Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Size: px
Start display at page:

Download "Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting"

Transcription

1 Reductive Elimination from igh-valent Palladium Kazunori agao MacMillan Group eting

2 Why do people focus on rging with C activation Facile reductive elimination DG C palladacycle oxidant complex C etero C small ring xidative C Functionalization Challenging Bond Formation chanistic Curiousity for Reductive Elimination Mononuclear or Binuclear? ow do they work? rigin of Chemoselectivity

3 C Reductive Elimination Carbon alogen Reductive Elimination K eq << 1 Pd 0 kinetically slow and thermodynamically unfavored oxidation Z K eq >> 1 Z Y Y kinetically fast and thermodynamically favored C activation ( catalysis) and xidative Functionalization ( catalysis) (Ac) 2 C activation Ac + halogen oxidant Y Ac RE ickman, A. J.; Sanford, M. S. ature 2012, 484, 177.

4 Regioselective C xidative Functionalization cat. Pd(Ac) 2 C solvent, o C FG Br PhI(Ac) 2 FG Y Ac chlorination 95% bromination 95% acetoxylation 86% Proposed Intermediate chanistic Investigation Isolation of complex Study of Reductive Elimination Dick, A..; ull, K..; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.

5 Isolation of Complex PhI(Bz) 2 Bz Bz 60 o C, 1 h Bz 77% isolated stable after a week Possible chanism of C Reductive Elimination pathway A Bz + Bz C C Bz + o dependence on solvent polarity o scrambling of additional Ac C C Bz Bz pathway B Bz pathway A is not major. Rigid substrate showed slower RE pathway C C C Bz Bz slower RE pathway C is major. Dick, A..; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127,

6 Isolation of Complex cat. Pd(Ac) 2 CS C, o C oxidant DCM, 25 o C a good model for C reductive elimination from A 61% (with PhI 2 ) Ac B 67% (with CS) 80 o C, 24 h A 49% 7% B 67% 5% <1% Whitefield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129,

7 Bimetallic Intermediate Ritter suggested Bimetallic /III chanism 2 oxidant 2e oxidation Bimetallic Reductive Elimination Molecular rbital of Bimetallic Complex Pd Pd bond corresponds to redox state of Pd Synergistic effect by two Pd metals may facilitate redox transformation. M UM Powers, D. C.; Ritter, T. at. Chem. 2009, 1, 302.

8 Identification of Dimer and Bimetallic Reductive Elimination PhI 2 DCM, 30 o C 23 o C, 2 h Pd Pd bond formation Bimetallic Reductive Elimination 92% stable below 30 o C 96% Possible chanism of Bimetallic Reductive Elimination dissociation Ac Pd III Ac ΔG III 298 Pd to product = 20.5 BDE ( ) = >22 K = 1.2 x 10 5 (to 2Ac) RE rate is 16 times slower Dissociatiaion into can be excluded. Powers, D. C.; Ritter, T. at. Chem. 2009, 1, 302.

9 Identification of Dimer and Bimetallic Reductive Elimination PhI 2 DCM, 30 o C 23 o C, 2 h Pd Pd bond formation Bimetallic Reductive Elimination 92% stable below 30 o C 96% Possible chanism of Bimetallic Reductive Elimination disproportionation RE from cationic dimer resonance can not surpress the Pd Pd electronic communication Concerted Reductive Elimination Powers, D. C.; Ritter, T. at. Chem. 2009, 1, 302. The RE rate is independent of and Ac

10 Catalytic C Chlorination Catalysis with PhI 2 (25 mol%) PhI 2 (0.25 eq), DCM PhI 2 (0.75 eq) 23 o C 90% isolated based on dimer 97% Catalysis with CS Pd catalyst (5 mol%) CS C, 100 o C 85 95% Pd catalyst Pd(Ac) 2 Powers, D. C.; Ritter, T. at. Chem. 2009, 1, 302.

11 Computational Study Bimetallic Reductive Elimination Pd Pd + Pd Pd The electron bniding energies of two Pd atoms monotonically decrease Redox synergy between 2 Pd centers Pd Pd eavage 33.2 (omolytic) 29.5 (eterolytic) Pd Pd distance Activation Energy RE Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132,

12 chanistic Studies for C orination with CS Pd(Ac) 2 (5 mol%) CS C, 100 o C o acetoxylated product C C Why chemoselective C RE? Schoenebeck suggests ligand scrambling mechasm fast C RE product + C C Ac Ac Ac Bimetallic Reductive Elimination Turnover-imiting Pd Pd Ac Acetate-Assisted xidation ielsen, M. C.; yngvi, E.; Schoenbeck. F. J. Am. Chem. Soc. 2013, 135, Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, CS + Ac

13 Ar Reductive Elimination from Slow Reductive Elimination Pd0 Successful Examples of Ar RE from i Pr PCy 2 i Pr F 3 C F 3 C P P i Pr bulky substituents PPh 2 PPh 2 large bite angle & bulky substituents small bite angle & electronic repulsion Brettphos stoichiometric (80 o C) catalytic (Et 3 Si, o C) antphos stoichiometric (80 o C) DFMPE stoichiometric (60 90 o C) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald S.. Science 2010, 328, Glushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, ielsen, M. C.; Bonney, K. J.; Schoenebeck, F. Angew. Chem. Int. Ed. 2014, 53, 5903.

14 Ar Reductive Elimination from Fast? Reductive Elimination Y Y t Bu t Bu F Stoichiometric reductive elimination from other ligands Tf F DCE, 23 o C F Ph Ph TMEDA DPPE 89% 29% P P Ph Ph t Bu t Bu F Tf 53% 2 Ph 80 o C, 3 h F 77% icholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2011, 133, 7577.

15 Ar Reductive Elimination from Fast? Reductive Elimination Y Y Catalytic C Trifluoromethylation cat. Pd(Ac) 2 Cu(Ac) 2 (1 eq) + reagent TFA (10 eq) DCE, 110 o C + reagents I S BF 4 86% 11% TFA (10 eq) is essential for the reaction Cu(Ac) 2 (1 eq) also improve the yield What s the role of these reagents? ow does the reaction work? Wang..; Truesdale,.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.

16 Isolation of Intermediate + reagent Ac, 40 o C 2 Ac Ac isolated dimer complex I I S Tf 4 S BF 4 45% 60% 2% 4% DCE instead of Ac : <2% DCE / 1 eq Ac : 48% DCE / 20 eq Ac : 65% Additional Ac is important. icholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2010, 132,

17 Reductive Elimination from Isolated complex 2 Ac isolated Ac complex no decomp after 1 month Ac or DCE 60 o C, 12 h F 3 C 54 56% C RE product <2% C Ac and C RE chanism for Reductive Elimination Ac dissociation Ac + Ac 2 Ac 2 dissociation 2 Ac Ac Ac Ac F 3 C concerted Increase of [Ac ] significantly slowed C RE Addition of acidic additive [TFA, TFAA, Yb(Tf) 3 ] accelerated C RE Ac dissociative RE Pathway

18 Catalytic Activity of Isolated Complex Pd (10 mol%) Cu(Ac) 2 (1 eq) S BF 4 TFA (10 eq) DCE, 110 o C F 3 C Pd(Ac) 2 : 0.08 x 10 4 M/s : 1.40 x 10 4 M/s 18 fold times Initiual rates complex is a kinetically compete catalyst The role of Cu(Ac) 2 and TFA 2 Ac Ac additive DCE 60 o C, 12 h F 3 C complex C RE product none 54% Acceleration of RE Surpressing decomp pathway Cu(Ac) 2 (10 eq) TFA (100 eq) Cu(Ac) 2 (10 eq) + TFA (100 eq) 36% 89% 94% icholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2010, 132,

19 Binuclear or Mononuclear Kinetic study and DFT calculation suggests Reducctive elimination from I Ac, DCM ΔG = 13.7 fast 2 Ac Ac Ac Bimetallic xidation / Pd Pd eavage not detected rate = k [ dimer][togni I][Ac] Ac Why is Pd Pd cleavage so fast? ΔG = 18.9 is relatively stronger σ-donor than and Ac structure is a more dominant contributor Ac TS RE C CF3 Powers, D. C.; ee, E.; Ariafard, A.; Sanford M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134,

20 Small Ring Formation Formation of 5-membered ring Tf cat. Pd(Ac) 2 oxidant Tf DMF, DCM 100 o C Tf Problematic RE partner PhI(Ac) (Ac) Tf Y Ac Ac t Bu CS (Ac) 20 () Proposed intermediate IS 0 35 (I) Tf F Y Ac Tf F 75% 0 C F is relatively intert for RE ow about 4-membered ring? i, T.-Q.; Wang,.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,

21 Small Ring Formation Formation of 5-membered ring Tf cat. Pd(Ac) 2 oxidant Tf DMF, DCM 100 o C Tf Problematic RE partner PhI(Ac) (Ac) Tf Y Ac Ac t Bu CS (Ac) 20 () Proposed intermediate IS 0 35 (I) F Tf cat. Pd(Tf) 2 oxidant MP, DCE 120 o C 0% Tf F 84% Tf Tf oxidant F i, T.-Q.; Wang,.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,

22 Construction of Azetidine C 2 α β γ γ-c(sp 3 ) picolinamide () Pd(Ac) 2 PhI(Ac) 2, Ac toluene, 110 o C C 2 88% C RE Ac C 2 10% ( = or Ac) C RE C 2 C 2 Ac R 2 R 1 Ac Pd Ac C RE (91%) C RE (0%) C RE (25%) C RE (70%) C RE (70%) C RE (8%) When R 2 is smaller, tortional strain would favor C RE. δ C 2 α δ-c(sp 3 ) β γ C(sp 2 ) identical conditions C 2 82% d.r. 8:1 90% e, G.; Zhao, Y.; Zhang, S.; u, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.

23 Construction of Benzazetidine aza-o-xylene Benzazetidine 2.0 stable A lack of practical synthesis due to ring strain underexplored -heterocycle Previous Synthesis Ph 450W UV Ph via Ph 50% Br i t Bui Ac 21% Ac via i i

24 Synthesis of Benzazetidine Pd(Ac) 2 PhI(Ac) 2 toluene, 100 o C Ac 7% C RE 89% C RE Idea to C Selective Reductive Elimination Ac Ac Ac Ph I Favoured C RE 5-memberd TS Spacer s strain overcome C RE? Design of PhI(R) 2 e, G.; u, G.; Guo, Z.; iu, P.; Chen, G. at. Chem. 2016, 8, 1131.

25 Discovery of PhI(DMM) 2 Pd(Ac) 2 PhI(R) 2 toluene, 100 o C C RE diacidic-derived iodonium oxidants C 2 C 2 C 2 C 2 C 2 C 2 7% <5% 25% 10% C 2 C 2 10% C 2 C 2 C 2 C 2 C 2 C 2 DMM 34% 10% 20% PhI(Ac) 2 rt, C 3 I Ph e, G.; u, G.; Guo, Z.; iu, P.; Chen, G. at. Chem. 2016, 8, Ph I PhI(DMM) Ph I

26 Substrate Scope Pd(Ac) 2 PhI(DMM) Chlorobenzene 110 o C C RE 48% C RE 40% Substrate Scope 2 I 72% (C 9%) 75% (C 10%) 54% (C 18%) n.d. (C <5%) % 18% 53% 32% e, G.; u, G.; Guo, Z.; iu, P.; Chen, G. at. Chem. 2016, 8, 1131.

27 Computational Studies F 3 C Pd (Ac) DFT suggested RE from dimer PhI(Ac) 2 PhI(DMM) 2 C C ΔG = 33.2 RE ΔG = 29.4 F 3 C Ac Ac Ac ΔG = 18.9 F 3 C Ac ΔG = 10.9 ΔG = 27.1 RE ΔG = 26.8 C C C ΔG = 14.9 F 3 C Ac F 3 C F 3 C Ac F 3 C ΔG = 30.0 C C favored RE ΔG = 10.6 Ac Ac RE ΔG = 24.3 C favored ΔG = 0.0 ΔG = 0.0

28 Construction of Aziridine R1 R 2 R 3 Pd 2 C activation R 1 R 2 R 3 Pd oxidant facile RE R 2 R 3 R 1 sec-alkylamine 4-membered palladacycle aziridine Pd(Ac) 2 PhI(Ac) 2, Ac 2 toluene, 70 o C 74% no C RE r 3 Ar = 3,5-( ) 2 C 6 3 isolated Ac Ac Ac proposed intermediate Chemoselectivity of RE (C vs C ) RE from dimer or Mcally, A.; affemayer, B; Collins, B. S.; Gaunt, M. ature 2014, 510, 129.

29 Computational Studies unfavored ΔG = 30.7 amine dissosciation then S 2 Ac intermediate ΔG = 0.0 ΔG = 22.8 RE ΔG = 21.9 C C deprotonation Ac ΔG = 12.7 mechanism is favored. dimer is a higher energy intermediate due to steric repulsion between hindered amines. ΔG = 6.0 ΔG = 27.3 RE ΔG = 17.1 C C favored Smalley, A. D.; Gaunt, M. J. Am. Chem. Soc. 2015, 137,

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination Palladium-Catalyzed Electrophilic Aromatic C luorination +2 Pd II 2 B 4 C (5 mol %) SI (2 eq) MeC, rt 61%, 69:31 o:p C Yamamoto, K; Li, J.; Garber, J. A..; Rolfes, J. D.; Boursalian, G. B.; Borghs, J.

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds Palladium-Catalyzed xygenation of Unactivated sp 3 C- Bonds Pd(Ac) 2 5 mol% PhI(Ac) 2 1.1 eq. Pd 2 Ac Desai, L. P.; ull, K. L.; Sanford *, M. S. University of Michigan J. Am. Chem. Soc. 2004, 126, ASAP

More information

Reactivity within Confined Nano-spaces

Reactivity within Confined Nano-spaces Reactivity within Confined Nano-spaces Larry Wolf Group Meeting 11-17-09 Encapsulating Cyclobutadiene hemicarcerand Anslyn, E. V; Dougherty, D. A. Modern Physical Organic Chemistry Cram. D. J. et. al.

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting 01-15-2008 Timothy Chang Outlines - Fundamental considerations, C-H versus C-C activation - Orbital interactions -

More information

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes A ief Survey on Synthesis and Catalytic Reactivity of tal-tal Bond Complexes Chi Chip Le MacMillan Research Group Group eting Presentation April 6th, 2017 Synthesis and Catalytic Reactivity of tal-tal

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans Direct xidative eck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans by Zhang,.; Ferreira, E. M.; Stoltz, B. M. Angewandte

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Transition Metal Catalyzed Carbon-Carbon Bond Activation

Transition Metal Catalyzed Carbon-Carbon Bond Activation literature seminar 2 H. Mitsunuma(M1) 2010/09/08 Transition tal Catalyzed Carbon-Carbon Bond Activation 0. Introduction Currently, selective C-H and C-C bond activation by transition metal complexes has

More information

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- Literature Report Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- aseseazines A and B Reporter: Mu-Wang Chen Checker: Zhang-Pei Chen Date: 2013-05-28 Reisman,

More information

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura Coupling eactions Using Excited State rganonickel Complex 171118_LS_Daiki_Kamakura i Catalysis in Coupling eactions 9 10 11 Co 28 i Cu h Pd Ag Ir Pt Au Features of i d electrons: 8 relatively inexpensive

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Mechanistic Studies in Copper Catalysis

Mechanistic Studies in Copper Catalysis chanistic Studies in Copper Catalysis Jen Alleva May 1st 2013 Timeline of Achievements in Copper Chemistry General istorical verview first cross-couplings 1869 Ullmann Goldberg Glaser 1903 Glaser, C. Ann.

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2011 Final Exam Please answer the following questions clearly and concisely. In general, use pictures and less than 10 words in your answers. Write

More information

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017 ecent Advancement in Ag diated C- Bond ormation Chem 535 Literature Seminar Jiabao Zhang 02/21/2017 1 Why Would You Want luorination? igh redox potential: block possible metabolic oxidation. 2 Why Would

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine -oxide rg. Biomol. Chem., 2007, 5, 3428 Luo, Z.-B.; Wu, J.-Y.; ou, X.-L.; Dai, L.-X. Ts toluene Ts 80 o C John

More information

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways Xiao Cheng, Charles Goodhue, and Jin-Quan Yu Brandeis University

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

There are 15 total pages to this exam. Please be sure your copy has 15 pages before you begin.

There are 15 total pages to this exam. Please be sure your copy has 15 pages before you begin. Initials: 1 ame: Chem 633: Advanced rganic Chemistry Midterm 2 Please answer the following questions clearly and concisely. Write your answers in the space provided. Write your initials on each page you

More information

Recent Advances in Directed and Intramolecular Transition Metal Catalyzed Oxidative Functionalizations of Carbon- Hydrogen Bonds

Recent Advances in Directed and Intramolecular Transition Metal Catalyzed Oxidative Functionalizations of Carbon- Hydrogen Bonds Recent Advances in Directed and Intramolecular Transition Metal Catalyzed xidative Functionalizations of Carbon- ydrogen Bonds 1 step R C cat [M] oxidant R X C X = R 2, R, halogen John eemstra Jr. April

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009 Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction chanisms Group eting Aaron Bailey 12 May 2009 What is a Non-Linear Effect? In asymmetric catalysis, the ee (er) of the

More information

Organometallic Rections 1: Reactions at the Metal

Organometallic Rections 1: Reactions at the Metal E Organometallic Rections 1: Reactions at the Metal Three major classes of reactions: 1 Ligand Substitution associative (cf. S N 2) dissociative (cf. S N 1) interchange (not dealt with in this course)

More information

A Stereoselective Synthesis of (+)-Gonyautoxin 3

A Stereoselective Synthesis of (+)-Gonyautoxin 3 A Stereoselective Synthesis of (+)-Gonyautoxin 3 Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630-12631 Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via

More information

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014

Palladium-catalyzed sp 3 C H activation. Yan Xu Dong Group Meeting Apr. 2, 2014 Palladium-catalyzed sp 3 C H activation, Yan Xu Dong Group Meeting Apr. 2, 2014 Content 1 Allylic C H activation 2 Benzylic C H activation Palladiumcatalyzed sp 3 C H activation 3 4 Common sp 3 C H activation:

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat) Hybridization of Nickel Catalysis and Photoredox Catalysis Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat) Introduction Novel cross coupling was reported! Highly selective sp 3 C-H functionalization!

More information

CHEM 153 PRACTICE TEST #1 ANSWER KEY

CHEM 153 PRACTICE TEST #1 ANSWER KEY CEM 153 PACTICE TEST #1 ASWE KEY Provide a mechanism for the following transformation, indicating the electron count and oxidation state of each organometallic intermediate: u 3 (C) 12 (5 mol%) TF, 135

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Selective Synthesis of Multisubstituted Cycloheptadienes 1 2 Cat. Ni 0 1 2 Komagawa, S.; Saito, S. Angew.

More information

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five. Chem 232 D. J. Wardrop wardropd@uic.edu Problem Set 6 Answers Question 1. nly five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those

More information

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain Nicolaou and Co-workers Angew. Chem. Int. Ed. 2005, 44, 3443

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Reversible Interaction between Substrate and Ligand

Reversible Interaction between Substrate and Ligand Reversible Interaction between Substrate and Ligand 2010.6.9.YoheiShimizu(D3) is is is Ser 271 P Lys 229-2 3 P Zn 2+ Tyr P 3 2- + 3 Lys 107 P 3 2- class 1 aldolase class 2 aldolase Glu 185 Asp 211 C 2

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Oxidative couplings of two nucleophiles

Oxidative couplings of two nucleophiles Oxidative Couplings of Hydrocarbons Oxidative couplings of two nucleophiles Oxidants involved: O 2 H 2 O 2 high h valent metals(copper salts) halides(iodine(Ⅲ) oxidants) Lei, A. W. Chem. Rev., 2011, 111,

More information

CH 611 Advanced Inorganic Chemistry Synthesis and Analysis. Exam #3 12/12/2011. Print Name

CH 611 Advanced Inorganic Chemistry Synthesis and Analysis. Exam #3 12/12/2011. Print Name Print Name Wherever possible give further details of each transformation or catalytic cycle by describing the steric/electronic nature of reagent and/or substrate including bonding schematics to illustrate

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature Current Literature July 19, 08 Jitendra Mishra Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with -Chloroamides Catalyzed by CuCl at Room Temperature Aiwen Lei et.al. College of the

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions Abstract Within the last decades the transition metal-catalyzed cross-coupling of non-activated alkyl halides has significantly

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

Tautomerism and Keto Enol Equilibrium

Tautomerism and Keto Enol Equilibrium Tautomerism and Keto Enol Equilibrium Enols & enolates are important nucleophiles in organic & biochemistry. Keto-Enol Equilibrium: Tautomerisation can be catalyzed by either acids or bases. Relative stability

More information

Organic Seminar. Prakash Kumar Shee Department of Chemistry Michigan State University November 27, 2013

Organic Seminar. Prakash Kumar Shee Department of Chemistry Michigan State University November 27, 2013 Organic Seminar Prakash Kumar Shee Department of Chemistry Michigan State University November 27, 2013 OUTLINE Introduction Background Recently Reported Approaches Approach 1: Donor Atom Assistance Approach

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

Streamlining Reaction Discovery and Development Through Kinetic Analysis

Streamlining Reaction Discovery and Development Through Kinetic Analysis Streamlining Reaction Discovery and Development Through Kinetic Analysis R 3 Si X Ni(0) Ligand R 3 Si X [Substrate] 0 0 Time J. Am. Chem. Soc. 2011, 133, 5728 Professor Ryan D. Baxter utline: Direct Comparison

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Direct Catalytic Cross-Coupling of Organolithium

Direct Catalytic Cross-Coupling of Organolithium Literature report Direct Catalytic Cross-Coupling of Organolithium Compounds Reporter: Zhang-Pei Chen Checker: Mu-Wang Chen Date: 02/07/2013 Feringa, B.L.et al. Feringa, B. L. et al. Nature Chem. 2013,

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Asymmetric Radical Reactions. Zhen Liu 08/30/2018 Asymmetric adical eactions Zhen Liu 08/30/2018 Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts

More information

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) YDGEATI Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) eterogeneous Catalysis Catalyst insoluble in reaction medium eactions take place

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES AYMMETIC PALLADIUM-CATALYZED ALKEE CABAMIATI EACTI F TE YTEI F CYCLIC ULFAMIDE Chem. Eur. J. 2016, 22, 5919 5922 Zachary J. Garlets, Kaia. Parenti, and John P. Wolfe James Johnson Wipf Group Current Literature

More information

EXAMINING THE ROLE OF NITRATE AND NITRITE ANIONS IN OXIDATIVE C H BOND FUNCTIONALISATION AT PALLADIUM PHILIPPA KATE OWENS.

EXAMINING THE ROLE OF NITRATE AND NITRITE ANIONS IN OXIDATIVE C H BOND FUNCTIONALISATION AT PALLADIUM PHILIPPA KATE OWENS. EXAMIIG THE RLE F ITRATE AD ITRITE AIS I XIDATIVE C H BD FUCTIALISATI AT PALLADIUM PHILIPPA KATE WES MSc (by Research) THE UIVERSITY F YRK CHEMISTRY DECEMBER 2013 Abstract The synthesis of a range of palladacyclic

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization Total Synthesis of (+/-)-Goniomitine via a Formal itrile/donor-acceptor Cyclopropane [3 + 2] Cyclization (-)-Goniomitine Christian L. Morales and Brian Pagenkopf* rganic Letters, ASAP Current Literature

More information

Fron%ers in Chemistry Seminar

Fron%ers in Chemistry Seminar Fron%ers in Chemistry eminar Transi%on Metal- Catalyzed Func%onaliza%on of C sp3 via C- bond ac%va%on Presented by: Jared T. ammill Wipf Group Mee%ng University of PiGsburgh eptember 22, 2012 Jared ammill

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Literature Report III

Literature Report III Literature Report III Regioselective ydroarylation of Alkynes Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28 Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017,

More information

Metallaphotoredox Catalysis (Including my work in Shū Kobayashi group from Oct to Aug. 2015)

Metallaphotoredox Catalysis (Including my work in Shū Kobayashi group from Oct to Aug. 2015) tallaphotoredox (ncluding my work in Shū Kobayashi group from ct. 2013 to Aug. 2015) otoredox Transition tal Tatsuhiro Tsukamoto Literature Talk: Jan. 6 th, 2016 the Dong group 1 Contents 1. Visible Light

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University Green xidations with Tungsten Catalysts by Mike Kuszpit Michigan State University xidations in rganic Chemistry [] [] R 1 R 1 R 1 [] R 1 R 2 R 1 R 2 [] R 1 R 2 R 1 R 2 R 1 R 2 [] R 1 R 2 Essential as building

More information

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II) Studies on eck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type xidative Cyclization Catalyzed by Palladium() Zuhui Zhang enmark Group Meeting 10/21/2008 1 Part ne: Palladium(0)-Catalyzed

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

Department CMIC Lecture 5c FR5c Free-Radicals: Chemistry and Biology

Department CMIC Lecture 5c FR5c Free-Radicals: Chemistry and Biology Department CMIC Lecture 5c F5c Free-adicals: Chemistry and Biology Prof. Dipartimento CMIC Giulio atta http://iscamap.chem.polimi.it/citterio/education/free-radical-chemistry/ Content 1. Introduction Current

More information

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H VIBLATIE 2 C 1 C 2 Ac a 3: catharanthine C 2 Ac C 2 2: ( )-vindoline xidation 5' 2 C 3' 16' 20' Ac C 2 1: (+)-vinblastine b 4 C 2 TFAA, -50 C Polonovski fragmentation 6' 5' 16' C 2 5 TFA 4' 3' 15' 16'

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols ydrogen bonding promotes -atom transfer from C bonds for C-alkylation of alcohols Jenna L. Jeffrey, Jack A. Terrett, David W. C. MacMillan Science 2015, 349, 1532-1536 Raffaele Colombo 9/26/2015 Raffaele

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~ Metalloporphyrin ~as efficient Lewis acid catalysts with a unique reaction-field~ and ~Synthetic study toward complex metalloporphyrins~ Literature Seminar Kenta Saito (D1) 1 Topics Chapter 1 ~as efficient

More information

The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion?

The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion? The chanism of d-catalyzed Amination Controversy.. And Conclusion? R H R1 R 2 d(dba) 2 BIA, h R R1 R 2 Steve Tymonko SED Group eting 5/9/06 d-catalyzed Amination- Tin Initial Report- Kosugi, 1983 n-bu

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Review. Frank Glorius & His Rh(III) C-H Activation. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo 1 /21

Review. Frank Glorius & His Rh(III) C-H Activation. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo 1 /21 Review Frank Glorius & His Rh(III) C-H Activation Li Yuanhe Supervisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo 1 /21 Author Introduction Prof. Dr. Frank Glorius 1972 Born 1991-1992 Military service

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information