Materials: 25 pennies Electronic, triple-beam, or double-pan balance 20 ml of 6M HCl 2 50-mL beakers

Size: px
Start display at page:

Download "Materials: 25 pennies Electronic, triple-beam, or double-pan balance 20 ml of 6M HCl 2 50-mL beakers"

Transcription

1 Name Block Atomic Structure Lab 1: Isotopes of Pennium Students should know. the meaning of the terms atomic isotope, average atomic mass, mass number how to use a balance and measure/record the mass of an object with the appropriate number of significant figures and units how to use a graduated cylinder to measure/record the volume of a liquid with the appropriate number of significant figures and units Students will learn. the meaning of the terms qualitative, quantitative, percent frequency, relative frequency how M is used to label solutions evidence to indicate a chemical reaction to predict reactive metals in HCl to calculate percentage & relative abundance/frequency to calculate average atomic mass for an isotope Introduction: All isotopes of an element have the same chemical properties. To account for the different masses of each isotope, average atomic mass is calculated by multiplying the mass of each isotope by its percent abundance and adding all of these values. This allows average atomic mass to reflect not only the different masses, but the mass most likely to be found in a natural sample. Originally, pennies were made of an alloy containing mostly copper with some zinc. Since the late 20 th century, pennies have been made by electroplating zinc blanks. These newer pennies are mostly zinc with a copper coating. These 2 different types of pennies have different masses and can represent isotopes of the element pennium. In this experiment, you will use pennies as a model for an atomic isotope and calculate average atomic mass. Pre-Lab Questions 1.) Define atomic isotopes and provide 3 examples of an isotope to illustrate your point. Use diagrams labeling the subatomic particles of each isotope. 2.) Explain, using a grammatically correct sentence, how one can determine the most common isotope of an element. Provide an example to illustrate your point. Materials: 25 pennies Electronic, triple-beam, or double-pan balance 20 ml of 6M HCl 2 50-mL beakers 25-mL graduated cylinder Tin snips (used w/ teacher s help) Logger Pro graphing software (or some other graphing application)

2 Procedure: 1.) Work in partners to weigh each penny (out of the total 25) to the appropriate number of significant figures. a. In your science notebook, using a data table of your own design, record the year and mass of each penny. b. Each person should have a copy of their own data table to turn in with this lab. c. Using your hard copy data table, transfer this data into an electronic spreadsheet (either Google Docs, Logger Pro, Excel, etc.) d. Get penny data from another group to expand your data collection to a total of 50 pennies. 2.) Notice that there are 2 distinct groups: heavy pennies and light pennies. a. Divide the pennies into these groups as you weigh them. b. These 2 groups of pennies can be viewed as isotopes of an element. Why? 3.) Create two graphs using graphing software a. One graph will compare the year of each penny weighed (x-axis) and the mass of each penny (y-axis). A line graph is best to show a change in a variable over time. In cases where you have more than 1 penny for a given year, plot the average mass of a penny for that year. Show this information on your data table as well. b. A second graph will be a bar graph, showing the mass of each penny weighed (x-axis) and the number of pennies present with that mass (y-axis). This graph will simulate a mass spectrometer reading. 4.) Copy and complete the following data table into your science notebook. Average Mass of Isotope (grams) Number of Isotopes in Sample Number of total pennies weighed Percent Abundance/Frequency of Isotope (out of 100) Relative Abundance/Frequency of Isotope (out of 1) Light Isotope Heavy Isotope What is the difference between percentage abundance/frequency and relative abundance/frequency? What is similar between percentage abundance/frequency and relative abundance/frequency? 5.) Select 1 light penny and 1 heavy penny from your sample. Carefully record any qualitative observations between the 2 pennies in the space below: Compare qualitative observations and quantitative observations: 6.) With the teacher s help, cut a notch into each penny. You should be able to see a cross-section of the penny. 7.) Use the graduated cylinder to pour approx. 10 ml of 6 M HCl into each beaker. a. What does 6 M indicate? 8.) Place each penny in its own beaker of HCl and let it soak overnight. Predict what you think will happen to each penny:

3 Day 2 9.) Record any qualitative observations of the beakers and pennies after letting them soak. 10.) Using tongs or forceps, carefully remove each penny from the beakers. Wash each penny gently with tap water to ensure that all of the acid has been removed. 11.) Observe each penny and note differences in the two pennies. Based on your observations, clearly identify what metal will react with HCl and which one will not. 12.) Using your computer, research the correct chemical equation for the reaction between HCl and each metal discussed in Q11. Provide a separate chemical equation for each reaction: Analysis 1.) Calculate the average atomic mass (in grams) for the element pennium. Show your work below: 2.) Convert your answer to amu. Show your work: 3.) Examine your data. Is there 1 year that is different from the rest? In graph 1, explain what trend can be seen: 4.) What changes are likely to occur in the average atomic mass of a penny as time progresses? For example, how will this activity change for a student in 2030? 5.) What differences did you notice between light pennies and heavy pennies in physical appearance? What about in their reactivity in the HCl? 6.) This model of atomic isotopes has a flaw related to reactivity. Clearly, you saw a difference in reactivity of the two pennies. This is inconsistent with the definition of isotope. Explain: 7.) Does the average atomic mass of the pennium vary among lab groups? Why/why not? Explain your answer!

4 Related Problems Please show all work and pay attention to significant figures in your answers!!! 1. There are three known isotopes of silicon % is 28 Si atomic mass = ; 4.70% is 29 Si atomic mass = ; and 3.09% is 30 Si atomic mass = Calculate an average atomic mass for silicon. 2. Magnesium, Mg, has the following isotopic masses and fractional abundances Mass Number Mass Fractional Abundance Calculate the average atomic mass of magnesium 3. Chromium, Cr, has the following isotopic masses and fractional abundances Mass Number Mass Fractional Abundance Calculate the average atomic mass of chromium 4. Copper has two known isotopes: 63 Cu atomic mass = and 65 Cu atomic mass = The average atomic mass of copper is amu. Calculate the fraction of each of the two isotopes of copper.

5 Answers: 1. = ( x ) + ( x ) + ( x ) = = ( x ) + ( x ) + ( x ) = = ( x ) + ( x ) + ( x ) + ( x )= Let x = fraction of 65 Cu and 1.00-x = fraction of 63 Cu Then X x) = X x = X x = X = X = (30.84%) 1-X = (69.16%) 1.

ANALYTICAL WEIGHING, LIQUID TRANSFER, AND PENNY DENSITY REPORT

ANALYTICAL WEIGHING, LIQUID TRANSFER, AND PENNY DENSITY REPORT ANALYTICAL WEIGHING, LIQUID TRANSFER, AND PENNY DENSITY REPORT Name: Date: Section: Analytical Weighing Experimental Mass of Known Object: Known Mass: Difference: Methods of Determining Masses Data Units

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Determining Average Atomic Mass

Determining Average Atomic Mass Chemistry Date: Name: KEY Lab Table: 03.03c Determining Average Atomic Mass Lab Partner(s): Background Determining the average mass of an element uses the same method as determining the weighted average

More information

Drake Chemistry Isotopic Pennies Name: Atomic Structure Unit Isotopic Pennies

Drake Chemistry Isotopic Pennies Name: Atomic Structure Unit Isotopic Pennies Introduction At the beginning of the 19 th century, John Dalton proposed a new atomic theory all atoms of the same element are identical to one another and equal in mass. It was a simple yet revolutionary

More information

Average Atomic Mass: How are the masses on the periodic table determined?

Average Atomic Mass: How are the masses on the periodic table determined? Chemistry Ms. Ye Name Date Block Average Atomic Mass: How are the masses on the periodic table determined? Most elements have more than one naturally occurring isotope. As you learned previously, the atoms

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Everything on Earth is made of matter. Matter is as simple as a single element or as complex as the entire planet.

More information

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner Phy 100 s Lab - techniques for mass, size and density. Name Course & Sec Lab Partner Date 1. You should have a metal block and a metal cylinder both made of the same material. If you are unsure if the

More information

Lab 1: Precision and accuracy in glassware, and the determination of density

Lab 1: Precision and accuracy in glassware, and the determination of density Chemistry 140 Please have the following pages ready before class on Monday, October 2. Note that the different parts will be standard divisions in all lab writeups. For this particular writeup, please

More information

Limiting Reactants Lab

Limiting Reactants Lab Name: Teacher s Name: Class: Block: Date: Partners: Limiting Reactants Lab Purpose: Through experimentation, determine the limiting reactant and the percent yield in a chemical reaction that generates

More information

Physical Science Density and Measurements

Physical Science Density and Measurements Physical Science Density and Measurements Name Date Density All matter has a mass that can be measured and a volume of space that it occupies. However, the relationship between mass and volume varies greatly

More information

Unit 3 Atomic Structure

Unit 3 Atomic Structure Name: Unit 3 Atomic Structure Scientist Year Contribution and/ or Experimental Work Democritus Aristotle Alchemists Boyle Franklin Dalton Avogadro Mendeleev Moseley 1 Scientist Year Contribution and/ or

More information

1) Date, 2) Partner, 3) Title, 4) Purpose, 5) Materials, 6) Safety, and 7) Data Table (no observations section is needed)

1) Date, 2) Partner, 3) Title, 4) Purpose, 5) Materials, 6) Safety, and 7) Data Table (no observations section is needed) LAB: PERIODIC TRENDS (ATOMIC RADII) Students: Please read the following information given below, and then on your lab day put the following into your notebooks: 1) Date, 2) Partner, 3) Title, 4) Purpose,

More information

Chemical Reactions Investigation Two Data Record

Chemical Reactions Investigation Two Data Record Chemical Reactions Investigation Two Data Record Name: Date: 1. During this Investigation, you will analyze how changing the amounts of the reactants in a chemical reaction affects the amount of the products

More information

KEY 1 = PAN 2 = RIDERS 3 = BEAMS 4 = POINTER ~ Metric Measurement Scientist

KEY 1 = PAN 2 = RIDERS 3 = BEAMS 4 = POINTER ~ Metric Measurement Scientist Metric Measurement Scientist Mass Lab Class Date 2015 Objective: To use a triple-beam balance to these 3 together = 1 pt KEY a) to measure mass directly usually a SOLID b) to find mass by difference usually

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

STUDENT JOURNAL Week 5 Metric System Application

STUDENT JOURNAL Week 5 Metric System Application Name: Period: STUDENT JOURNAL Week 5 Metric System Application Overarching Goal for the Week: Become familiar with scientific instruments Apply knowledge of the metric system and instruments to practical

More information

Determination of Density 1

Determination of Density 1 Introduction Determination of Density 1 Authors: B. D. Lamp, D. L. McCurdy, V. M. Pultz and J. M. McCormick* Last Update: February 1, 2013 Not so long ago a statistical data analysis of any data set larger

More information

In fact, we are going to be sneaky and use Hess s Law to determine the heat of magnesium combustion indirectly. Go to the website:

In fact, we are going to be sneaky and use Hess s Law to determine the heat of magnesium combustion indirectly. Go to the website: Chemistry 150 Please have the following pages ready before class on Monday, March 3. Write an abstract and paper-clip it to the front of your individual writeup. The abstract and the carbon-copy pages

More information

Chemical Reactions Investigation Two Data Record

Chemical Reactions Investigation Two Data Record Chemical Reactions Investigation Two Data Record Name: Date: 1. During this Investigation, you will analyze how changing the amounts of the reactants in a chemical reaction affects the amount of the products

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book.

Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book. Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book. Early Booklet E.C.: / 2 Unit 1 Hwk. Pts: / 29 Unit 1 Lab Pts: / 56 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets

More information

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions Inquiry INVESTIGATION 7-A Skill Check Initiating and Planning Performing and Recording Analyzing and Interpreting Communicating Safety Precautions Wear safety eyewear throughout this investigation. Wear

More information

Moles Lab Activity 2: Elements Copper

Moles Lab Activity 2: Elements Copper Materials Sample of copper Balance Pre-1982 penny Moles Lab Activity 2: Elements Copper Procedure Take the necessary measurements, and record them with units. Show all your calculations, rounding your

More information

Solution Concentration

Solution Concentration Agenda Day 66 Concentration Lesson: PPT, Handouts: 1. Concentration& Dilution Handout. 2. Concentration of Solutions Worksheet Text: 1. P. 398-401 - Concentration ( %, ppm) HW: 1. Worksheets, P. 400 #

More information

Reaction of Magnesium with Hydrochloric Acid

Reaction of Magnesium with Hydrochloric Acid Reaction of Magnesium with Hydrochloric Acid Your Name: Date: Partner(s): Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams of hydrogen produced

More information

1. measure of how a measurement comes to the or true value of whatever is Example: 2. measure of how close a of measurements are to Example:

1. measure of how a measurement comes to the or true value of whatever is Example: 2. measure of how close a of measurements are to Example: Chemistry Chapter 3: Metric, Measuring, Scientific Notation & Significant Figures. Name: 3-1 Measurements A. Scientific Notation: A number written as the product of two numbers: a and raised to a power.

More information

Isotopes are different forms of the that have a. Isotopes of the same element have the but. Ions are atoms that have a. In an ion, the.

Isotopes are different forms of the that have a. Isotopes of the same element have the but. Ions are atoms that have a. In an ion, the. Chemistry Ms. Ye Name Date Block Atomic Structure: 1. What is important about the atomic number? 2. How do you figure out the number of a. Protons in an atom? b. Electrons in an atom? c. Neutrons in an

More information

Heat of Combustion: Magnesium. This equation can be obtained by combining equations (1), (2), and (3): (1) MgO(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 O(l)

Heat of Combustion: Magnesium. This equation can be obtained by combining equations (1), (2), and (3): (1) MgO(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 O(l) Heat of Combustion: Magnesium Computer 19 In Experiment 18, you learned about the additivity of reaction heats as you confirmed Hess s Law. In this experiment, you will use this principle as you determine

More information

Practice Examination #1

Practice Examination #1 Practice Examination #1 Name: Date: 1. Which diagram shown represents a pipette? A. B. 3. Which diagram shown represents an Erlenmeyer flask? A. B. C. D. C. D. 2. The process of filtration is performed

More information

Isotopic Pennies PURPOSE: THEORY: atomic mass units isotopes average mass weighted average

Isotopic Pennies PURPOSE: THEORY: atomic mass units isotopes average mass weighted average Isotopic Pennies Name: Period: PURPOSE: To understand the concept of counting by weighing as well as how to calculate the mass of a naturally occurring element from information about its isotopes. THEORY:

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

Average Atomic Mass: How are the masses on the periodic table determined?

Average Atomic Mass: How are the masses on the periodic table determined? Chemistry Ms. Ye Name Date Block Average Atomic Mass: How are the masses on the periodic table determined? Most elements have more than one naturally occurring isotope. As you learned previously, the atoms

More information

Name period Date. 6. How many kilojoules are equivalent to 10 Joules? 1) kj 2) 0.01 kj 3) 1000 kj 4) 10,000 kj

Name period Date. 6. How many kilojoules are equivalent to 10 Joules? 1) kj 2) 0.01 kj 3) 1000 kj 4) 10,000 kj Name period Date 1. A student investigated the physical and chemical properties of a sample of an unknown gas and then identified the gas. Which statement represents a conclusion rather than an experimental

More information

Unit 3 Atomic Structure Chapter 3 of your book.

Unit 3 Atomic Structure Chapter 3 of your book. Unit 3 Atomic Structure Chapter 3 of your book. Early Booklet E.C.: / 2 Unit 3 Hwk. Pts: / 24 Unit 3 Lab Pts: / 16 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 3 1.1 I can

More information

Moles Lab Activity 1: PCU (Popcorn Counting Units)

Moles Lab Activity 1: PCU (Popcorn Counting Units) Moles Lab Activity 1: PCU (Popcorn Counting Units) Materials: A container of each of the following: Popcorn kernels Another type of beans A large unopened bag of popcorn Kernels Balance Safety goggles

More information

In fact, we are going to be sneaky and use Hess s Law to determine the heat of magnesium combustion indirectly. Go to the website:

In fact, we are going to be sneaky and use Hess s Law to determine the heat of magnesium combustion indirectly. Go to the website: Chemistry 161 Please prepare your notebook though the data tables before class on Wednesday, October 27. Write an abstract and place it at the front of your individual report. The abstract and the report

More information

Student Notes. Chemical Reactions LINK

Student Notes. Chemical Reactions LINK LCPS Core Experience Chemical Reactions Student Notes OBJECTIVES Students will: investigate the relationship between reactants and products. investigate an exothermic reaction. investigate an endothermic

More information

What are the three different types of elements and what are their properties?

What are the three different types of elements and what are their properties? Name: Partners name(s): Stamp: Laboratory 5: Types of Matter and its changes Compounds, mixtures, elements, chemical /physical properties Classify several different compounds, elements and mixtures by

More information

Please understand that you will NOT receive another copy of this packet! Name:

Please understand that you will NOT receive another copy of this packet! Name: Mole Unit Packet Please understand that you will NOT receive another copy of this packet! Name: Period: Introduction to The unit of the Mole is the HEART of all chemistry and most of its calculations.

More information

Exam 2 Review Practice 1 Atomic Mass

Exam 2 Review Practice 1 Atomic Mass Last Name Do Date First Name Section M T W R Exam 2 Review Practice 1 Atomic Mass General Information This assignment is not due. This assignment is to provide you the opportunity to practice the material.

More information

Using Single-Replacement Reactions to Compare Reactivities

Using Single-Replacement Reactions to Compare Reactivities Chapter 7 Chemical Reactions Investigation 7A Using Single-Replacement Reactions to Compare Reactivities Background Information In nature, elements can occur either free (uncombined with other elements)

More information

Unit 9 The Mole Chapter 10 of your textbook

Unit 9 The Mole Chapter 10 of your textbook Unit 9 The Mole Chapter 10 of your textbook Learning Targets for Unit 9 Early Booklet E.C.: + 2 Unit 9.A Hwk. Pts.: / 36 Unit 9.A Lab Pts.: / 32 Late, Incomplete, No Work, No Units Fees? Y / N 1.1 I can

More information

Chemical Background Information: Magnesium reacts with oxygen in air to for magnesium oxide, according to equation 1.

Chemical Background Information: Magnesium reacts with oxygen in air to for magnesium oxide, according to equation 1. HESS S LAW LAB Pre lab assignment: You will need to complete the following parts prior to doing the lab: Title, Purpose, and Storyboard of the procedures for each part, Blank Data tables, and the Prelab

More information

Purpose: To explore the reactivity trends of metals in groups and periods of the periodic table.

Purpose: To explore the reactivity trends of metals in groups and periods of the periodic table. Periodic Trends Introduction: The structure of the periodic table is such that elements with similar properties are aligned vertically in columns called groups. As you will learn in class, this leads to

More information

CHE 105 Exam 1 Spring 2016

CHE 105 Exam 1 Spring 2016 CHE 105 Exam 1 Spring 2016 Your Name: Your ID: Question #: 1 Which one of the following states of matter does not take on the shape of its container? A. solid B. liquid C. gas Question #: 2 Which statement

More information

Lab 16: Metals and Oxidation

Lab 16: Metals and Oxidation Concepts to explore: Observe an oxidation reduction reaction Use the properties of a reaction product to verify its identity Rank the reactivity of certain metals in a weak acid, and compare it to their

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Scientific Problem Solving

Scientific Problem Solving Scientific Problem Solving Measurement and Scientific Tools Description and Explanation Suppose you work for a company that tests how cars perform during crashes. You might use various scientific tools

More information

Classifying Chemical Reactions

Classifying Chemical Reactions Classifying Chemical Reactions Name: Partner: Discussion Question #1 will be evaluated 25 marks (5 marks per reaction) - 2 marks for correct reactants and products - 1 mark for states - 1 mark for balancing

More information

Physics. Practical 5: Density. Practical Objective. Content Objective. Apparatus. Your teacher may watch to see if you can:

Physics. Practical 5: Density. Practical Objective. Content Objective. Apparatus. Your teacher may watch to see if you can: The density of a substance is the mass of a unit volume of that substance. Almost all substances are most dense when they are solids and least dense when they are gases. The arrangement of particles can

More information

Name: Period: Date: CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES

Name: Period: Date: CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES Name: Period: Date: KIPP NYC College Prep General Chemistry CHEMISTRY LAB #4 THE ILLUSION OF BLING: Using Density to Identify an Unknown Metal 90 MINUTES Do Now Pre- Lab Information: Lab Equipment and

More information

UNIT 1 - MATH & MEASUREMENT

UNIT 1 - MATH & MEASUREMENT READING MEASURING DEVICES NOTES Here are a couple of examples of graduated cylinders: An important part of Chemistry is measurement. It is very important that you read the measuring devices we use in lab

More information

Composion Stoichiometry

Composion Stoichiometry Composition Stoichiometry blank 3.3.13.notebook Due: Ch 10 RG Hummmm... How do you "measure" bananas? > How many? Count 1 dozen naners or 12 naners Composion Stoichiometry 3 new conversion factors > Avogadro's

More information

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS Chemical equations are written and balanced in terms of ATOMS and MOLECULES - While chemical equations are written in terms of ATOMS and MOLECULES, that's

More information

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

St. John s College High School Mr. Trubic AP Midterm Review Packet 1 Name Date Directions: Read each question carefully and write your response in the space provided following each question. Your responses to these questions will be scored on the basis of the accuracy and

More information

Summer Review for AP Biology

Summer Review for AP Biology Summer Review for AP Biology These questions are to help you review the knowledge from your previous science classes that you should already know. AP science classes refer to this as previous knowledge

More information

Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations. Station Review Midterm January 2014 STATION 1: Chemical/physical properties and change

Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations. Station Review Midterm January 2014 STATION 1: Chemical/physical properties and change Name: Date: STATION 1: Chemical/physical properties and change Physical changes are changes in matter in which the appearance of a substance changes but the identity of the compound remains the same Chemical

More information

MEASUREMENT: PART II

MEASUREMENT: PART II 1 MEASUREMENT: PART II Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, 2013. INTRODUCTION Read and/or review Section 1.7 and Figure 7.5 in your textbook. The first part

More information

Lesson 1 Matter and Its Properties

Lesson 1 Matter and Its Properties Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 Math Skills 15 School to Home 16 Key Concept Builders

More information

Q1.This apparatus is used for the reaction of copper oxide (CuO) with methane (CH 4). The symbol equation for this reaction is shown below.

Q1.This apparatus is used for the reaction of copper oxide (CuO) with methane (CH 4). The symbol equation for this reaction is shown below. Q1.This apparatus is used for the reaction of copper oxide (CuO) with methane (CH 4). (a) The symbol equation for this reaction is shown below. 4 CuO(s) + CH 4(g) 4 Cu(s) + 2 H 2O(g) + CO 2(g) The water

More information

Understanding Atomic Mass

Understanding Atomic Mass Understanding Atomic Mass What does a deck cards and the atomic mass on the periodic table have in common.? Let s Review Significant Figures and Digits All numbered digits are significant. i.e. 632 g =

More information

Chemistry 11 Unit 1:Stoichiometry 10/30/2016 /20

Chemistry 11 Unit 1:Stoichiometry 10/30/2016 /20 Lab #6 Reaction of a Metal with Hydrochloric Acid THE AIM OF THIS EXPERIMENT: Name: Partners: In this experiment, you will react hydrochloric acid with magnesium to produce H 2 gas, and to determine the

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

Name Chemistry 10 Dr. Kline 11 March 2004 Row Seat Lab 8:00 10:30

Name Chemistry 10 Dr. Kline 11 March 2004 Row Seat Lab 8:00 10:30 Test 1 Name Chemistry 10 Dr. Kline 11 March 2004 Row Seat Lab 8:00 10:30 This test consists of a combination of multiple choice and other questions. There should be a total of 24 questions on six pages;

More information

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated Teacher Information Ideal Gas Law Objectives Determine the number of moles of carbon dioxide gas generated during a reaction between hydrochloric acid and sodium bicarbonate. Through this investigation,

More information

SIGNIFICANT FIGURES BEGIN

SIGNIFICANT FIGURES BEGIN SIGNIFICANT FIGURES BEGIN and someone hands you this. Imagine you are asked to measure the length of something... How do we use it most effectively? Rulers, thermometers, and graduated cylinders, to name

More information

3. How many millimeters are in a centimeter? 10. The prefix milli- means a thousand. How many millimeters are in a meter? 1000.

3. How many millimeters are in a centimeter? 10. The prefix milli- means a thousand. How many millimeters are in a meter? 1000. Name: Answer Key Period: Date: Measuring in Metric Purpose: The purpose of this activity is to practice using the metric system. To conduct a scientific investigation, a researcher must be able to make

More information

ISP 207L Supplementary Information

ISP 207L Supplementary Information ISP 207L Supplementary Information Scientific Notation Numbers written in Scientific Notation are composed of two numbers. 1) Digit term A number between 1 and 10 2) Exponential term Integer power of 10

More information

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

Date: / Page #: 4. The diagram below show an enlarged view of the beams of a triple-beam balance.

Date: / Page #: 4. The diagram below show an enlarged view of the beams of a triple-beam balance. Name: Review Packet - Unit 2 1. Two objects A and B were placed in two vials with different liquids C and D in them. This diagram shows what happened to each object when placed in the vial. Date: / Page

More information

A Green Precipitation Reaction

A Green Precipitation Reaction A Green Precipitation Reaction Photo by Joel Filipe The Foundation for Change Increased awareness of the concept of designing safer chemicals Establishing the scientific, technical and economic credibility

More information

The Phase Change Lab: Freezing and Melting of Water

The Phase Change Lab: Freezing and Melting of Water The Phase Change Lab: Freezing and Melting of Water Experiment 3 Freezing temperature is the temperature at which a substance turns from a liquid to a solid. Melting temperature is the temperature at which

More information

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions Objectives 1. Use measuring tools correctly 2. Read and record measurements correctly (significant digits and unit) 3.

More information

Acid-Base Titration Acetic Acid Content of Vinegar

Acid-Base Titration Acetic Acid Content of Vinegar Acid-Base Titration Acetic Acid Content of Vinegar Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. On a separate sheet of

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

Introduction to Chemical Reactions

Introduction to Chemical Reactions 1 Introduction to Chemical Reactions ORGANIZATION Mode: inquiry, groups of 2, and individual work Grading: lab notes and post-lab report Safety: goggles, closed-toe shoes, long pants/skirt/sleeves required,

More information

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction 81 COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process

More information

MATTER. Physical Science 2nd Semester NAME: CLASS PERIOD: TEACHER: HW POINTS EARNED LAB POINTS EARNED. PAGE NUMBERS Learning Targets: Matter 1-2

MATTER. Physical Science 2nd Semester NAME: CLASS PERIOD: TEACHER: HW POINTS EARNED LAB POINTS EARNED. PAGE NUMBERS Learning Targets: Matter 1-2 MATTER Physical Science 2nd Semester ASSIGNMENT PAGE NUMBERS Learning Targets: Matter 1-2 NAME: CLASS PERIOD: TEACHER: DUE DATE HW POINTS EARNED LAB POINTS EARNED Density Lab 3-4 Density Calculations Worksheet

More information

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium Q1. This question is about potassium. (a) Humphrey Davy was a professor of chemistry. In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium

More information

[3.2] The Atom. p in Textbook

[3.2] The Atom. p in Textbook [3.2] The Atom p. 145 149 in Textbook We will be learning about three different parts of the atom today 1. What makes up an atom 2. Where an atom s mass is found 3. What are isotopes What does the atom

More information

Experiment 1. Determination of the Density of Water and an Unknown Solid Sample

Experiment 1. Determination of the Density of Water and an Unknown Solid Sample Experiment 1. Determination of the Density of Water and an Unknown Solid Sample In this experiment you will: Measure the volume of water using a graduated cylinder, volumetric pipette, beaker, and burette

More information

Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases

Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases Some of the earliest experiments in chemistry and physics involved the study of gases. The invention of

More information

Activity Sheet Chapter 3, Lesson 3 Density of water

Activity Sheet Chapter 3, Lesson 3 Density of water Activity Sheet Chapter 3, Lesson 3 Density of water Name Date DEMONSTRATION 1. One of your classmates lifted different amounts of water. The largest amount of water also had the most mass. You know how

More information

CH 221 Sample Exam Exam I Name: Lab Section:

CH 221 Sample Exam Exam I Name: Lab Section: Exam I Name: Lab Section: Part I: Multiple Choice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. At 0 C, a bottle contains 325 ml of water in

More information

Chapter 5 Atomic Structure and the Periodic Table

Chapter 5 Atomic Structure and the Periodic Table Chemistry/ PEP Name: Date: Chapter 5 Atomic Structure and the Periodic Table Chapter 5: 1 16, 20, 21, 23, 24, 27-32, 35, 42, 44, 49, 50, 55 (32 total) Section Review 5.1 1. In your own words, state the

More information

Regents review Math & measurement

Regents review Math & measurement 2011-2012 1. During a laboratory activity, a student combined two solutions. In the laboratory report, the student wrote A yellow color appeared. The statement represents the student s recorded A) conclusion

More information

Lab Activity 3: Factors Affecting Reaction Rate

Lab Activity 3: Factors Affecting Reaction Rate Chemistry 3202 Lab #3 factors affecting Reaction Rate Page 1 of 5 Lab Activity 3: Factors Affecting Reaction Rate Introduction Several factors influence how fast a reaction proceeds. In this activity,

More information

TA Wednesday, 3:20 PM Each student is responsible for following directions. Read this page carefully.

TA Wednesday, 3:20 PM Each student is responsible for following directions. Read this page carefully. Name Chemistry 111 Section FINAL EXAM Total Points = TA Wednesday, 3:20 PM 200 Directions: December 12, 2007 1. Each student is responsible for following directions. Read this page carefully. 2. Write

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Student Name. Teacher

Student Name. Teacher Student Name Teacher Question: I chose this question because Research Keywords Research Topic Source: Research Summary Paragraph Hypothesis If then Variables Manipulated Variable Responding Variable Constants

More information

EXPERIMENT. Stoichiometry of a Precipitation Reaction

EXPERIMENT. Stoichiometry of a Precipitation Reaction EXPERIMENT Stoichiometry of a Precipitation Reaction Hands-On Labs, Inc. Version 42-0201-00-02 Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

#2: THE FLOATING PAPER CLIP

#2: THE FLOATING PAPER CLIP Activity #1: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. Procedure: Make sure the penny is dry. Begin by estimating the number of drops of water that can be piled on the penny before it spills

More information

Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT

Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT Name: Date: Chemistry Lab Mr. Zamojski Q1 Mass & Volume PRE-LAB ASSIGNMENT Required Safety Data Sheets (SDS): 1) Copper 2) Tin These 2 safety data sheets (SDS) are attached at the end of this pre-lab assignment.

More information

Exponential Form and comparison to the base unit mega M 1,000, million x bigger. n

Exponential Form and comparison to the base unit mega M 1,000, million x bigger. n Lab Maestro: Per: DUE Fri. 9/4/208 Honors Chemistry Lab #: Metric System Introduction: The Metric System is a worldwide standard system of measurement. Scientists must be able to communicate with each

More information

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS Acids and Bases Computer 2 Organisms are often very sensitive to the effect of s and s in their environment. They need to maintain a stable internal ph in order to survive even in the event of environmental

More information

Exploring Acids & Bases

Exploring Acids & Bases Food Explorations Lab: Exploring Acids & Bases STUDENT LAB INVESTIGATIONS Name: Lab Overview In this investigation, you will use cabbage juice indicator to determine if two unknown samples are acids or

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information