Physical Science Density and Measurements

Size: px
Start display at page:

Download "Physical Science Density and Measurements"

Transcription

1 Physical Science Density and Measurements Name Date Density All matter has a mass that can be measured and a volume of space that it occupies. However, the relationship between mass and volume varies greatly from one kind of material to another. For example, a bucket of rocks has a much greater mass than an equal sized bucket of air. Therefore, a useful way to describe an object is to determine its mass per unit volume ratio, called density. Per refers to division, as in miles per hour (distance divided by time). Density is the measure of an object s mass divided by its volume (unit mass per unit volume). Scientists and mathematicians use the Greek letter rho (ρ) to represent density. Additionally, since the gram is a metric unit of mass, and the cubic centimeter (cm 3 ) is a basic unit of metric volume, density (ρ) is usually expressed in grams per cubic centimeter (g/cm 3 ). Metric System of Measurement People in different parts of the world have historically used different systems of measurement. For example, people in the United States have historically used the English system of measurement based on units such as inches, feet, pounds, gallons, and degrees Fahrenheit. However, for more than a century, most nations of the world have used the metric system of measurement based on units such as meters, newtons, liters, and degrees Celsius. In 1975, the U.S. Congress recognized the values of a global system of measurement and adopted the metric system as the official measurement system of the United States. This convention is obviously still not yet complete, so people in the US use both English and metric units. We will use only the metric or SI system; therefore, you must know how to convert between units. Each kind of metric unit can be divided or multiplied by 10 and its powers to form the smaller and larger units of the metric system. Therefore, the metric system is also known as a base-10 or decimal system. The International System of Units (SI) is the modern version of metric system symbols, numbers, base-10 numerals, powers of 10, and prefixes. Mass Earth materials do not just take up space (volume). They also have a mass of atoms that can be weighed or measured. You will use a gram balance to measure the mass of materials (by determining their weight under the acceleration of Earth s gravity). The gram (g) is a basic unit of mass in the metric system, but instruments used to measure grams vary from triple-beam balances to spring scales to digital balances. Consult with your instructor or other students to be sure that you understand how to read the gram balance provided in the lab. Linear Measurements You must be able to use a metric ruler or meter stick to make exact measurements of length this is called linear measurement. Most rulers in the US are graduated in both English and metric units. Note that the length of an object may not coincide with a specific centimeter or millimeter mark on the ruler, so you may have to estimate the fraction of a unit as exactly as you can. For example, if a measurement falls between two millimeter marks on the ruler, the most exact you can make the measurement is to the half millimeter. In other words you would report your measurement as X mm ± 0.5 mm. 1

2 Area and Volume An area is a two-dimensional space, such as the surface of a table. The long dimension is the length and short dimension is the width. If the area is a square or rectangle, then the size of the area is the product of its length multiplied by its width. The unit of an area with L= 4 cm and W= 2 cm is 8 cm 2. Three dimensional objects are said to occupy a volume of space. Box shaped objects have linear volume because they take up three dimensions of space- that is they have length, width, and height (or depth). For example, if a box has a length of 9 cm, a height of 4 cm, and a width of 4 cm, then its volume is 144 cm 3. Most natural materials, such as rocks, do not have linear dimensions, so their volumes cannot be calculated using linear measurements. However, the volume of odd-shaped materials can be determined by measuring the volume of water that they displace. This is often done in the lab using a graduated cylinder. Most graduated cylinders are graduated in metric units called milliliters (ml), which are thousandths of a liter. You should note that 1 ml of fluid volume is exactly equal to 1 cm 3 of linear volume (1 ml = 1 cm 3 ). When you pour water into a graduated cylinder, the surface of the liquid usually displays a curved meniscus in the cylinder and the volume is read at the bottom of the curve. If you drop an object into a graduated cylinder with a known volume of water, then it takes up space previously occupied by the water in the cylinder. This displaced water has nowhere to go but up; therefore, the volume of an object, such as a rock, is exactly the same as the water it displaces. Error Analysis In chemistry, we often wish to determine how close our experimental value is compared to the accepted or theoretical result. This is usually performed by finding the percent difference between the experimental value and the theoretical value. The percent difference (error) is given by: % Error = (experimental theoretical) x 100 theoretical Remember to review your data for any large difference between measurements or trials that could increase the error of your results. Repeat those measurements, if necessary. Experimental Error Personal: from personal bias or carelessness in reading an instrument (e.g., parallax), in recording observations, or in mathematical calculations. Systematic: associated with particular measurement techniques. - Improper calibration of measuring instrument. - Human reaction time. - Is the same error each time. This means that the error can be corrected if the experimenter is clever enough to discover the error. Random error: unknown and unpredictable variations. - Fluctuations in temperature or line voltage. - Mechanical vibrations of the experimental setup. - Unbiased estimates of measurement readings. - Is a different error each time. This means that the error cannot be corrected by the experimenter after the data has been collected. 2

3 Significant Digits Exact factors have no error (e.g., 10, π). All measured numbers have some error or uncertainty. Use all of the significant figures on a measuring device. For example, if a measuring device is accurate to 3 significant digits, use all of the digits in your answer. If the measured value is 2.30 kg, then the zero is a significant digit and so should be recorded in your laboratory report notes. Keep only a reasonable number of significant digits. Round these values correctly. As a general rule, the final answer should have no more significant digits than the data from which it was derived. Lab Exercises 1) Make the following unit conversions: a) 10.0 miles = kilometers b) 1.0 foot = meters c) 16 kilometers = meters d) 25 meters = centimeters e) 25.4 ml = cm 3 f) 1.3 liters = cm 3 g) 543 nanometers = meters h) 575 micrometers = millimeters 2) Use a meter stick to help you measure the length, width, and depth of your lab or classroom table top in centimeters, then calculate the area and volume of the table top (be as exact as you can and express your answer and units appropriately). 3) Using the instruments at your disposal, estimate the volume of the classroom in meters. 3

4 3) Exercises for the remaining portions of the lab are divided into stations. Each lab station must be completed by each group, but not necessarily in the order presented here. While you are allowed to work in small groups in lab, each student must complete each lab station (exercise) and turn in their own independent work. Station 1: Determining the Density of Water Using a small graduated cylinder and a gram balance, determine the mass of different volumes of water and input the data into Table 1. Then, calculate the density of each volume of water and the average density of water based on your measurements. Finally, answer the questions that follow. Table 1. Mass-Volume Relationship (Density) of Water Volume (ml) Mass (g) Density (g/cm 3 ) Average Density of Water Questions: a) Plot the data using Excel or any other appropriate spreadsheet software. Graph the mass versus volume data. Attach a copy of your graph to the lab handout. b) Insert a best-fit line (trendline) and explain why the line origin (0,0) should be included in your trendline. c) Determine the slope of the line. Include the units of your slope. Show all work, including the two points used from the graph. 4

5 d) What is the accepted or theoretical value for the density of fresh water? Use this value to calculate your percent error for the mean density value obtained above. Show your work below. Explain the difference (error). e) Use Excel to calculate the mean density value and the standard deviation for your collected data. Report these values below. f) What is the accepted value for the density of saltwater? Is this value more or less than the density of fresh water? Why? Explain your answer. Station 2: Determining the Density of Irregular-Shaped Objects (Rocks) Using a small graduated cylinder and a gram balance, determine the volume and mass of several different rock samples and input the data in Table 2. Then, calculate the density of each rock sample and the average density of the rock samples. Finally, answer the questions that follow. Table 2. Mass-Volume Relationship (Density) of Assorted Rock Samples Sample # Volume (ml) Mass (g) Density (g/cm 3 ) Average Density of Rock Samples 5

6 a) How does the density of these rock samples compare to that of the density of water? Can you think of any Earth materials (not necessarily rocks) that may have densities less than that of water? How do you know? b) How does your measured value of rock density compare to the average density of all rocks on Earth (~2.5 g/cm 3 )? Do you think our experiment is a valid representation of the density of all rocks on Earth? Explain. Station 3: Determining the Density of Common Substances Use a ruler to determine the volume dimensions of the following substances and then, determine the density of the following objects using their mass. Also, calculate the percent error and input those values below. The accepted or theoretical density values are provided for each object in parentheses. Table 3. Density of Selected Substances (Accepted Density Values Shown) Substance Mass (g) Volume (cm 3 ) Density (g/cm 3 ) % Error Aluminum Cube (2.7 g/cm 3 ) Brass Cube (8.0 g/cm 3 ) Nylon Cube (1.13 g/cm 3 ) Copper Cube (8.9 g/cm 3 ) Poplar Cube ( g/cm 3 ) 6

7 a) Brass is an alloy composed of two different pure metallic elements. Using the data you collected above, is it possible to identify one of these metal elements in brass? Explain your answer. b) Is the density of the poplar sample more or less than that of water? Given its density, should poplar sink or float in fresh water? Explain. Station 4: Determining the Density of Pennies Using a small graduated cylinder and a gram balance, determine the volume and mass of twenty (20) pennies minted prior to 1982 and twenty (20) pennies minted after 1982 and input the data in Tables 4 and 5. Repeat the procedure twice more. Then, calculate the density for each trial and the average density of the pennies. Finally, answer the questions that follow. Table 4. Density of Pennies Minted Prior to 1982 Trial Mass (g) Volume (ml) Density (g/cm 3 ) Average Density of Pennies Minted Prior to 1982 Table 5. Density of Pennies Minted After 1982 Trial Mass (g) Volume (ml) Density (g/cm 3 ) Average Density of Pennies Minted After

8 Questions: a) How does the density of each group of pennies compare to the density of copper given in Table 3? b) How does the density of the two groups of pennies compare to each other? Can you explain the difference? c) Use the results of this investigation to formulate a hypothesis about the composition of the two groups of pennies. How could you test your hypothesis? d) Why is it best to use the results of three trials rather than a single trial for determining density? e) What are some of the sources of experimental error or uncertainty that could be important to consider when analyzing your data in this experiment? 8

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

The Metric System and Measurement

The Metric System and Measurement The Metric System and Measurement Introduction The metric system is the world standard for measurement. Not only is it used by scientists throughout the world, but most nations have adopted it as their

More information

The Metric System and Measurement

The Metric System and Measurement Introduction The Metric System and Measurement The metric system is the world standard for measurement. Not only is it used by scientists throughout the world, but most nations have adopted it as their

More information

Chapter 2 Using the SI System in Science

Chapter 2 Using the SI System in Science Chapter 2 Using the SI System in Science Section 2.1 SI System Units Terms: Measurement Precision Accuracy A measurement is a repeatable observation of a quantity that includes a number and unit. An estimate

More information

3. How many millimeters are in a centimeter? 10. The prefix milli- means a thousand. How many millimeters are in a meter? 1000.

3. How many millimeters are in a centimeter? 10. The prefix milli- means a thousand. How many millimeters are in a meter? 1000. Name: Answer Key Period: Date: Measuring in Metric Purpose: The purpose of this activity is to practice using the metric system. To conduct a scientific investigation, a researcher must be able to make

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

Measurement Stations. Length, Mass, Volume, Density, Temperature, and Time

Measurement Stations. Length, Mass, Volume, Density, Temperature, and Time Measurement Stations Length, Mass, Volume, Density, Temperature, and Time Length Length measures the distance from end to end on an object; height and width are variations on length. Standard (S.I.) Unit:

More information

The Metric System & Conversions

The Metric System & Conversions Purpose of this lab: The purpose of this lab exercise is for you to become familiar with basic measurements in metric units (SI), English units, and conversions between the two systems. Assignment Objectives:

More information

Final Review 1 Name. 6. The diagram below represents a portion of a 100-milliliter graduated cylinder.

Final Review 1 Name. 6. The diagram below represents a portion of a 100-milliliter graduated cylinder. Final Review 1 Name 1. Which unit is best used to measure the distance between your hand and elbow? A) millimeters B) centimeters C) micrometers D) kilometers 2. Which shows units of volume from smallest

More information

Ch. 3 Notes---Scientific Measurement

Ch. 3 Notes---Scientific Measurement Ch. 3 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of a measurement is an describing the object.) *Examples:,,

More information

Chapter: Measurement

Chapter: Measurement Table of Contents Chapter: Measurement Section 1: Description and Measurement Section 2: SI Units *Section 1 Description and Measurements Measurement Measurement is a way to describe the world with numbers.

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner Phy 100 s Lab - techniques for mass, size and density. Name Course & Sec Lab Partner Date 1. You should have a metal block and a metal cylinder both made of the same material. If you are unsure if the

More information

MEASUREMENT IN THE LABORATORY

MEASUREMENT IN THE LABORATORY 1 MEASUREMENT IN THE LABORATORY INTRODUCTION Today's experiment will introduce you to some simple but important types of measurements commonly used by the chemist. You will measure lengths of objects,

More information

Full file at

Full file at Chapter Two Multiple Choice 1. Which SI prefix means 1000? A. Milli B. Centi C. Deci D. Kilo Answer: D; Difficulty: easy; Reference: Section 2.5 2. The number, 14.74999, when rounded to three digits is

More information

LAB 1 PRE-LAB. residuals (cm)

LAB 1 PRE-LAB. residuals (cm) LAB 1 PRE-LAB 1. The table below records measurements of the lengths l of five goldfish. Calculate the average length l avg of this population of goldfish, and the residual, or deviation from average length

More information

MindTrap. Read the question. Think about the question. Please Do not yell out the answer

MindTrap. Read the question. Think about the question. Please Do not yell out the answer Metric System Read the question Think about the question MindTrap Please Do not yell out the answer Dee Septor, the famous magician, filled an ordinary glass to the top. Holding the glass above his head

More information

Unit 1: Measurements Homework Packet (75 points)

Unit 1: Measurements Homework Packet (75 points) Name: Period: By the end of Unit 1 you should be able to: Measurements Chapter 3 1. Convert between scientific notation and standard notation 2. Define and identify significant digits including being able

More information

Unit 1: Measurements Homework Packet (75 points)

Unit 1: Measurements Homework Packet (75 points) Name: Period: By the end of Unit 1 you should be able to: Measurements Chapter 3 1. Convert between scientific notation and standard notation 2. Define and identify significant digits including being able

More information

Measurements UNITS FOR MEASUREMENTS

Measurements UNITS FOR MEASUREMENTS Measurements UNITS FOR MEASUREMENTS Chemistry is an experimental science that requires the use of a standardized system of measurements. By international agreement in 1960, scientists around the world

More information

Chapter 2 - Analyzing Data

Chapter 2 - Analyzing Data Chapter 2 - Analyzing Data Section 1: Units and Measurements Section 2: Scientific Notation and Dimensional Analysis Section 3: Uncertainty in Data Section 4: Representing Data Chemists collect and analyze

More information

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! 2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin The Metric System by Christopher G. Hamaker Illinois State University Basic Units and Symbols The English

More information

The Metric System. Most scientists use the metric system when collecting data and performing experiments

The Metric System. Most scientists use the metric system when collecting data and performing experiments Scientific Measurement The Metric System Most scientists use the metric system when collecting data and performing experiments The Metric System Most scientists use the metric system when collecting data

More information

Table One. Mass of a small package using three different measurement methods

Table One. Mass of a small package using three different measurement methods MS20 Laboratory Scientific Measurements and the Metric System Objectives To understand how to make measurements utilizing various instruments To learn how to use the metric system To convert between the

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

The number of stars in a galaxy is an example of an estimate that should be expressed in scientific notation.

The number of stars in a galaxy is an example of an estimate that should be expressed in scientific notation. 3.1 Using and Expressing Measurements A measurement is a quantity that has both a number and a unit. Using and Expressing Measurements In scientific notation, a given number is written as the product of

More information

CHAPTER 2 Data Analysis

CHAPTER 2 Data Analysis CHAPTER 2 Data Analysis 2.1 Units of Measurement The standard of measurement used in science are those of the metric system. All the units are based on 10 or multiples of 10. SI Units: The International

More information

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions Objectives 1. Use measuring tools correctly 2. Read and record measurements correctly (significant digits and unit) 3.

More information

2 Standards of Measurement

2 Standards of Measurement What You ll Learn the SI units and symbols for length, volume, mass, density, time, and temperature how to convert related SI units 2 Standards of Measurement (A), 2(D), 2(C), 2(E) Before You Read If someone

More information

The Methods of Science

The Methods of Science 1 The Methods of Science What is Science? Science is a method for studying the natural world. It is a process that uses observation and investigation to gain knowledge about events in nature. 1 The Methods

More information

Accuracy of Measurement: how close your measured value is to the actual measurement

Accuracy of Measurement: how close your measured value is to the actual measurement Standard: an exact quantity that people use to make measurements Good Example: a meter stick (everyone one knows the length of a meter) Bad Example: Ms. Pluchino s foot (everyone does not know how big

More information

Chapter: Measurement

Chapter: Measurement Table of Contents Chapter: Measurement Section 1: Description and Measurement Section 2: SI Units *Section 1 Description and Measurements Measurement Measurement is a way to describe the world with numbers.

More information

Hybrid Activity: Measuring with Metric. Introduction: Standard Metric Units. Names

Hybrid Activity: Measuring with Metric. Introduction: Standard Metric Units. Names Hybrid Activity: Measuring with Metric Names Date Period Introduction: The purpose of this activity is to practice using the metric system. To conduct a scientific investigation, a researcher must be able

More information

CHEM134, Fall 2018 Dr. Al-Qaisi Chapter 1 review

CHEM134, Fall 2018 Dr. Al-Qaisi Chapter 1 review Upon completion of this chapter, you should be able to: Ø Know the Scientific approach to knowledge Ø Define Mater, atom and molecule ü Explain and give examples of the following: element, mixture, mixture

More information

3 Tools and Measurement

3 Tools and Measurement CHAPTER 1 3 Tools and Measurement SECTION The Nature of Life Science BEFORE YOU READ After you read this section, you should be able to answer these questions: How do tools help scientists? How do scientists

More information

CHM101 Lab Measurements and Conversions Grading Rubric

CHM101 Lab Measurements and Conversions Grading Rubric CHM101 Lab Measurements and Conversions Grading Rubric Name Team Name Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste

More information

Metric System. An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density

Metric System. An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density Metric System An Overview of the Concepts of Mass, Volume, Length, Temperature, and Density Length Definition The distance between two points along a straight line Meters (m) base unit Measuring track

More information

Measurement Chapter 1.6-7

Measurement Chapter 1.6-7 Unit 1 Essential Skills Measurement Chapter 1.6-7 The Unit 1 Test will cover material from the following Chapters and Sections: 1.all 2.5-8 3.all 2 Two types of Data: When we make observations of matter,

More information

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry 20 Chapter 1 An Introduction to Chemistry 1.5 Reporting Values from Measurements All measurements are uncertain to some degree. Scientists are very careful to report the values of measurements in a way

More information

Scientific Method. Why Study Chemistry? Why Study Chemistry? Chemistry has many applications to our everyday world. 1. Materials. Areas of Chemistry

Scientific Method. Why Study Chemistry? Why Study Chemistry? Chemistry has many applications to our everyday world. 1. Materials. Areas of Chemistry August 12, 2012 Introduction to Chemistry and Scientific Measurement What is Chemistry? Chemistry: is the study of the composition of matter and the changes that matter undergoes. Chapters 1 and 3 Why

More information

Making Measurements. Units of Length

Making Measurements. Units of Length Experiment #2. Measurements and Conversions. Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To convert between units using conversion

More information

To become acquainted with simple laboratory measurements and calculations using common laboratory equipment.

To become acquainted with simple laboratory measurements and calculations using common laboratory equipment. PURPOSE To become acquainted with simple laboratory measurements and calculations using common laboratory equipment. MATERIALS 250 beaker Piper and piper pump Hot plates Meter stick or ruler Balance Ice

More information

Chemistry Section Review 2.2

Chemistry Section Review 2.2 Chemistry Section Review 2.2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Standards of measurement are chosen because they a. can be related to everyday

More information

Scientific Problem Solving

Scientific Problem Solving Scientific Problem Solving Measurement and Scientific Tools Description and Explanation Suppose you work for a company that tests how cars perform during crashes. You might use various scientific tools

More information

Measurements in the Laboratory

Measurements in the Laboratory Measurements in the Laboratory Objectives The objectives of this laboratory are: a) Use standard laboratory measurement devices to measure length, volume and mass amounts. b) Use these measurements to

More information

Chapter 2a. Measurements and Calculations

Chapter 2a. Measurements and Calculations Chapter 2a Measurements and Calculations Chapter 2 Table of Contents 2.1 Scientific Notation 2.2 Units 2.3 Measurements of Length, Volume, and Mass 2.4 Uncertainty in Measurement 2.5 Significant Figures

More information

How is an object s density related to its volume, mass, and tendency to sink or float? Materials

How is an object s density related to its volume, mass, and tendency to sink or float? Materials Investigation 2B 2B How is an object s density related to its volume, mass, and tendency to sink or float? You may be familiar with the trick question Which is heavier: a pound of feathers or a pound of

More information

Welcome to Chemistry 121

Welcome to Chemistry 121 General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake Welcome to Chemistry 121 2013 Pearson Education, Inc. General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Qualitative Observations: General types of observations. Easy to determine. Not necessarily precise. I have many fingers, the speed limit is fast, class is long,

More information

Metric System & Scientific Notation

Metric System & Scientific Notation + Metric System & Scientific Notation + What Americans Are Used To The English Standard System Inches and gallons and pounds (oh my!) Many different units Inches, feet, yards, miles, Ounces, cups, pints,

More information

Chemistry 104 Chapter Two PowerPoint Notes

Chemistry 104 Chapter Two PowerPoint Notes Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

More information

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits Notes: Measurement and Math 1 Accuracy and Precision Precision depends on the precision of the measuring device o For example a device that can measure to the ten thousands place (1.6829 grams) is a more

More information

Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the

Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the Honors Chemistry Chapter 2 Problem Handout Solve the following on separate sheets of paper. Where appropriate, show all work. 1. Convert each of the following quantities to the required unit. a. 12.75

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Lab #2: Measurement and Metrics Lab

Lab #2: Measurement and Metrics Lab Lab #2: Measurement and Metrics Lab INTRODUCTION Observations are an essential part of science. Measurements allow scientists to accurately describe the world around them, which enables others to comprehend

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

Test Review: Scientific Method and Measurement ANSWER KEY

Test Review: Scientific Method and Measurement ANSWER KEY Test Review: Scientific Method and Measurement ANSWER KEY Remember that in order to be eligible for a retake you must complete this review sheet before the test. Scientific Method: Problem: Must be a question,

More information

Measurements in Chemistry

Measurements in Chemistry Measurements in Chemistry Measurements are part of our daily lives. We measure our weight, driving distances and gallons of gasoline. A health professional might measure blood pressure, temperature and

More information

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY LAB DEBRIEF What was the independent (test) variable? What was the dependent (outcome) variable? Which trial was solid, liquid, gas? Explain.

More information

Chapter 2: In The Lab

Chapter 2: In The Lab Handbook of Anatomy and Physiology 75 Chapter 2: In The Lab The Metric System and Measurement Introduction The metric system is the world standard for measurement. Not only is it used by scientists throughout

More information

Lab: Determine the Density and Identify the Substance

Lab: Determine the Density and Identify the Substance SNC1D1 Lab: Determine the Density and Identify the Substance Activity 1: Find the Density 1. Get only one of the numbered blocks. Weigh the block to the nearest tenth of a gram (1 decimal point, example:

More information

I. INTRODUCTION AND LABORATORY SAFETY

I. INTRODUCTION AND LABORATORY SAFETY EXPERIMENT 1 Chemistry 100 Measurement Techniques and Safety Purpose: To Learn the basic techniques of laboratory measurement of mass, temperature, volume and length and the concepts of safety I. INTRODUCTION

More information

Pre-Lab 0.2 Reading: Measurement

Pre-Lab 0.2 Reading: Measurement Name Block Pre-Lab 0.2 Reading: Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You

More information

Take notes on all slides with stars Lesson 1: Length

Take notes on all slides with stars Lesson 1: Length Take notes on all slides with stars Lesson 1: Length T. Trimpe 2008 http://sciencespot.net/ English vs. Metric Units Which is longer? A. 1 mile or 1 kilometer B. 1 yard or 1 meter 1 mile 1.6 kilometers

More information

CHAPTER 2: SCIENTIFIC MEASUREMENTS

CHAPTER 2: SCIENTIFIC MEASUREMENTS CHAPTER 2: SCIENTIFIC MEASUREMENTS Problems: 1-26, 37-76, 80-84, 89-93 2.1 UNCERTAINTY IN MEASUREMENTS measurement: a number with attached units To measure, one uses instruments = tools such as a ruler,

More information

EQ: How do we use the metric system in science?

EQ: How do we use the metric system in science? #2 EQ: How do we use the metric system in science? Introduction to the Metric System In science class, we will be using the International System (SI) for measurements. (SI is French for Systeme Internationale)

More information

Regents Earth Science Unit 1: Observations and Measurement Observation

Regents Earth Science Unit 1: Observations and Measurement Observation Regents Earth Science Unit 1: Observations and Measurement Observation Observation - interaction of our senses with the environment sight, touch, taste, smell senses give limited or vague information Measurements

More information

Metric System (System International or SI)

Metric System (System International or SI) Metric System (System International or SI) The metric system is used in science so that the entire world will be using the same system. It is based on the number 10. Units of measurement: Mass = Gram (g)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Name Period Date. Measurements. Fill-in the blanks during the PowerPoint presentation in class.

Name Period Date. Measurements. Fill-in the blanks during the PowerPoint presentation in class. Name Period Date Measurements Fill-in the blanks during the PowerPoint presentation in class. What is Scientific Notation? Scientific notation is a way of expressing big numbers and small numbers. It is

More information

Measurement & Lab Equipment

Measurement & Lab Equipment Measurement & Lab Equipment Abstract This lab reviews the concept of scientific measurement, which you will employ weekly throughout this course. Specifically, we will review the metric system so that

More information

Chapter 3 Scientific Measurement

Chapter 3 Scientific Measurement Chapter 3 Scientific Measurement Measurements We make measurements every day: buying products, sports activities, and cooking Qualitative measurements are words, such as heavy or hot Quantitative measurements

More information

CHAPTER 5 MEASUREMENTS & CALCULATIONS

CHAPTER 5 MEASUREMENTS & CALCULATIONS Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 5 MEASUREMENTS & CALCULATIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 5 5.2 Counting sig

More information

Chapter 1, section 2. Measurement. Note: It will probably take 2-3 class periods to get through this entire presentation.

Chapter 1, section 2. Measurement. Note: It will probably take 2-3 class periods to get through this entire presentation. Chapter 1, section 2 Measurement Note: It will probably take 2-3 class periods to get through this entire presentation. All measurements contain a number and a unit. The English system of measurement is

More information

Chemistry 11. Unit 2: Introduction to Chemistry. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures

Chemistry 11. Unit 2: Introduction to Chemistry. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Chemistry 11 Unit 2: Introduction to Chemistry Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Book 1: Measuring and Recording Scientific Data Name: Block: 1

More information

Date: / Page #: 4. The diagram below show an enlarged view of the beams of a triple-beam balance.

Date: / Page #: 4. The diagram below show an enlarged view of the beams of a triple-beam balance. Name: Review Packet - Unit 2 1. Two objects A and B were placed in two vials with different liquids C and D in them. This diagram shows what happened to each object when placed in the vial. Date: / Page

More information

INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT

INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT Purpose Theory a. To take some simple measurements to use for statistical analysis b. To learn how to use a Vernier caliper and a micrometer screw

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

Unit 1 Planner. 1.3 Error in Measurement - Taking Measurements. Be able to:

Unit 1 Planner. 1.3 Error in Measurement - Taking Measurements. Be able to: Unit 1 Planner Name: 1.1 Number, Operation, and Measurement Basics Scientific Notation & Density Scientific Notation Be able to: Convert normal numbers to scientific notation and back. Describe when it

More information

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers.

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers. Scientific Notation Notes Chapter 2: Measurements and Calculations It is used to easily and simply write very large numbers, and very small numbers. It begins with a number greater than zero & less than

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book.

Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book. Unit 1 Introduction to Chemistry & Data Analysis Chapters 1 2 of your book. Early Booklet E.C.: / 2 Unit 1 Hwk. Pts: / 29 Unit 1 Lab Pts: / 56 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets

More information

All measurements contain a number and a unit. Every unit is based upon standard.

All measurements contain a number and a unit. Every unit is based upon standard. All measurements contain a number and a unit. Every unit is based upon standard. Units and Standards A standard is an exact quantity that people agree to use to compare measurements. Measurement Systems

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Unit 2: (Chapter 5) Measurements and Calculations Cartoon courtesy of NearingZero.net Steps in the

More information

CHM 130LL: The Metric System

CHM 130LL: The Metric System CHM 130LL: The Metric System In this experiment you will: Determine the volume of a drop of water using a graduated cylinder Determine the volume of an object by measuring its dimensions Determine the

More information

In Class Activity. Chem 107 Cypress College

In Class Activity. Chem 107 Cypress College In Class Activity Chem 107 Cypress College Metric System Give the metric prefix that corresponds to each of the following: a. 1,000,000 b. 10 6 c. 10-3 d. 10-2 e. 10-9 f. 0.000001 Metric System The metric

More information

Chapter 2 Measurements and Solving Problems

Chapter 2 Measurements and Solving Problems History of Measurement Chapter 2 Measurements and Solving Problems Humans once used handy items as standards or reference tools for measurement. Ex: foot, cubit, hand, yard. English System the one we use.

More information

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Preview Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Section 1 Scientific Method Objectives Describe the purpose of

More information

Large & Small Numbers

Large & Small Numbers Large & Small Numbers Scientists frequently work with very large or small numbers. Astronomers work with galaxies that contain billions of stars at great distances from us. On the other hand, biologists

More information

The behavior and changes of matter and the related energy changes. Matter and processes of living organisms

The behavior and changes of matter and the related energy changes. Matter and processes of living organisms Unit One Review Name Period Date Areas of Chemistry and Scientific Method Chemistry is the study of matter and the changes that it undergoes. Matter is anything that has mass and takes up space. Mass is

More information

1.4 Units of Measurement

1.4 Units of Measurement 1.4 Units of Measurement Many properties of matter are quantitative; that is, they are associated with numbers. When a number represents a measured quantity, the units of that quantity must always be specified.

More information

Chapter 2. Measurements and Calculations

Chapter 2. Measurements and Calculations Chapter 2 Measurements and Calculations Section 2.1 Scientific Notation Measurement Quantitative observation. Has 2 parts number and unit. Number tells comparison. Unit tells scale. If something HAS a

More information

Measuring SKILLS INTRODUCTION

Measuring SKILLS INTRODUCTION SKILLS INTRODUCTION Measuring If you enjoy sports, you know how exciting it is when an athlete swims faster, runs longer, or hits a ball farther than other competitors. You also know that people aren t

More information

MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED!

MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED! MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED! MASS A measurement of the amount of matter in an object Can be measured with a triple beam balance or electronic balance It is measured in grams!

More information

Metric System length meter Mass gram Volume liter

Metric System length meter Mass gram Volume liter Metric System The basic unit of length in the metric system in the meter and is represented by a lowercase m. Mass refers to the amount of matter in an object. The base unit of mass in the metric system

More information

Co Curricular Data Analysis Review

Co Curricular Data Analysis Review Chapter Vocabulary Co Curricular Data Analysis Review Base Unit Second (s) Meter (m) Kilogram (kg) Kelvin (K) Derived unit Liter Density Scientific notation Dimensional analysis (Equality) not in book

More information

General Chemistry Unit 8 Measurement ( )

General Chemistry Unit 8 Measurement ( ) General Chemistry Unit 8 Measurement (2017-2018) Significant Figures Scientific Notation Unit Analysis Unit of Measure Accuracy and Precision Density Percent Error 1 Adding Numbers: Add numbers as you

More information