VI. Metal alkyls from oxidative addition / insertion

Size: px
Start display at page:

Download "VI. Metal alkyls from oxidative addition / insertion"

Transcription

1 V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated. 1. General Scheme (0) ox. add. C u cleave uc () C () () C insert 'M transmetallate (M = Sn, Zn, etc.) C ' + M red. el. C '

2 2. Examples Tf Tet. Lett. 29, 2793 (1988) (Ac) 2 cat PPh 3, Et 3 C, Me/DMF C 2 Me 75% Me C 2 Me (Ac) 2, L Me C 2 Me Tf C, DMF Et 3, Me 93% C 2 Me J. rg. Chem. 55, 3004 (1990) MM Tol Tf BM (Ac) 2 C Me DMF MM Tol BM Me Tol Tol 83% [Edstrom J. rg. Chem. 59, 6902 (1994); J. rg. Chem. 60, 5069 (1995)]

3 L 4 C SnBu % U92 = Ph,, Et, TMS [JACS 117, 8474 (1995)] [Boronic Acids TM Miyaura JC 63, 4726 (1998)] Ar (0)/C/Bu 3 Sn ArC C =, Br, Tf high yields (28 cases) Stille, J. Am. Chem. Soc. 108, 452 (1986) ntramolecular versions very popular. C 3 C 3 + C Cl 2 (PPh 3 ) 2 K 2 C 3, DMF 4 atm 50, 60 h C 3 C 3 78% J. Am. Chem. Soc. 102, 4193 (1980) J. rg. Chem. 47, 3630 (1982)

4 U92a C TPS TPS SAc Bu 3 Sn/C 2 dba 3,L TPS TPS SAc good yield A.B. Smith JACS, 123, 5925 (2001)

5 Ph Br Bn (Ac) 2 /PPh 3 Bu 3 /MPA 1 atm C, 100 Ph Bn 76% Y. Ban Chem. Comm. 698 (1979) Tetrahedron 41, 387 (1985) works well on large scale Br C, DMF L 2 Cl 2 ibu 3 J. rg. Chem. 52, 2469 (1987) (1994) and tbu 89% on 180 g scale S F 6.7 kg (Ac) 2 34 g Me 2.6 Kg DMS 73 l dppe 63 g C 7 psi Et kg Me 2 C 5.31 kg 87% [J. rg. Chem. 59, 6683 (1994)]

6 Even enolate can trap σ acyl L 2 Cl 2 /TF Et 3, psi C egishi, Tet. Lett. 31, 2941 (1990) 80-90% (B) lefin insertion - eck eaction, rg. eact. 27, 345 (1982) eviews: de Meijere Angew. Chem. nt. Ed. 33, 2379 (1994) Z β-elim. red. elim. Z verman Pure Appl. Chem. 66, 1423 (1994) (0) () () Z ox. add. coord. (no β-) Z (Z =,, Ph, C, C 2, Me, Ac, Ac) less substituted favored in intermolecular reaction regiochemistry of intramolecular rx depends on ring size and strain in T.S. Catalysts: L 4, (dba) 2, Cl 2 L 2 + DBAL, (Ac) 2 + red. agent (C, C 2 =C 2, 3, 3 P, ) Modifications igh T [Spencer J. rganomet. Chem. 258, 101 (1983); 265, 323 (1984); 270, 115 (1984)]

7 solated, stable, o-palladated cat. with high T Ph 2 P Ac 2 [Beller Angew. Chem. nt. Ed. Engl. 34, 1844 (1995)] Tf T Ac 2 Ac 2 [Milstein JCS Chem. Comm. 357 (1999)] disputed [JCS Chem. Comm (2000)] metallic claimed Cl 2 [Pacheco rg. Lett. 2, 1826 (2000)] S Cl S S Cl 2 [Guram rg. Lett. 2, 1287 (2000)] Me Me P P 2 2 [Shibasaki Tet. Lett. 40, 7379 (1999)] 8.9 million T 400,000 T/hϖ S S [Eur. J. rg. Chem. 869 (2000)]

8 C 2 Et Me Me C 2 Me Me (Ac) 2 cat DMF, Bu 4 Cl KAc, 80, 6 h [Sundberg J. rg. Chem. 55, 6208 (1990)] C 2 Et Me C 2 Me 89% Me Me Mild conditions ( 4 ) [Jeffrey, Larock J. rganomet. Chem. 258, 101 (1983); 265, 323 (1984); 270, 115 (1984) Tet. Lett. 26, 2667 (1985); 29, 905 (1988) Synthesis 70 (1987); Chem. Comm (1984)] ole of halide [Amatore, Jutland JACS 113, 8375 (1991)] (Stabilizes ntermediates) Prevents β-el. [rganomet. 19, 775 (2000)] [L 2 Ph] + better than (Ac) 2 / otol 3 p Bull. Chem. Soc. Jpn (1995)]

9 Tf TBS TBS U96 L 4 K 2 C 3 Bn MeC 4Å Mol. Siev. 90 [Masters, Danishefski Angew. Chem. nt. Ed. 34, 1723 (1995); 34, 452 (1995); JACS 117, 5228 (1995)] 49% Taxol Bn C C Tf dppb KAc DMA 90% [verman Tet. Lett. 39, 4643; 4647 (1998)] 1 Br 2 dba 3 dppb Ag 3 P 4 DMA 79% 1 C [Trost Angew. Chem. nt. Ed. Engl. 38, 3662 (1999)] Aromatic and heteroaromatic systems insert Br Br (0) 60% [Scott rg. Lett. 2, 1427 (2000)] [See also Tet. Lett. 41, 285 (2000)] [Takenchi, Synthesis, 237 (2002)] Ts Boc (Ac) 2 Ag 2 C 3 PPh 3 100% Ts [Synthesis 549 (2000)]

10 Good for macrocycles with high dilution or solid support U97 Polymer (Ac) 2 Ph 3 P Bu 4 Cl DMF/ 2 /Et 3 Polymer [JACS 117, (1995)] Synthesis of DG libraries Tet., 57, 2293 (2001) [non polymer bound: Tetrahedron Lett. 36, 6555 (1995) 30-42%] 78% egiochemistry a function of conditions TBS TBS standard (0) ' "Jeffrey" TBS TBS TBS TBS ' ' 32-68% 70% [igby J. Am. Chem.Soc. 117, 7834 (1995); Tet. Lett. 38, 1057 (1997)]

11 Can induce asymmetry - [eview Shibasaki J. Synth. rg. Chem. Jpn. 52, 956 (1994); Tet. 53, 7371 (1997)] Me TMS (0) () BAP TMS 92% yield 90% ee [Tietz Angew. Chem. nt. Ed. 33, 1089 (1994); Synlett 597 (1995)] Tf Cl Cl (Ac) 2 K 2 C 3 () BAP 78% yield 95% ee [Shibasaki J. Am. Chem.Soc. 116, (1994)] Me Me Tf (Ac) 2 () BAP K 2 C 3 62% yield 95% ee [Shibasaki J. rg. Chem. 60, 4322 (1995)] 2 dba 3 L* DMA Ag 3 P 4 93% 89% ee L* = Me Me PPh 2 PPh 2 [Tetrahedron Asymmetry 11, 1919 (2000)] For L* = [ayashi et. 52, 195 (2000)] Ph 2 P

12 elated ydroacylation U98a h[()bap] + (±) Ph C ox. add. kinetic es. Ph 34% yield >95% ee + Ph C 54% yield 54% ee Ph h - insert h red. el. Ph Saemuni Tet., 57, 205 (2001); 1197 (2001) of Alkynes 1 Me h[() tol BAP] + 1 Me Me 2 (±) also Me % ee Et 60-70% conv. Me desymmetrization 91-95% yield 82-95% ee Fu JACS, 124, (2002) 123, (2001)

13 lefin insertion generates a new M-C σ bond. f β-elimination can be suppressed, all of the known chemistry of M-C's can be utilized for additional reactions e.g. cascade polycyclizations - egedus, Trost, egishi, Larock, Grigg, etc. e.g. C insertion 5% Cl 2 (PPh 3 ) 2 Me/C 3 C/Ph ( ) n Et 3 40 atm C ( )n 100 ox. add. C C 2 Me olefin Me - ( ) n C insert ( ) n insert ( ) n insert ( ) n (low C pressure) red. elim. egishi, J. rg. Chem. 53, 915 (1988) ( ) n 75%

14 Polyene insertions [eview verman Pure Appl. Chem. 64, 1813 (1992) [eumann Tet. 52, 9289 (1996); 56, 5959 (2000)] [egishi Chem. ev. 96, 365 (1996)] [Malacria Chem. ev. 96, 289 (1996)] [Grigg Comprehensive rganometallic Chemistry 12, 299 (1995)] (0) 86% [verman J. Am. Chem. Soc. 110, 2328 (1988)] E E E = C 2 Et 3% (PPh 3 ) 4 Et 3 (2 equiv) MeC reflux, 12h [egishi J. Am. Chem. Soc. 112, 8590 (1990)] E E 76% 1 Br 2 2 (Ac) 2 Ag 2 C 3 PPh ox add 1) insert 2) β-el. J. rg. Chem. 1991, demeijer insert Eur. J. rg. Chem (1999) Angew. Chem. nt. Ed. Engl. 38, 1452 (1999)

15 S 2 Ph (0) S 2 Ph 70% [Grigg Tetrahedron Lett. 36, 8137 (1995)] [Many, many, many current examples] 3 Si (Ac) 2 Ph 3 P Ag 2 C 3 TBAF 82% [verman J. rg. Chem. 58, 5304 (1993)] [JACS 121, 5467 (1999)] Can induce asymmetry Tf 2 dba 3 L* 85% up to 91% ee L* = BAP [Keay Synlett 605 (1999)] L* = 7,7'-(Me) 2 BAP Tet. Asymmetry 11, 1919 (2000) Tf [TFA] 2 (S)-BAP C [ayashi rg. Lett. 1, 1487 (1999)] 95% ee

16 Can truncate by transmetallation Cl C 2 Me Sn C 2 Me Cl 2 (Tfp) 2 89% [da Tetrahedron 51, 695 (1995)] ucleophilic Attack Br C 2 Me C 2 Me 5% (Ac) 2 Me 2 C C2 Me dppe 1.1 K 76% [Balme Synlett 995; 998 (1998)]

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)]

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)] 3. Boron -- eview [Suzuki Chem. ev. 95, 2457 (1995)] U77b ydroboration also attractive but B Pd transmetallation difficult - must produce stable B product - solved (by Suzuki) by adding base to make Borates

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F Chemistry 253 roblem et 3 Due: Friday, ctober 15th ame TF 1. For the following products of cross coupling reactions and indicated bond disconnections, please indicate a reasonable cross coupling protocol

More information

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 1! Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 2! utline! 1. Brief Introduction! 2. ucleophilic Dominoes! 3. Electrophilc Dominoes! 4. Radical

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II) Studies on eck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type xidative Cyclization Catalyzed by Palladium() Zuhui Zhang enmark Group Meeting 10/21/2008 1 Part ne: Palladium(0)-Catalyzed

More information

Catalytic synthesis of amines and amides

Catalytic synthesis of amines and amides Catalytic synthesis of amines and amides Jonathan Williams University of Bath Catalytic approaches to amine synthesis Br Pd or Cu cat 2 Chem. Sci., 2011,27 ' TM or Ln cat 2 ' 2 and/or 2 ' rg. Biol. Chem.,

More information

Journal Club Presentation by Remond Moningka 04/17/2006

Journal Club Presentation by Remond Moningka 04/17/2006 β-alkyl-α-allylation of Michael Acceptors through the Palladium-Catalyzed Three-Component Coupling between Allylic Substrate, Trialkylboranes, and Activated lefins Yoshinori Yamamoto, et al. J. rg. Chem.

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Total Synthesis of (+)-Suaveolindole

Total Synthesis of (+)-Suaveolindole 1 Total Synthesis of (+)-Suaveolindole 15 2 C 16 11 Emile J. Velthuisen and Samuel J. Danishefsky J. Am. Chem. Soc. 2007, 9, 10640-10641 Julia Vargas September 15, 2007 2 utline Isolation and Elucidation

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information

Elementary Organometallic Reactions

Elementary Organometallic Reactions Elementary eactions CE 966 (Tunge) Elementary rganometallic eactions All mechanisms are simply a combination of elementary reactions. 1) Coordination -- issociation 2) xidative Addition -- eductive Elimination

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

Advanced Organic Synthesis

Advanced Organic Synthesis به نام خدا 8 Advanced rganic Synthesis Dr M. hrdad University of Guilan, Department of Chemistry, Rasht, ran eck Reaction Suzuki Coupling 2 The eck Reaction oadly defined as the palladium-catalyzed coupling

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Organo-transition Metal Chemistry

Organo-transition Metal Chemistry Prof. Dr. Burkhard König, nstitut für rganische Chemie, Universität egensburg 1 rgano-transition tal Chemistry 1. Some Basics Chemistry involves intermediates containing transition-metal carbon bonds tal-carbon

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans Direct xidative eck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans by Zhang,.; Ferreira, E. M.; Stoltz, B. M. Angewandte

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes Metal Catalyzed uter Sphere Alkylations of Unactivated lefins and Alkynes Stephen Goble rganic Super-Group Meeting Literature Presentation ctober 6, 2004 1 utline I. Background Introduction to Carbometallation

More information

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon 11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon Seth B. erzon, Liang Lu, Christina M. Woo, and Shivajirao L. Gholap J. Am. Chem. Soc. ASAP DI 10.1021/ja200034b Melissa Sprachman Current

More information

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine ine-step nantioselective Total Synthesis of (+)-Minfiensine Jones, S. B.; Simmons, B.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2009, ASAP. DI: 10.1021/ja906472m Kara George Wipf Group - Current Literature

More information

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S Generalized igmatropic Processes [3,3]-sigmatropic Processes 1 3,=C,,, 1 3 3,=C,,, 3 [2,3]-sigmatropic Processes 1 3,=C,,, 1 3 Ene eactions 1 3 1 3 Cope earrangement [3,3]- igmatropic earrangements Transition

More information

A Review of Total Synthesis of Spirotryprostatin A and B. Jinglong Chen Supergroup meeting Princeton University June

A Review of Total Synthesis of Spirotryprostatin A and B. Jinglong Chen Supergroup meeting Princeton University June A Review of Total Synthesis of Spirotryprostatin A and B Jinglong Chen Supergroup meeting Princeton University June 28 2006 ovel Mammalian Cell Cycle Inhibitors, Spirotryprostatins A and B Me Spirotryprostatin

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin Application of Two Direct C(sp 3 )- Functionalizations for the Total Synthesis of (+)-Lactacystin two stereoselective C(sp 3 )- functionalisations 2 C S Ac (S)-pyroglutaminol (+)-lactacystin S. Yoshioka,

More information

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations Domingo Garcia-Cuadrado, Ana M. Cuadro, Bernado M. Barchin, Ana unez, Tatiana Caneque, Julio Alvarez-

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

Ready; Catalysis Conjugate Addition

Ready; Catalysis Conjugate Addition eady; Catalysis Conjugate Addition Topics covered 1. 1,4 addition involving copper a. stoichiometric reactions b. catalytic reactions c. allylic substitution. Conjugate addition without copper a. Ni-based

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide Mild Cobalt-Catalyzed ydrocyanation of lefins with Tosyl Cyanide 1 3 2 + Ts Co cat., Si 3 Et, 1-3 h, T 1 2 3 Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. ASAP Current Literature Kalyani Patil 12 May

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Enan$oselec$ve Total Synthesis of Amphidinolide F

Enan$oselec$ve Total Synthesis of Amphidinolide F Enan$oselec$ve Total Synthesis of Amphidinolide F Subham Mahapatra and ich G. Carter regon State University Angew. Chem. nt. Ed., 2012, 51, 7948 Nicolas Millius Bern, 07.02.2013 ntroduc$on isolated from

More information

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage henium-catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage Kuninobu, Y.; Takata,.; Kawata, A.; Takai, K. rg. Lett. ASAP Et 5 6 cat. [ebr(c) 3 (thf)] 2 5 6 Current Literature

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Large-Scale Synthesis of the Anti-Cancer Marine Natural Product (+)-Discodermolide

Large-Scale Synthesis of the Anti-Cancer Marine Natural Product (+)-Discodermolide 61.7 g prepared in 39 steps 43 chemists worked on the project which lasted 20 months Chris Kendall @ Wipf Group 1 3/27/04 8 22 1 5 24 carbon linear polypropionate chain containing stereocenters (6 hydroxyl

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group 1/12 Branched-egioselective ydroformylation with Catalytic Amounts of a eversibly Bound Directing Group h(i)/me C/ 2 MS 4A branched major by Christian U. Grünanger and Bernhard Breit Angew. Chem. Int.

More information

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo 2014.1.6 1 Content Introduction Progress of Catellani Reaction o-alkylation and Applications o-arylation and Applications Conclusion and Outlook

More information

Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp 3 C H Bond Oxidation

Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp 3 C H Bond Oxidation Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and ate-stage sp 3 C Bond xidation un Xu, Chao Wang, Ziwei Gao, and Yu-Ming Zhao* Cameron McConnell Professor S.-Y.

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

CEM 852 Final Exam. May 6, 2010

CEM 852 Final Exam. May 6, 2010 CEM 852 Final Exam May 6, 2010 This exam consists of 7 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. n answering your questions,

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2011 Final Exam Please answer the following questions clearly and concisely. In general, use pictures and less than 10 words in your answers. Write

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Mechanism Problem. 1. NaH allyl bromide, THF N H

Mechanism Problem. 1. NaH allyl bromide, THF N H Mechanism Problem 1. a allyl bromide, TF 2. 9-BB (1.2 equiv), TF, rt; ame (1.2 equiv); t-buli (2.4 equiv), TMEDA (2.4 equiv) 30 to rt; allyl bromide; 30% 2 2, aq. a, 0 C (58% yield) Mechanism Problem 9-BB

More information

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization Total Synthesis of (+/-)-Goniomitine via a Formal itrile/donor-acceptor Cyclopropane [3 + 2] Cyclization (-)-Goniomitine Christian L. Morales and Brian Pagenkopf* rganic Letters, ASAP Current Literature

More information

Synthesis of the Stenine Ring System from Pyrrole

Synthesis of the Stenine Ring System from Pyrrole Current Literature Presentation gor psenica 06/18/2011 Synthesis of the Stenine Ring System from Pyrrole Bates, R. W.; Sridhar, S. J. rg. Chem., 2011, 76, 5026 5035 gor psenica @ Wipf Group Page 1 of 16

More information

I. Liu Lab. Ka<e Boknevitz 1

I. Liu Lab. Ka<e Boknevitz 1 A ighly Convergent Total Synthesis of Leustroducsin B Barry M. Trost,* Berenger Biannic, Cheyenne S. Brindle, B. Michael Keefe, Thomas J. unger, and Ming-Yu gai Department of Chemistry, Stanford University,

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Solvias (R)-MeO-BIPHEP Ligand Kit

Solvias (R)-MeO-BIPHEP Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials Catalog # 96-3655 Solvias ()- and (S)-Me BIE Ligand Kits for asymmetric hydrogenation and other catalytic

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

Recent Development in. Tandem Radical Reactions (TRR)

Recent Development in. Tandem Radical Reactions (TRR) ecent Development in Tandem adical eactions (T) Feng u Jan. 13, 2006 Contents Brief Introduction of the istory of T Definition of T Intramolecular T Intermolecular T T as Key Steps in Total Synthesis of

More information

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU.

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU. Cu- Catalyzed ynthesis of Diaryl Thioethers and - Cycles by reaction of Aryl odides with Carbon Disul;ide in the Presence of DBU. Peng Zhao, Hang Yin, Hongxin, Gao, Chanjuan Xi.; J. rg. Chem. ArCcle AAP

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Olefin-Forming Reactions I

Olefin-Forming Reactions I C549 R.M. Williams lefin-forming Reactions I The McMurry lefination Reaction. An important alternative to the acyloin condensation is the McMurry olefination which is a free radical coupling reaction initiated

More information

Decarboxylation of allylic β-ketoesters

Decarboxylation of allylic β-ketoesters M.C. White, Chem 253 π-allyl chemistry -224- Week of ovember 8, 2004 Decarboxylation of allylic β-ketoesters Indicate the mechanism of the following transformation: d 2 dba 3 2.5 mol% h 3 10-20 mol% TF,

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Selective Synthesis of Multisubstituted Cycloheptadienes 1 2 Cat. Ni 0 1 2 Komagawa, S.; Saito, S. Angew.

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Synthesis of Amphidinolide X and an Exploration of Key Reactions PJM 1/12/05 Synthesis of Amphidinolide X and an Exploration of Key eactions Lepage,.; Kattnig, E.; Furstner, A. JACS, 2004, 126, 15970-15971. 7 13 1 6 19 - Produced by marine dinoflagellates, Amphidinium

More information

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold Tandem h(i)-catalyzed [(5+2)+1] Cycloaddition/Aldol eaction for the Construction of Linear Triquinane Skeleton: Total Syntheses of (+)-irsutene and (+)-1- Desoxyhypnophilin JACS ASAP Article: Published

More information

Total Synthesis of the Chartellines

Total Synthesis of the Chartellines Total Synthesis of the Chartellines X Y chartelline A, X = Y = chartelline B, X =, Y = chartelline C, X = Y = Mariam Shamszad ovember 1, 2006 Background Chartellines A, B, and C were isolated in the 1980s

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

Denmark Group Meeting. & Electrophilic rearrangement of amides

Denmark Group Meeting. & Electrophilic rearrangement of amides Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1 https://maps.google.com 2 Palladium catalyzed Dearomatization eaction

More information

The Catalytic Chemistry of Palladium (II)

The Catalytic Chemistry of Palladium (II) Chapter 4 The Catalytic Chemistry of Palladium (II) Main on-organometallic (II) Sources [ 2 ] n = n insoluble 2 MeC 2 Li 2 PPh 3 2 (MeC) 2 2 (PPh 3 ) 2 Li 2 4 soluble 2 Ag 2 AgBF4 2 MeC (MeC) 4 (BF 4 )

More information

Chapter 5 Three and Four-Membered Ring Systems

Chapter 5 Three and Four-Membered Ring Systems Chapter 5 Three and Four-mbered ing ystems 5.1 Aziridines Aziridines are good alkylating agents because of their tendency to undergo ring-opening reaction with nucleophiles 例 mitomycin C antibiotic and

More information

A Stereoselective Synthesis of (+)-Gonyautoxin 3

A Stereoselective Synthesis of (+)-Gonyautoxin 3 A Stereoselective Synthesis of (+)-Gonyautoxin 3 Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630-12631 Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via

More information

MECHANISMS. Croomine. Key reaction is the vinylogous Mannich reaction. (CH 2 ) 4 Br H N P. CO 2 Me. Iminium ion formation via decarboxylation

MECHANISMS. Croomine. Key reaction is the vinylogous Mannich reaction. (CH 2 ) 4 Br H N P. CO 2 Me. Iminium ion formation via decarboxylation MECAM Croomine Key reaction is the vinylogous Mannich reaction T C 2 Me T C 2 Me (C 2 ) 4 C 2 Me minium ion formation via decarboxylation C 2 Cl 3 Cl ndanomycin The Julia lefination Classical Julia Ar

More information

!"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!"!3$!4$!5)01+!.*!06'2

!#$%&&'!&(!)*+,-./!012.3$*4!!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!!3$!4$!5)01+!.*!06'2 !"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/012 546*&%&*,$.&-!"!3$!4$!5)01+!.*!06'2 C-C Bond Formation: Cross-coupling Reaction of rganometal Compounds with rganic alids M C-m + X-C C-C

More information

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis on-tathesis thenium-catalyzed eactions for rganic Synthesis Tristan Lambert MacMillan Group eting May 23, 2002 I. Properties of thenium II. eductions III. xidations IV. Isomerizations V. C-C bond forming

More information

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis Development of Chiral osphine lefin Ligands and Their Use in Asymmetric Catalysis 2 Wei-Liang Duan July 31, 2007 Research Works in Hayashi Group, Kyoto University (ct, 2003 Mar, 2007) Conventional Chiral

More information

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles) Approaches to the Synthesis of Tetrahydropyrans (and closely related heterocycles) William Morris Literature Presentation July 6, 2004 I. Intro A Nomenclature B Prevalence in Nature C Biosynthetic Considerations

More information

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Asymmetric Palladium Catalyzed Cross-Coupling Reactions Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Palladium Catalyzed Cross-Coupling Reactions 2 Kumada/Negishi Cross-Coupling Kumada:

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition A ew Strategy for Efficient Synthesis of Medium and Large ing Lactones without High Dilution or Slow Addition BF 3 Et 2 TIPS 2,4,6-collidine n + n+2 ' ' Zhao, W.; Li, Z; Sun, J. J. Am. Chem. Soc. 2013

More information