and application: For wastewater and process waters; digestion is required.

More information

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 5000 DR The fill line is to the right.

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 5000 DR The fill line is to the right. Barium DOC316.53.01315 Turbidimetric Method 1 Method 10251 2 to 100, 20 to 1000, 200 to 10,000 mg/l Ba (spectrophotometers) Powder Pillows 2 to 80, 20 to 800, 200 to 8000 mg/l Ba (colorimeters) Scope and

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Ion Identification Group 2 Ions Identification Example -3 1. Place 10 drops of 0.1 mol dm barium chloride in a clean test tube. Must be clean to ensure

More information

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission 0 chapter Sodium and Potassium Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission Spectroscopy 67 S. S. Nielsen (ed.), Food Analysis Laboratory Manual Springer

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01103 USEPA Reactor Digestion Method Method 10211 1 to 60 mg/l COD (ULR) TNTplus 820 Scope and application: For wastewater, process water, surface water, and cooling water.

More information

Exercise 4-3. Titration of Weak Acids EXERCISE OBJECTIVE DISCUSSION OUTLINE. The 5% rule DISCUSSION

Exercise 4-3. Titration of Weak Acids EXERCISE OBJECTIVE DISCUSSION OUTLINE. The 5% rule DISCUSSION Exercise 4-3 Titration of Weak Acids EXERCISE OBJECTIVE Titrate both a weak acid solution and a weak polyprotic acid solution with a strong base solution. Plot a graph using the titration data, analyze

More information

DR/4000 PROCEDURE NITRATE. Using Powder Pillows

DR/4000 PROCEDURE NITRATE. Using Powder Pillows DR/4000 PROCEDURE Method 8171 Powder Pillows or AccuVac Ampuls Cadmium Reduction Method MR (0 to 5.0 mg/l NO 3 N) Scope and Application: For water, wastewater and seawater. The estimated detection limit

More information

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

St. John s College High School Mr. Trubic AP Midterm Review Packet 1 Name Date Directions: Read each question carefully and write your response in the space provided following each question. Your responses to these questions will be scored on the basis of the accuracy and

More information

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol Core practical 6 Teacher sheet Core practical 6: Objective To produce and purify a sample of 2-chloro-2-methylpropane Safety Wear goggles and gloves. 2-methylpropan-2-ol is flammable and harmful. Concentrated

More information

9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet

9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet 9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet This experiment will allow you to calculate a value for K sp, and also to see the common

More information

AQA Chemistry A-level

AQA Chemistry A-level AQA Chemistry A-level Required Practical 4 Carry out simple test-tube reactions to identify cations and anions + Cations: Group 2 ions, NH 4 Test for group 2 ions: sodium hydroxide -3 1. Place 10 drops

More information

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55

Suggested answers to in-text activities and unit-end exercises. Topic 16 Unit 55 Suggested answers to in-text activities and unit-end exercises In-text activities Discussion (page 117) Some possible ways for minimizing possible sources of error in the experiment: Add a slight excess

More information

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler

Advanced Unit 7: Chemistry Practical Examination (SET A) Candidates must have: Scientific calculator Ruler Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Unit 7: Chemistry Practical Examination (SET A) Monday 8 May 2017

More information

Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3

Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3 , MR, 8171 DOC316.53.01069 Cadmium Reduction Method Method 8171 MR (0.1 to 10.0 mg/l NO 3 N) Powder Pillows or AccuVac Ampuls Scope and Application: For water, wastewater and seawater Test preparation

More information

Powder Pillows 0.01 to 0.80 mg/l Al 3+ (colorimeters)

Powder Pillows 0.01 to 0.80 mg/l Al 3+ (colorimeters) Aluminum DOC316.53.01002 Aluminon Method 1 Method 8012 0.008 to 0.800 mg/l Al 3+ (spectrophotometers) Powder Pillows 0.01 to 0.80 mg/l Al 3+ (colorimeters) Scope and application: For water and wastewater.

More information

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA. Background

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA. Background POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA Background In this experiment, students will familiarize themselves with potentiometric titration, practice using the first derivative to find the equivalence

More information

Persulfate Digestion Method Method to 40 mg/l N (HR) TNTplus 827

Persulfate Digestion Method Method to 40 mg/l N (HR) TNTplus 827 Nitrogen, Total DOC316.53.01088 Persulfate Digestion Method Method 10208 5 to 40 mg/l N (HR) TNTplus 827 Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Phenolphthalein and Total Alkalinity Method to 4000 mg/l as CaCO 3 Digital Titrator

Phenolphthalein and Total Alkalinity Method to 4000 mg/l as CaCO 3 Digital Titrator Alkalinity DOC316.53.01166 Phenolphthalein and Total Alkalinity Method 8203 10 to 4000 mg/l as CaCO 3 Digital Titrator Scope and application: For water, wastewater and seawater. Test preparation Before

More information

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY Phillip Bigelow Chemists make two common types of "standard solutions": Molar solutions Normal solutions Both of these solutions are concentrations (or strengths

More information

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 1900 DR 5000 DR The fill line is to the right.

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 1900 DR 5000 DR The fill line is to the right. Aluminum DOC316.53.01003 Eriochrome Cyanine R Method 1 Method 8326 0.006 to 0.250 mg/l Al 3+ Powder Pillows Scope and application: For water. 1 Adapted from Standard Methods for the Examination of Water

More information

Chromium, Total. Alkaline Hypobromite Oxidation Method 1 Method to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters)

Chromium, Total. Alkaline Hypobromite Oxidation Method 1 Method to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters) Chromium, Total DOC316.53.01034 Alkaline Hypobromite Oxidation Method 1 Method 8024 0.01 to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters) Scope and application: For water and wastewater.

More information

Chemical Analysis. Student Guide. National 5 Chemistry

Chemical Analysis. Student Guide. National 5 Chemistry Chemical Analysis Student Guide National 5 Chemistry Contents Page 3 Investigation A1 Calcium analysis of water Page 6 Investigation A2 Calcium analysis of milk Page 12 Investigation B Iron in tea and

More information

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows FILL LINE Method 8155 Salicylate Method 1 Powder Pillows Scope and Application: For water, wastewater, and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) (0.01 to 0.50 mg/l NH 3 N) Test Preparation

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Core practical 15: Analyse organic and inorganic unknowns

Core practical 15: Analyse organic and inorganic unknowns Core practical 15 Teacher sheet Core practical 15: Objectives To research the tests for ions and organic compounds To successfully test unknown substances to establish their identity Safety Wear goggles.

More information

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater.

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater. Nitrogen, Ammonia DOC316.53.01078 USEPA 1 Nessler Method 2 Method 8038 0.02 to 2.50 mg/l NH 3 N Reagent Solution Scope and application: For water, wastewater and seawater. Distillation is required for

More information

Relative Solubility of Transition Elements

Relative Solubility of Transition Elements Microscale Relative Solubility of Transition Elements The transition elements are found in periods 4, 5, and 6 between groups 2 and 13 of the periodic table. As the atomic number increases across a row

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

To explore solubilities and reactivities of different metal ions. To identify ions present in unknown solutions using separation methods.

To explore solubilities and reactivities of different metal ions. To identify ions present in unknown solutions using separation methods. Qualitative Analysis PURPOSE To develop a separation scheme and confirmatory tests for Fe 3+, Ba 2+, and Ag + cations, and to use it to identify the ions in a sample of unknown composition. GOALS To explore

More information

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions Inquiry INVESTIGATION 7-A Skill Check Initiating and Planning Performing and Recording Analyzing and Interpreting Communicating Safety Precautions Wear safety eyewear throughout this investigation. Wear

More information

Chapter 9. Volumetric Analysis

Chapter 9. Volumetric Analysis Chapter 9 Volumetric Analysis The terms volumetric analysis, titrimetry and titration are used interchangeably to describe a procedure which analyses chemicals in solution by accurate volume measurement.

More information

Form 4 Chapter 7: Acid and Bases

Form 4 Chapter 7: Acid and Bases Form 4 Chapter 7: Acid and Bases The ph Scale Properties Acids Alkalis Physical. Substances that ionized in water to produce hydrogen ions.. Sour taste.. Turn blue litmus paper red. 4. Give a ph value

More information

Dimethylphenol Method Method to mg/l NO 3 N or 1.00 to mg/l NO

Dimethylphenol Method Method to mg/l NO 3 N or 1.00 to mg/l NO Nitrate DOC316.53.01070 Dimethylphenol Method Method 10206 0.23 to 13. NO 3 N or 1.00 to 60.00 mg/l NO 3 (LR) TNTplus 835 Scope and application: For wastewater, drinking water, surface water and process

More information

NITROGEN, TOTAL, HR, Test N Tube

NITROGEN, TOTAL, HR, Test N Tube Method 10072 NITROGEN, TOTAL, HR, Test N Tube 10 to 150 mg/l N TNT Persulfate Digestion Method For water and wastewater Digestion is required for determining total nitrogen. The digestion procedure is

More information

DR/4000 PROCEDURE NITRATE. 2. The display will show:

DR/4000 PROCEDURE NITRATE. 2. The display will show: Method 8192 Powder Pillows DR/4000 PROCEDURE Cadmium Reduction Method LR (0 to 0.50 mg/l NO 3 N) Scope and Application: For water, wastewater and seawater. The estimated detection limit for program number

More information

TPH (Total Petroleum Hydrocarbons)

TPH (Total Petroleum Hydrocarbons) TPH (Total Petroleum Hydrocarbons) DOC316.53.01475 Immunoassay 1 Method 10050 Scope and application: For water. 1 This test is semi-quantitative. Results are shown as more or less than the threshold value

More information

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 1 GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 Typical techniques used in gravimetric analyses by quantitatively determining

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

Exercise 4-4. Titration of a Buffer Solution EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Buffer solutions

Exercise 4-4. Titration of a Buffer Solution EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Buffer solutions Exercise 4-4 Titration of a Buffer Solution EXERCISE OBJECTIVE Titrate a buffer solution, plot a graph using the titration data, and analyze the titration curve. DISCUSSION OUTLINE The Discussion of this

More information

O'DONEL HIGH SCHOOL CHEMISTRY 2202

O'DONEL HIGH SCHOOL CHEMISTRY 2202 Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN O'DONEL HIGH SCHOOL MIDYEAR EXAMINATION CHEMISTRY 2202 SAMPLE (Revised January 2015) Value: 100% Time: 2 hours

More information

SPECIFICATION & TEST PROCEDURE SODIUM SALICYLATE Technical. Molecular weight : Reference : In-house

SPECIFICATION & TEST PROCEDURE SODIUM SALICYLATE Technical. Molecular weight : Reference : In-house Page 1 of 8 Molecular Formula : C 7 H 5 NaO 3 CAS Registry No. : [54 21 7] Molecular weight : 160.10 Reference : In-house Other names : Benzoic acid, 2 hydroxy, mono sodium salt, Mono sodium salicylate.

More information

GCE Chemistry PSA3: AS Inorganic Chemistry Carry Out Some Inorganic Tests

GCE Chemistry PSA3: AS Inorganic Chemistry Carry Out Some Inorganic Tests hij Teacher Resource Bank GCE Chemistry : AS Inorganic Chemistry Carry Out Some Inorganic Tests The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England

More information

PAR Method Method to 2.0 mg/l Pb TNTplus 850

PAR Method Method to 2.0 mg/l Pb TNTplus 850 Lead DOC316.53.01056 PAR Method Method 10216 0.1 to 2.0 mg/l Pb TNTplus 850 Scope and application: For wastewater and process control. Test preparation Instrument-specific information Table 1 shows all

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE

METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE METHOD 9210 POTENTIOMETRIC DETERMINATION OF NITRATE IN AQUEOUS SAMPLES WITH ION-SELECTIVE ELECTRODE 1.0 SCOPE AND APPLICATION 1.1 This method can be used for measuring total solubilized nitrate in drinking

More information

Hach Method Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxyl Radical Oxidation Infrared Analysis

Hach Method Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxyl Radical Oxidation Infrared Analysis Hach Method 1061 Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxyl Radical Oxidation Infrared Analysis Hach Company Method 1061 Revision 1. December 015 Organic Carbon in Finished

More information

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV Iron, Total DOC316.53.01338 FerroZine Method 1 Method 10264 1 to 100 µg/l Fe (10-cm cell) Reagent Solution Scope and application: For ultrapure water. 1 Adapted from Stookey, L.L., Anal. Chem., 42(7),

More information

Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations

Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations North Carolina State Bureau of Investigation Firearm and Tool Mark Section July 10, 1996 Revised February 23, 1998

More information

EXPERIMENT 20. Solutions INTRODUCTION

EXPERIMENT 20. Solutions INTRODUCTION EXPERIMENT 20 Solutions INTRODUCTION A solution is a homogeneous mixture. The solvent is the dissolving substance, while the solute is the dissolved substance. A saturated solution is one in which the

More information

Salicylate Method Method HR (2 to 47 mg/l NH 3 N) TNTplus 832

Salicylate Method Method HR (2 to 47 mg/l NH 3 N) TNTplus 832 , TNTplus 832, 10205 DOC316.53.01083 Salicylate Method Method 10205 HR (2 to 47 mg/l NH 3 N) TNTplus 832 Scope and Application: For surface waters, municipal and industrial wastewaters. Test preparation

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/31 Paper 3 Advanced Practical Skills 1 May/June 2014 2 hours Candidates answer on the

More information

Cadion Method Method to 0.30 mg/l Cd TNTplus 852

Cadion Method Method to 0.30 mg/l Cd TNTplus 852 Cadmium DOC316.53.01013 Cadion Method Method 10217 0.02 to 0.30 mg/l Cd TNTplus 852 Scope and application: For wastewater and process control. Test preparation Instrument-specific information Table 1 shows

More information

NITROGEN, TOTAL, Test N Tube * Method 10071

NITROGEN, TOTAL, Test N Tube * Method 10071 NITROGEN, TOTAL, Test N Tube * Method 10071 TNT Persulfate Digestion Method (0 to 25.0 mg/l N) Scope and Application: For water and wastewater; digestion is required for determining total nitrogen. The

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *9763634822* CHEMISTRY 9701/36 Paper 3 Advanced Practical Skills 2 October/November 2014 2 hours Candidates

More information

DR/4000 PROCEDURE. IRON, Total

DR/4000 PROCEDURE. IRON, Total Method 8365 Powder Pillows DR/4000 PROCEDURE FerroMo Method* (0 to 1.800 mg/l) Scope and Application: For cooling water containing molybdate-based treatment; digestion is required for determining total

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

Hach Method Spectrophotometric Measurement of Free Chlorine (Cl 2 ) in Finished Drinking Water

Hach Method Spectrophotometric Measurement of Free Chlorine (Cl 2 ) in Finished Drinking Water Hach Method 1041 Spectrophotometric Measurement of Free Chlorine (Cl ) in Finished Drinking Water Hach Company Method 1041 Revision 1. November 015 Spectrophotometric Measurement of Free Cl in Finished

More information

1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to mg/l Cr 6+ )

1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to mg/l Cr 6+ ) DR/4000 PROCEDURE Method 8023 1,5-Diphenylcarbohydrazide Method* Powder Pillows or AccuVac Ampuls (0 to 0.700 mg/l Cr 6+ ) Scope and Application: For water and wastewater;usepa accepted for reporting for

More information

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 1900 DR 5000 DR The fill line is to the right.

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 1900 DR 5000 DR The fill line is to the right. Nitrite DOC316.53.01074 USEPA Diazotization Method 1 Method 8507 0.002 to 0.300 mg/l NO 2 N (LR, spectrophotometers) 0.005 to 0.350 mg/l NO 2 N (LR, colorimeters) Scope and application: For water, wastewater

More information

NITRITE, Low Range (0 to mg/l NO 2- -N)

NITRITE, Low Range (0 to mg/l NO 2- -N) NITRITE, Low Range (0 to 0.350 mg/l NO 2- -N) Method 8507 For water, wastewater, seawater Diazotization Method * (Powder Pillows or AccuVac Ampuls); USEPA approved for reporting wastewater and drinking

More information

Hach Company TNTplus 835/836 Nitrate Method Spectrophotometric Measurement of Nitrate in Water and Wastewater

Hach Company TNTplus 835/836 Nitrate Method Spectrophotometric Measurement of Nitrate in Water and Wastewater Hach Company TNTplus 835/836 Nitrate Method 10206 Spectrophotometric Measurement of Nitrate in Water and Wastewater Hach Company TNTplus 835/836 Method 10206 Revision 2.2 January 15, 2013 Spectrophotometric

More information

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner Chemistry 119: Experiment 6 Sampling and Analysis of a Solid Drain Cleaner An important factor in any analysis is the collection of the sample. How this is done depends upon the use to which the analytical

More information

Acids and Bases. How does ph affect biological solutions? Introduction. Prelab Preparation Review Section 2.3 on acids and bases in your textbook.

Acids and Bases. How does ph affect biological solutions? Introduction. Prelab Preparation Review Section 2.3 on acids and bases in your textbook. Acids and Bases How does ph affect biological solutions? Learning Objectives To relate the ph scale to how acidic or basic a solution is. To explain how a buffer affects the ph of a solution. Process Objectives

More information

METHOD 7B - DETERMINATION OF NITROGEN OXIDE EMISSIONS FROM STATIONARY SOURCES (ULTRAVIOLET SPECTROPHOTOMETRIC METHOD)

METHOD 7B - DETERMINATION OF NITROGEN OXIDE EMISSIONS FROM STATIONARY SOURCES (ULTRAVIOLET SPECTROPHOTOMETRIC METHOD) 683 METHOD 7B - DETERMINATION OF NITROGEN OXIDE EMISSIONS FROM STATIONARY SOURCES (ULTRAVIOLET SPECTROPHOTOMETRIC METHOD) NOTE: This method does not include all of the specifications (e.g., equipment and

More information

Separation and Identification of Metal Ions

Separation and Identification of Metal Ions Vivek Kumar, Ph.D. OBJECTIVES: In this experiment, you will analyze an aqueous solution for the presence of Ag +, Pb 2+ and Hg2 2+ ions LEARNING GOALS 1. To understand and apply chemistry of metal ions

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste Experiment ISE: Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste 67 You have been hired by the government to check the fluoride concentration labelling on some major

More information

Method 8326 (0.006 to mg/l Al 3+ ) Powder Pillows

Method 8326 (0.006 to mg/l Al 3+ ) Powder Pillows , 8326 Eriochrome Cyanine R Method 1 Scope and Application: For water 1 Adapted from Standard Methods for the Examination of Water and Wastewater. DOC316.53.01003 Method 8326 (0.006 to 0.250 mg/l Al 3+

More information

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Functional Genomics Research Stream Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Agenda Lab Work: Last Week New Equipment Solution Preparation: Fundamentals Solution Preparation: How

More information

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION INDUSTRIAL COATINGS CS59 PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION is a chromium-free concentrate for use as a final rinse after phosphate with CHEMFOS iron or zinc

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 1 The ph scale is a measure of the acidity or alkalinity of a solution. (a) Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 5 Acid 7 9 Neutral 11 13

More information

EXPERIMENT 2. Gravimetric Analysis of a Soluble Chloride

EXPERIMENT 2. Gravimetric Analysis of a Soluble Chloride EXPERIMENT 2 Gravimetric Analysis of a Soluble Chloride SAFETY AND LABORATORY TECHNIQUE NOTE Throughout this experiment, avoid getting silver nitrate solution on your hands (or any other part of your body

More information

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point.

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point. 93 experiment7 Determining an Unknown Concentration Understanding the concept of titration. LECTURE AND LAB SKILLS EMPHASIZED Explaining the difference between analyte and standard solutions. Know the

More information

National standard of People s Republic of China

National standard of People s Republic of China National standard of People s Republic of China GB5413.24-2010 Determination of chlorine in foods for infants and young children, raw milk and dairy products Issued at 2010-03-2 Implemented at:2010-06-01

More information

Mercaptoacetic Acid Method*

Mercaptoacetic Acid Method* Method 8036 MOLYBDENUM, MOLYBDATE, High Range (0 to 40.0 mg/l) Mercaptoacetic Acid Method* Using Powder Pillows For water and wastewater 1. Enter the stored program number for high range molybdenumpowder

More information

DPD Test N Tube Method *

DPD Test N Tube Method * CHLORINE, FREE (0 to 5.00 mg/l) DPD Test N Tube Method * Method 10102 For water, wastewater, and seawater 1. Enter the stored program number for Test N Tube free chlorine (Cl 2 ). Press: PRGM The display

More information

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA Introduction In this experiment, students will familiarize themselves with potentiometric titration, practice using the first derivative to find the equivalence

More information

EXPERIMENT 17. Oxidation-Reduction Reactions INTRODUCTION

EXPERIMENT 17. Oxidation-Reduction Reactions INTRODUCTION EXPERIMENT 17 Oxidation-Reduction Reactions INTRODUCTION Oxidizing agents are compounds or ions that contain an element capable of achieving a lower oxidation state by gaining electrons The stronger the

More information

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES Experiment 4 Name: 15 P HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES 13 Al e In this experiment, you will also observe physical and chemical properties and physical and chemical changes.

More information

EXPERIMENT 8 Determining K sp

EXPERIMENT 8 Determining K sp EXPERIMENT 8 Determining K sp Introduction The solubility product constant, or K sp of a compound is an equilibrium constant that describes the degree to which a solid dissolves in water. The K sp is calculated

More information

CHLORINE, TOTAL (0 to 4.00 mg/l)

CHLORINE, TOTAL (0 to 4.00 mg/l) CHLORINE, TOTAL (0 to 4.00 mg/l) DOC316.53.01261 For water, wastewater, and seawater Method 10250 DPD Method Powder Pillows USEPA accepted for reporting water and wastewater analyses * Note: This product

More information