PART SPECTROPHOTOMETRIC STUDIES

Size: px
Start display at page:

Download "PART SPECTROPHOTOMETRIC STUDIES"

Transcription

1 PART SPECTROPHOTOMETRIC STUDIES

2 CHAPTER General Principles of Spectrophotometry

3 123 In absorption spectroscopy, absorption measurements based upon ultraviolet light and visible radiation find application for the detection and quantitative determination of an absorbing species. Spectrophotometry is one such technique noted for its remarkable sensitivity and precision. A change in the intensity of the colour of the system with change in concentration of the system is termed as colorimetry. A substance appears coloured whenever it transmits or absorbs a part of a visible radiation. Absorption spectrum constitutes the optical activity of the substance. When a normal electronic structure of the substance is deformed there is either the production of the colour (or) change of the colour, Thus when molecules containing one or more chromophores and auxochromes, when subjected to irradiation undergo, variation in electronic energy. The presence of chromophores and auxochromes in organic molecules causes deepening of colour by displacing the absorption maximum towards lower wavelengths. This effect is termed as bathochromic shift. The reverse effect is hypsochromic shift. The wavelength range of nm in an electromagnetic spectrum is called the visible region. Beer and Bernard established the general law of absorption of radiation. In spectrophotometric technique an absorbing medium is placed between the source of a radiation and the spectroscope and the light absorbed is measured. The plot of light absorbed on ordinates versus wavelength is characteristic for an absorbing component, and forms the basis for qualitative analysis. The height of the ordinate in the plot due to the component under investigation at any particular

4 124 wavelength is a measure of the concentration of the component and is thus useful for quantitative work. Laws of photometry When a light falls upon a homogeneous medium, a portion of the incident light is reflected, a portion is absorbed within the medium and the remainder is transmitted. Thus the intensity of the incident light IQ is given as Io=I. + I. + Ir... (1) where Ia = intensity of the light absorbed It = intensity of the light transmitted Ir = intensity of the light reflected. Since the measurements are always made with reference to a reference solution in an identical cell, Ir is regarded as constant and hence it can be neglected. The equation (1) becomes lo=i. + It... (2) Fundamental laws of photometry Lambert s law The fraction of radiant energy absorbed increases exponentially with the linear increase in the thickness of the medium, i.e., - = k'.dt... (3) I I = I0e kdt (4)

5 125 k' is proportionality constant. Ie is intensity of incident radiation when V is zero. The ratio of 1/I0 is the fraction of the incident light transmitted by the medium and is termed transmission or transmittance. The reciprocal \J\ is opacity. Beer s law The exponential decrease of the intensity of monochromatic radiation depends upon the arithmetic increase in the absorption of the absorbing species. The law is represented as (5) (6) k" is proportionality constant. The combination of the two laws is known as Lambert-Beer law. The law states that the fraction of radiant energy absorbed increases exponentially with the linear increase in the thickness and concentration of the absorbing species. (7) where k is new proportionality constant. When expressed logarithmically equation (7) becomes log Io/I = a.c.t. (8) where a = k/ Since a.c.t. is a logarithmic quantity, it is a pure number, a in the equation is known as absorptivity. Its units are Litre/gm-cm when the thickness is expressed in centimetre and concentration in gm/litre. When the concentration is expressed in moles/litre the proportionality constant is known as s and is termed molar absorptivity or molar absorption index or molar extinction coefficient. Its units are

6 126 Litre mole'1 cm'1. Emperically molar absorptivities that range from zero upto a maximum of the order of 105 are observed in ultraviolet and visible absorption. For any particular peak the magnitude of e depends on the capture cross section of the species and the probability for any energy absorption transition to occur. The relation between s and these parameters is shown to be s = 3.7 x 1019PA where P = transition probability A = cross section target area in cm2. From electron diffraction studies the cross section target area for a typical organic molecule is estimated to be about 10'15 cm2. Values of P range from for quantum mechanically allowed transition. This value of P leads to strong absorption bands i.e., smax is equal to about 10s. The absorption peaks having e values less than about 103 show low intensity bands. Beer-Lambert law as expressed in equation (8) is also shown as A = log Io/I = set... (9) where A = log Iq/I is referred as absorbance or optical density or extinction. Beer s law - Deviations The absorbances of a series of solutions of known concentration at a fixed wavelength and cell path must bear a linear relationship to the concentration. The deviations from this behaviour is due to so many factors such as interionic forces, complex formation, time and temperature variations, solvent composition in blank and

7 127 test solution and wavelength of radiation etc. The law is obeyed only when the radiation employed is monochromatic. Sensitivity in spectrophotometric method The slope of a calibration plot between concentration and absorbance refer to sensitivity in photometry. Numerically it is expressed as molar absorptivity at wavelength of maximum absorption. s = a/ct... (10) If the value of e given by a method is greater than 104 then the method is said to be sensitive in photometric terms. Specific absorptivity (a) The specific absorptivity (a) is given by equation a = e/atomic weight x (11) The units are ml gm'1 cm'1. This value corresponds to an absorbance of 1 gg/ml solution taken in a cuvette of pathlength 1 cm. Sandell s photometric sensitivity (S) S represents the number of micrograms of determined per ml of solution having an absorption of for a pathlength of 1 cm. S = 10'3/a... (12) Stoichiometry The various spectrophotometric methods employed for establishing the composition of the complex in solution are Job s continuous variation method, Molar ratio method, Slope ratio method, Asmus method and Equilibrium shift method.

8 128 In the present investigations, the author has employed the Job s continuous variation method and molar ratio methods. A brief description of these methods is given. 1. Job s continuous variation method Job1 described a method for determining the stoichiometry of the complex formed between metal ion, M and ligand, L. The formation reaction of the complex is represented as M + nl -» ML... (13) In this method, identical formal concentrations of metal ion and the ligand are used and are mixed in varying volume ratios, keeping the total volume constant. The absorbance of these mixtures is measured at a suitable wavelength against an appropriate blank solution. The absorbance values are then plotted against the volume fraction (same as the mole fraction) Vm/Vm+Vl of one of the reactants. Where Vm and V). represent respectively the volume of the metal ion and the ligand. A curve is obtained which has a maximum (or minimum if the complex absorbs less than the reactants). The composition of the complex is given by the volume fraction ratio. X : [1 - X]...(14) where X V, M... (15) (Vm+Vl) The composition thus corresponding to the point of maximum bears a simple relation to n and is independent of equilibrium constant of the equiformal solutions of M and L\ However the position of the maximum depends on the equilibrium constants

9 129 when the concentrations are not equal. The composition of the several complexes is satisfactorily identified by the Job s method. However, if more than one complex is formed Job s method is generally not applicable. Cooper et al2 reported that the Job s method is still be useful if it is ascertained whether or not one complex is formed in the system under study. In the Job s modified procedure the optical measurements are made at various wavelengths covering the entire range instead of at the wavelength corresponding to the maximum. If all the wavelengths give same conclusion, it can be assumed that a single complex is formed. Thus Job s method is employed for the elucidation of the complex composition. For a system containing only one complex, the value of n is given by n = X (1-X) (16) where X is the volume in litres of L added to the volume in litres of M. Molar ratio method In this method introduced by Yoe and Jones3, a series of solutions are prepared in which the formal concentrations of one of the reactants usually the metal ion is kept constant while that of the other (reagent) is varied. The absorbance values are plotted against mole ratio of the reagent. If the system forms the stable complex, the plot consists of two straight lines of different slopes intercepting at a sharp break. The mole ratio at this break corresponds to the combining ratio in the complex. In the case of weak complexes, the mole ratio plot is a smooth curve and that can be extrapolated to give the combining ratio. A mole ratio plot may reveal stepwise formation of two or more complexes provided the molar absorptivities and formation constants of these complexes are different.

10 130 Methods for evaluating the stability constants of the complexes The available spectrophotometric methods for the determination of stability constant are Job s method, Bent and French method, Edmund and Birn Baum s method and Asmus method. In the present investigations, Job s method is employed for the determination of the stability of the metal complex and is described. Job s method The stability constant, P is obtained by applying the data obtained in Job s method. For 1:1, 1:2 and 1:3 complexes, the stability constant (p) values are calculated using the following equations respectively. 0-q) a2c (17) (1-a) 4a2C2 (18) (1-a) 27a4C3 (19) where Am = absorbance corresponding to the point of intersection of the extrapolated lines A = observed absorbance at concentration C C = concentration corresponding to the point of intersection a = degree of dissociation a Lm J

11 Job, P. Voseburgh, W.C. and Cooper, G.R. REFERENCES Ann. Chim., 9(1928) 113. J. Am. Chem. Soc., 63 (1941)437, 3 Yoe, H.J. and Jones, A.L. Ind. Eng. Chem. Anal. Ed. 16 (1944) 111.

(2/uifaiei - *1. Principles of Spectrophotometry

(2/uifaiei - *1. Principles of Spectrophotometry (2/uifaiei - *1 Principles of Spectrophotometry The methods based on the absorption of electromagnetic radiation are the most important of all the instrumental methods of analysis. Spectrophtometry is

More information

UV-Vis Absorption Experiment 5: Beer- Lambert Law and the Temperature Dependence of the Crystal Violet- Sodium Hydroxide Reaction

UV-Vis Absorption Experiment 5: Beer- Lambert Law and the Temperature Dependence of the Crystal Violet- Sodium Hydroxide Reaction 1 UV-Vis Absorption Experiment 5: Beer- Lambert Law and the Temperature Dependence of the Crystal Violet- Sodium Hydroxide Reaction Overview In Part A of this experiment, the absorption behaviour of crystal

More information

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Chem 321 Lecture 18 - Spectrophotometry 10/31/13 Student Learning Objectives Chem 321 Lecture 18 - Spectrophotometry 10/31/13 In the lab you will use spectrophotometric techniques to determine the amount of iron, calcium and magnesium in unknowns. Although

More information

MOLEBIO LAB #4: Using a Spectrophotometer

MOLEBIO LAB #4: Using a Spectrophotometer Introduction: Spectrophotometry MOLEBIO LAB #4: Using a Spectrophotometer Many kinds of molecules interact with or absorb specific types of radiant energy in a predictable fashion. For example, when while

More information

An Introduction to Ultraviolet-Visible Molecular Spectrometry (Chapter 13)

An Introduction to Ultraviolet-Visible Molecular Spectrometry (Chapter 13) An Introduction to Ultraviolet-Visible Molecular Spectrometry (Chapter 13) Beer s Law: A = -log T = -logp 0 / P = e x b x C See Table 13-1 for terms. In measuring absorbance or transmittance, one should

More information

09/05/40 MOLECULAR ABSORPTION METHODS

09/05/40 MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Concepts, Techniques. Concepts, Techniques 9/11/2012. & Beer s Law. For a simple, transparent, COLORED material, e.g. ROYGBV

Concepts, Techniques. Concepts, Techniques 9/11/2012. & Beer s Law. For a simple, transparent, COLORED material, e.g. ROYGBV 9//22 OBJECTIVES Spectrophotometry of Food Dyes & Beer s Law Last Update: 9//22 9:54 AM What is the quantitative basis for the color of substances? How is the absorption/transmission of light measured?

More information

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III

Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Course: M.Sc (Chemistry) Analytical Chemistry Unit: III Syllabus: Principle of spectrophotometry Types of spectrophotometer Applications - Dissociation constants of an indicator simultaneous spectrophotometric

More information

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Properties of light Electromagnetic radiation and electromagnetic spectrum Absorption of light Beer s law Limitation of Beer s

More information

CHEM 254 EXPERIMENT 9. Chemical Equilibrium-Colorimetric determination of equilibrium constant of a weak acid

CHEM 254 EXPERIMENT 9. Chemical Equilibrium-Colorimetric determination of equilibrium constant of a weak acid CHEM 254 EXPERIMENT 9 Chemical Equilibrium-Colorimetric determination of equilibrium constant of a weak acid For a weak acid that can only partly dissociate the equilibrium constant is related to activities

More information

Spectroscopy Meditsiiniline keemia/medical chemistry LOKT Spectroscopy

Spectroscopy Meditsiiniline keemia/medical chemistry LOKT Spectroscopy Meditsiiniline keemia/medical chemistry LOKT.00.009 Spectroscopy 04.09.12 http://tera.chem.ut.ee/~koit/arstpr/spe_en.pdf 1 ntroduction Spectroscopy is a general term for methods that investigate interactions

More information

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically.

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically. C 141(Expt. No. ) NAME : ROLL No. : SIGNATURE : BATCH : DATE : VERIFICATION OF BEER - LAMBERT S LAW & DETERMINATION OF DISSOCIATION CONSTANT (Ka) OF METHYLRED, SPECTROPHOTOMETRICALLY AIM To verify Beer

More information

Beer's- Lambert Law and Standard Curves. BCH 312 [Practical]

Beer's- Lambert Law and Standard Curves. BCH 312 [Practical] Beer's- Lambert Law and Standard Curves BCH 312 [Practical] Spectrophotometer: Spectrophotometer can be used to measure the amount of light absorbed or transmitted by a solution. It consist of two parts:

More information

Introduction. The amount of radiation absorbed may be measured in a number of ways: Transmittance, T = P / P 0 % Transmittance, %T = 100 T

Introduction. The amount of radiation absorbed may be measured in a number of ways: Transmittance, T = P / P 0 % Transmittance, %T = 100 T Introduction Many compounds absorb ultraviolet (UV) or visible (Vis.) light. The diagram below shows a beam of monochromatic radiation of radiant power P 0, directed at a sample solution. Absorption takes

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information

COLORIMETER AND LAMBERT S-BEER S LAW. Shingala vaishali Sandha prafulla Tiwari Kuldeep

COLORIMETER AND LAMBERT S-BEER S LAW. Shingala vaishali Sandha prafulla Tiwari Kuldeep COLORIMETER AND LAMBERT S-BEER S LAW Shingala vaishali Sandha prafulla Tiwari Kuldeep TOPIC What is colorimeter? Use of colorimeter. Component & It s function. Function of colorimeter. The principle of

More information

GENERAL PHARMACOPOEIA MONOGRAPH

GENERAL PHARMACOPOEIA MONOGRAPH MINISTRY OF HEALTH OF THE RUSSIAN FEDERATION GENERAL PHARMACOPOEIA MONOGRAPH Spectrophotometry in the ultraviolet GPM.1.2.1.1.0003.15 and visible spectral regions Replaces the SPRF X GPM, SPRF XI GPM,

More information

Spectrophotometry. Introduction

Spectrophotometry. Introduction Spectrophotometry Spectrophotometry is a method to measure how much a chemical substance absorbs light by measuring the intensity of light as a beam of light passes through sample solution. The basic principle

More information

Lambert s law. Beer s law. di x / I x = -kdx (-di x = k I x dx) = - a c dx. I/I 0 = e -kl T = A = - log (T) = - log (I/I 0 )

Lambert s law. Beer s law. di x / I x = -kdx (-di x = k I x dx) = - a c dx. I/I 0 = e -kl T = A = - log (T) = - log (I/I 0 ) di x / I x = -kdx (-di x = k I x dx) Integrating this equation from x=0 ~ l (I x =I 0 ~I) gives ; ln I ln I 0 = -kl ln I/I 0 = -kl Expressing the number of photons absorbed by the slab as di x, and the

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Purpose To use spectroscopy to prepare a Beer s Law plot of known dilutions of copper(ii) sulfate so that

More information

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Electromagnetic Spectrum - Molecular transitions Widely used in chemistry. Perhaps the most widely used in Biological Chemistry.

More information

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT INTRODUCTION The principle underlying a spectrophotometric method of analysis involves the interaction of electromagnetic radiation

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

1901 Application of Spectrophotometry

1901 Application of Spectrophotometry 1901 Application of Spectrophotometry Chemical Analysis Problem: 1 Application of Spectroscopy Organic Compounds Organic compounds with single bonds absorb in the UV region because electrons from single

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

SPECTROPHOTOMETRY/BEER S LAW LECTURE HONORS CHEMISTRY NAME

SPECTROPHOTOMETRY/BEER S LAW LECTURE HONORS CHEMISTRY NAME SPECTROPHOTOMETRY/BEER S LAW LECTURE HONORS CHEMISTRY NAME Overview: Spectroscopy will be a tool that you will use as you continue in your chemistry, biology and physics courses. Background: We will begin

More information

CHEMICAL KINETICS E + 2B 2C + D (1)

CHEMICAL KINETICS E + 2B 2C + D (1) CHEMICAL KINETICS Chemical kinetics is the branch of chemistry that is concerned with the study of the rates and mechanisms of chemical reactions. The rate of a reaction is a measure of its speed. Consider

More information

EXPERIMENT #3 A Beer's Law Study

EXPERIMENT #3 A Beer's Law Study OBJECTVES: EXPERMENT #3 A Beer's Law Study To operate a Spectronic 20 To convert from percent transmission to absorbance units To plot absorbance versus wavelength and find max To plot absorbance versus

More information

Paper: 12, Organic Spectroscopy Module: 5, Applications of UV spectroscopy

Paper: 12, Organic Spectroscopy Module: 5, Applications of UV spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Applications of UV-visible Spectroscopy CHE_P12_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015

Spectroscopy Primer. for ultraviolet and visible absorbance spectroscopy. by Stephanie Myers Summer 2015 Spectroscopy Primer for ultraviolet and visible absorbance spectroscopy by Stephanie Myers Summer 2015 Abstract: An overview of uv vis absorbance spectroscopy including Beer s Law, calibration curves,

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry 13A Measurement Of Transmittance and Absorbance Absorption measurements based upon ultraviolet and visible radiation

More information

MOLECULAR ABSORPTION METHODS

MOLECULAR ABSORPTION METHODS MOLECULAR ABSORPTION METHODS Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of wavelength ( absorption spectrum ), due to its interaction

More information

Modern Instrumental Methods of Analysis Prof. J. R. Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore

Modern Instrumental Methods of Analysis Prof. J. R. Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Modern Instrumental Methods of Analysis Prof J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Module No # 02 Lecture No # 07 Ultraviolet and Visible Spectrophotometry

More information

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications Bedanta Kr. Deka, D. Thakuria, H. Bora and S. Banerjee # Department of Physicis, B. Borooah College, Ulubari,

More information

INTRODUCTION The fundamental law of spectrophotometry is known as the Beer-Lambert Law or Beer s Law. It may be stated as: log(po/p) = A

INTRODUCTION The fundamental law of spectrophotometry is known as the Beer-Lambert Law or Beer s Law. It may be stated as: log(po/p) = A S2. INTRODUCTION TO ULTRA-VIOLET / VISIBLE SPECTROSCOPY AIM 1. To become familiar with the operation of a conventional scanning ultra-violet spectrophotometer 2. To determine suitable cells and solvents

More information

Lab Investigation 4 - How could you make more of this dye?

Lab Investigation 4 - How could you make more of this dye? Lab Investigation 4 - How could you make more of this dye? USING SPECTROSCOPY TO DETERMINE SOLUTION CON- CENTRATION Guiding Question How could you make more of this dye? INTRODUCTION A solution is a homogeneous

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Answers to spectroscopy questions. 1. Consider the spectrum below. Questions a f refer to this spectrum.

Answers to spectroscopy questions. 1. Consider the spectrum below. Questions a f refer to this spectrum. Answers to spectroscopy questions. 1. Consider the spectrum below. Questions a f refer to this spectrum. a. Is the spectrum above a band spectrum or a line spectrum? This is a band spectra, there are what

More information

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation.

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation. Spectroscopy a laboratory method of analyzing matter using electromagnetic radiation. Mass Spectrometry Determines the relative abundance of the different isotopes of an element Used to determine the average

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation Spectroscopy a laboratory method of analyzing matter using electromagnetic radiation The electromagnetic spectrum Radiation Scale of Absorption involves: Example of spectroscopy Gamma rays pm Nuclear reactions

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

A Study of Beer s Law Prelab

A Study of Beer s Law Prelab 1. What is the purpose of this experiment? A Study of Beer s Law Prelab 2. Using the absorbance versus wavelength curve given in Figure I, determine the approximate value of max of the dye used to construct

More information

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT C H E M I S T R Y 1 5 0 Chemistry for Engineers DETERMINATION OF AN EQUILIBRIUM CONSTANT DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Determination of an Equilibrium Constant Introduction A system is at

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

Spectrophotometric Determination of Iron

Spectrophotometric Determination of Iron Spectrophotometric Determination of Iron INTRODUCTION Many investigations of chemical species involve the interaction between light and matter. One class of these investigations, called absorbance spectrophotometry,

More information

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs CHAPTER - 3 ANALYTICAL PROFILE 3.1 Estimation of Drug in Pharmaceutical Formulation 3.1.1 Estimation of Drugs ANALYTICAL PROFILE 84 3.1 ESTIMATION OF DRUG IN PHARMACEUTICAL FORMULATION. Agrawal A et al

More information

Investigating Transition Metal Complexes

Investigating Transition Metal Complexes Exercise 4 Investigating Transition Metal Complexes 4 Introduction Colour is a well known property of the transition metals. The colour produced as parts of the visible spectrum are due to electron transitions

More information

The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law.

The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law. The ROXI Colorimeter & Fluorimeter. Laboratory Application I. Colorimetric measurements via Beer s Law. Required Supplies & Costs: RGB LED; $1.95 Light Sensors; $3.95 ea 3-way switch; $6.54 3 ohm resistor;

More information

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology

Spectrophotometry. Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Spectrophotometry Dr. Shareef SHAIK ASST. PROFESSOR Pharmacology Content Introduction Beer-Lambert law Instrument Applications Introduction 3 Body fluids such as blood, csf and urine contain organic and

More information

Absorption, Emission and Fluorescence Spectroscopies. R. Corn - Chem M3LC

Absorption, Emission and Fluorescence Spectroscopies. R. Corn - Chem M3LC Absorption, Emission and Fluorescence Spectroscopies R. Corn - Chem M3LC Light behaves like an electromagnetic wave... 2.998 x 10 8 meters/sec λ = the Greek letter lambda ν = the Greek letter nu velocity

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

Absorption, Emission and Fluorescence Spectroscopies. Chem M3LC. R. Corn

Absorption, Emission and Fluorescence Spectroscopies. Chem M3LC. R. Corn Absorption, Emission and Fluorescence Spectroscopies Chem M3LC. R. Corn Review: Light behaves like an electromagnetic wave... 2.998 x 10 8 meters/sec λ = the Greek letter lambda ν = the Greek letter nu

More information

S2. INTRODUCTION TO ULTRA-VIOLET / VISIBLE SPECTROSCOPY

S2. INTRODUCTION TO ULTRA-VIOLET / VISIBLE SPECTROSCOPY S2. INTRODUCTION TO ULTRA-VIOLET / VISIBLE SPECTROSCOPY PURPOSE 1. To become familiar with the operation of a conventional scanning ultra-violet spectrophotometer 2. To determine suitable cells and solvents

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

MORE LIGHTS, COLOR, ABSORPTION!

MORE LIGHTS, COLOR, ABSORPTION! Name Partner(s) Section Date MORE LIGHTS, COLOR, ABSORPTION! PRE-LAB QUERIES 1. The terms absorption and transmittance are often used when describing the interaction of light with matter. Explain what

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Spectrochemical methods

Spectrochemical methods Spectrochemical methods G. Galbács The interactions of radiations and matter are the subject of spectroscopy py or spectrochemical methods (also called spectrometry). Spectrochemical methods usually measure

More information

2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO) oxime as a gravimetric reagent for Ni(II) and Cu(II) and spectrophotometric study of the complexes

2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO) oxime as a gravimetric reagent for Ni(II) and Cu(II) and spectrophotometric study of the complexes Available online at www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2010, 1 (3): 100-106 ISSN: 0976-8505 CODEN (USA) CSHIA5 2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO)

More information

UV / Visible Spectroscopy. Click icon to add picture

UV / Visible Spectroscopy. Click icon to add picture UV / Visible Spectroscopy Click icon to add picture Spectroscopy It is the branch of science that deals with the study of interaction of matter with light. OR It is the branch of science that deals with

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Beer's Law and Data Analysis *

Beer's Law and Data Analysis * OpenStax-CNX module: m15131 1 Beer's Law and Data Analysis * Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Beer's Law and Data Analysis

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

2 SPECTROSCOPIC ANALYSIS

2 SPECTROSCOPIC ANALYSIS 2 SPECTROSCOPIC ANALYSIS 2.1 Introduction Chemical analysis falls into two basic categories: qualitative what is present quantitative how much is present Spectroscopy is capable of both types of analysis,

More information

Beer-Lambert law Decomposition of the manganese oxalate ion

Beer-Lambert law Decomposition of the manganese oxalate ion A34 Beer-Lambert law Decomposition of the manganese oxalate ion Task: 1. Determine the wavelength of maximal absorbance λ max of a hydrated Cu(NH 3 ) 4 2+ complex in the wavelength region of 400 to 800

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

Chemistry 141 Laboratory Spectrometric Determination of Iron Concentration Lab Lecture Notes 8/29/2011 Dr. Abrash

Chemistry 141 Laboratory Spectrometric Determination of Iron Concentration Lab Lecture Notes 8/29/2011 Dr. Abrash Chemistry 141 Laboratory Spectrometric Determination of Iron Concentration Lab Lecture Notes 8/29/2011 Dr. Abrash What is the purpose of this experiment? We re going to learn a way to quantify the amount

More information

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU 1 Agilent is committed to the educational community and is willing to provide access to company-owned material. This slide

More information

Part I Chapter 1: Introduction to solvent extraction

Part I Chapter 1: Introduction to solvent extraction 1.1 Introduction and historical aspects of solvent Extraction Solvent or liquid-liquid extraction is based on the principle that a solute can distribute itself in a certain ratio between two immiscible

More information

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Objective In this experiment you will use spectrophotometric measurements to determine the copper concentration of a

More information

Concentrations that absorb. Measuring percentage transmittance of solutions at different concentrations

Concentrations that absorb. Measuring percentage transmittance of solutions at different concentrations Measuring percentage transmittance of solutions at different Dimension 2 Cross Cutting Concepts Dimension 1 Science and Engineering Practices FRAMEWORK FOR K-12 SCIENCE EDUCATION 2012 Concentrations that

More information

This activity has been password protected to prevent modification. In order to request an unprotected version of this activity, contact

This activity has been password protected to prevent modification. In order to request an unprotected version of this activity, contact This activity has been password protected to prevent modification. In order to request an unprotected version of this activity, contact pogil@pogil.org The BEER-LAMBERT LAW Learning Objectives Students

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 2 UV-Visible Spectroscopy

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Basic Instrumentation. Learning Objectives:

Basic Instrumentation. Learning Objectives: Proteomics Basic Instrumentation Basic Instrumentation Handling instruments plays an important role in laboratory working on a daily basis. The use of most instruments is almost inevitable and hence a

More information

A Spectrophotometric Analysis of Calcium in Cereal

A Spectrophotometric Analysis of Calcium in Cereal CHEM 311L Quantitative Analysis Laboratory Revision 1.2 A Spectrophotometric Analysis of Calcium in Cereal In this laboratory exercise, we will determine the amount of Calium in a serving of cereal. We

More information

Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer

Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer version 2 Lynta Thomas, Ph.D. and Laura B. Sessions, Ph.D. In this experiment, you will determine the concentration of Allura Red Dye (FD&C

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence, Light, Absorption, Jablonski Diagram, and Beer-Law First stab at a definition: What is fluorescence?

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy Types of transitions: 1) Electronic (UV-Vis-Near IR) 2) Vibrational (IR) 3) Rotational (microwave) Electronic Absorption Spectra π π* Gary L. Miessler and Donald A. Tarr, Inorganic

More information

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY ULTRAVILET SPECTRSCPY or ELECTRNIC SPECTRSCPY S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600036, INDIA Sanka@iitm.ac.in Absorption of electromagnetic radiation

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Preparation of Standard Curves. Principle

Preparation of Standard Curves. Principle Preparation of Standard urves Principle Many laboratory tests require the measurement of concentration be evaluated or read in a photometer (colorimeter or spectrophotometer). Since these instruments are

More information

Compact Knowledge: Absorbance Spectrophotometry. Flexible. Reliable. Personal.

Compact Knowledge: Absorbance Spectrophotometry. Flexible. Reliable. Personal. L A B O R A T O R Y C O M P E T E N C E Compact Knowledge: Absorbance Spectrophotometry Flexible. Reliable. Personal. The interaction of light with molecules is an essential and well accepted technique

More information