ADVANCED INORGANIC CHEMISTRY QUIZ 4 November 29, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME.

Size: px
Start display at page:

Download "ADVANCED INORGANIC CHEMISTRY QUIZ 4 November 29, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME."

Transcription

1 ADVANCED INORGANIC CHEMISTRY QIZ 4 November 29, 2012 INSTRCTIONS: PRINT YOR NAME > NAME. WORK all 4 problems SE THE CORRECT NMBER OF SIGNIFICANT FIGRES YOR SPPPLEMENTAL MATERIALS CONTAIN: A PERIODIC TABLE Water MO diagram C 2 v and D 5 h POINT GROP CHARACTER TABLEs Quiz 4 R = lit-atm/mol-k 1 (30) R = J/mol-K 2 (30) 3 (20) c = X 10 8 m/s 4 (20) h = X J-s TOTAL(100)

2 1. Give a short answer or explanation for the following. (a) Explain why s-p mixing must be considered for early second row diatomics such as B 2 and C 2, but s-p mixing is ignored for late second row diatomics such as O 2 and F 2. (b) Give at least two reasons how the use of symmetry helps in molecular orbital construction. The molecular orbital diagram for water is included in the quiz. Refer to it for (c) (e) (c) sing the diagram explain why a proton asttached to oxygen instead of hysrogen (d) The 1 b 2 orbital is called a pure non-bonding orbital. Explain what this means. (e) How does the molecular orbital diagram differ from the valence bond (Lewis structure ) description of water..

3 2. Consider the species, NO +, NO (neutral), and NO -. (these species have s-p mixing) (a) Sketch the energy levels of the molecular orbitals (just draw one diagram and populat it with the electrons for neutrsl NO. ). (b) Calculate the bond order of each species. (c) Rank the species in order of increasing bond length < < (d) Rank the species in order of increasing bond strength. < < (e) Which if any of the species is paramagnetic? Sketch the shape of one of the π* anti- (f) Sketch the lowest energy orbital s shape. bonding orbitals.

4 3. This problem runs over two pages.you will construct the symmetry adapted orbitals for BrF 3. Point group C 2 v (a) Construct reducible representastions for the group orbitals by applying the symmetry operations. E C 2 (z) σ v (xz) σ v (yz) s Γ= E C 2 (z) σ v (xz) σ v (yz) P (σ bond) Γ= E C 2 (z) σ v (xz) σ v (yz) Γ= p(π-bond(1)) E C 2 (z) σ v (xz) σ v (yz) Γ= p(π-bond(2)) (continue on next page)

5 (b) Reduce your representation to a sum of irreducible representations, and identify thre central aton that interacts with the orbital. (I did the first two) s or p σ Γ = 2 A 1 = s, pz + B 1 central atom orbitals s, pz px p(π-bond(1)) E C 2 (z) σ v (xz) σ v (yz) from previous page Γ= Reduce and identify the central atom orbitals. #A1 = #A2 = #B1 = #B2 = p(π-bond(1)) Γ = + + central atom orbitals p(π-bond(1)) E C 2 (z) σ v (xz) σ v (yz) from previous page Γ= Reduce and identify the central atom orbitals. #A1 = #A2 = #B1 = #B2 = p(π-bond(1)) Γ = + + central atom orbitals

6 3. A ion of O 2 F 5 5- has pentagonal bipyramidal geometry. The point group of the ion is D 5 h z y O F F F x F F O (b) The group orbitals for the O atoms (using the s orbitals) are shown below with their symmetries. To the right of the figures indicate which orbital will interact with the group orbital to form a molecular orbital. Consider the s, p, and d orbitals on. Sketch the shape of the bonding molecular orbital formed by this interaction. Group Bonding Orbital orbital Molecular orbital (s) A 1 ' A 2 " Continues on next page.

7 (b) The group orbitals for the F atoms (using the s orbitals) are shown below with their symmetries. The ion has been rotated to show the view perpendicular to the xy plane. To the right of the figures indicate which orbital will interact with the group orbital to form a molecular orbital. Consider the s, p, and d orbitals on. Sketch the shape of the bonding molecular orbital formed by this interaction. Group Bonding Orbital orbital Molecular orbital(s) y A 1 ' E 1 ' E 1 "

8

9 Character table for D 5 h Character table for point group D 5h (x axis coincident with C' 2 axis) D 5h E 2C 5 2(C 5 ) 2 5C' 2 h 2S 5 2(S 5 ) 3 5 v linear functions, rotations quadratic functions A' x 2 +y 2, z 2 A' R z - E' cos(2 +2cos( cos(2 +2cos(4 0 (x, y) - E' cos(4 +2cos( cos(4 +2cos(2 0 - (x 2 -y 2, xy) A'' A'' z - E'' cos(2 +2cos( cos(2-2cos(4 0 (R x, R y ) (xz, yz) E'' cos(4 +2cos( cos(4-2cos(

10 3. This problem runs over two pages. You will construct the symmetry adapted group orbitals for BrF 5. Point group C 4 v (a) Construct reducible representations for the group orbitals by applying the symmetry operations. Hint: they are all odd numbers. E 2 C 4 (z) C 2 (z) 2 σ v (xz) 2σ d (bisectror of xz and yz) Γ = E 2 C 4 (z) C 2 (z) 2 σ v (xz) 2σ d (bisectror of xz/yz) When you finish bring it to me to grade so you can do the next part.

11 Reproduce your representation here and reduce it. Γ = E 2 C 4 (z) C 2 (z) 2 σ v (xz) 2σ d (bisectror of xz/yz) Reduce and identify the central atom orbitals. #A1 = #A2 = #B1 = #B2 = #E = (s-bond(1)) Γ = Not all blanks A1 A2 B1 B2 E may be needed central atom orbitals (se s, p, and d) A1 A2 B1 B2 E

12 4. The following involves drawing the pi molecular orbitals for a square planar complex such as XeF 4. The group orbital symmetry is as shown. Identify the central atom orbital that interacts, and draw the bonding combination for each set.

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

ADVANCED INORGANIC CHEMISTRY February 17, 2009 INSTRUCTIONS: PRINT YOUR NAME > NAME.

ADVANCED INORGANIC CHEMISTRY February 17, 2009 INSTRUCTIONS: PRINT YOUR NAME > NAME. ADVANCED INORGANIC CHEMISTRY QUIZ I February 17, 2009 INSTRUCTIONS: PRINT YOUR NAME > NAME. WORK 4 of the 5 problems SHOW YOUR WORK FOR PARTIAL CREDIT THE LAST PAGE IS A Periodic Table R = 0.08206 lit-atm/mol-k

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued Topics: Name(s): Element: 1. Using p-orbitals for σ-bonding: molecular orbital diagram

More information

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Marc R. Roussel January 5, 2018 Marc R. Roussel Homonuclear diatomics January 5, 2018 1 / 17 MO theory for homonuclear diatomic

More information

Chem Spring, 2017 Assignment 5 - Solutions

Chem Spring, 2017 Assignment 5 - Solutions Page 1 of 10 Chem 370 - Spring, 2017 Assignment 5 - Solutions 5.1 Additional combinations are p z ± d z 2, p x ±d xz, and p y ±d yz. p z ± d z 2 p x ±d xz or p y ±d yz 5.2 a. Li 2 has the configuration

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

1. (4 pts) Give the electron configuration for these species. You may use core notation.

1. (4 pts) Give the electron configuration for these species. You may use core notation. EXAM ONE PART ONE CHM 451 (INORGANIC CHEMISTRY) DR. MATTSON 18 SEPTEMBER 2013 NAME: Instructions: This exam has two parts. In Part One, only a pencil and molecular models may be used. When you have completed

More information

Chm October Molecular Orbitals. Instructions. Always show your work for full credit.

Chm October Molecular Orbitals. Instructions. Always show your work for full credit. Inorganic Exam 2 Chm 451 29 October 2009 Name: Instructions. Always show your work for full credit. Molecular Orbitals 1. (4 pts) An unusual structure, and one for which there are probably no real examples

More information

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Topics: 1. The three scenarios 2. Scenario 3: π-back bonding 1. The three scenarios for the MO energy

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

A. General (10 points) 2 Points Each

A. General (10 points) 2 Points Each Chem 104A - Midterm II Total Exam Score closed text, closed notes, no calculators There are 100 total points. General advice - if you are stumped by one problem, move on to finish other problems and come

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

Ch. 9 Practice Questions

Ch. 9 Practice Questions Ch. 9 Practice Questions 1. The hybridization of the carbon atom in the cation CH + 3 is: A) sp 2 B) sp 3 C) dsp D) sp E) none of these 2. In the molecule C 2 H 4 the valence orbitals of the carbon atoms

More information

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November NAME Student No. SECTIN (circle one): A01 (Codding) A02 (Sirk) A03 (Briggs) Version A UNIVERSITY F VICTRIA CEMISTRY 101 Mid-Term Test 2, November 19 2010 Version A This test has two parts and 8 pages,

More information

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section:

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: Chem 101 2016 Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: 1. Below is a plot of the first 10 ionization energies for a single atom

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Chem 673, Problem Set 5 Due Thursday, December 1, 2005 otton, Problem 9.3 (assume D 4h symmetry) Additional Problems: hem 673, Problem Set 5 Due Thursday, December 1, 2005 (1) Infrared and Raman spectra of Benzene (a) Determine the symmetries (irreducible

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

CHM 451 (INORGANIC CHEMISTRY)

CHM 451 (INORGANIC CHEMISTRY) EXAM ONE PART ONE DR. MATTSON 29 SEPTEMBER 2014 CHM 451 (INORGANIC CHEMISTRY) NAME: Instructions: This exam has two parts. In Part One, only a pencil and molecular models may be used. When you have completed

More information

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap Discussion #1 Chapter 10 CH102 2018 MOs TF s name: Your name: Discussion Section: 1. Atomic Orbital (s, p, d, f) vs. Molecular Orbital (σ, σ *, NB, π, π *, π nb ) a. Total Number of MO =Total Number of

More information

Drawing Good Lewis Structures. Molecular Shape

Drawing Good Lewis Structures. Molecular Shape 3//05 Drawing Good Lewis Structures. # valence e in atoms (± charge) must = # e in structure ; always. determine connectivity: least EN usually central; avoid small rings; always terminal ( e ); work out

More information

CH 612 Advanced Inorganic Chemistry Structure and Reactivity. Exam # 2 10/25/2010. Print name:

CH 612 Advanced Inorganic Chemistry Structure and Reactivity. Exam # 2 10/25/2010. Print name: CH 612 dvanced Inorganic Chemistry Structure and Reactivity Print name: 1. (25 points) a) Given the set of operations C 4, h determine the other operations that must be present to form a complete point

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University Chemistry 431 Lecture 14 Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory NC State University Wave functions as the basis for irreducible representations The energy of the

More information

DESCRIPTIVE INORGANIC CHEMISTRY February 28, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME.

DESCRIPTIVE INORGANIC CHEMISTRY February 28, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME. DESCRIPTIVE INORGANIC CHEMISTRY QUIZ II February 28, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME. SHOW YOUR WORK FOR POSSIBLE PARTIAL CREDIT THE LAST PAGE IS A Periodic Table Work 5 of these (100 pts) R

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals EXERCISE! Draw the Lewis structure for methane, CH 4. What is the shape of a methane molecule? tetrahedral What are the bond angles? 109.5 o H H C H H Copyright Cengage

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table

1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table Chm 451 Fall 2007 Exam 1 Name: First ionization energy. 1a. (2 pts) Sketch the general trends (one big arrow across top and one down the side) for the first ionization energies on the periodic table 1b.

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

What are we going to learn today?

What are we going to learn today? UNIT3DAY4-LaB Page 1 UNIT3DAY4-LaB Tuesday, October 23, 2012 8:29 AM Vanden Bout/LaBrake CH301 WHY IS EVERYTHING SO DIFFERENT? MORE ON BONDING THEORIES UNIT 3 Day 4 Important Information LM22 DUE Th 9AM

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

Symmetry and Group Theory

Symmetry and Group Theory Symmetry and Group Theory Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education,

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information

Inorganic Exam 1 Chm October 2010

Inorganic Exam 1 Chm October 2010 Inorganic Exam 1 Chm 451 28 October 2010 Name: Instructions. Always show your work where required for full credit. 1. In the molecule CO 2, the first step in the construction of the MO diagram was to consider

More information

Constructing a MO of NH 3. Nitrogen AO symmetries are

Constructing a MO of NH 3. Nitrogen AO symmetries are Constructing a MO of NH 3 Nitrogen AO symmetries are To develop a MO scheme for NH 3 assume that only the 2s and2p orbitals of nitrogen interact with the hydrogen 1s orbitals (i.e., the nitrogen 1s orbital

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Unit3Day4-LaBrake. Important Information. Is the molecule CH 2 Cl 2? Vanden Bout/LaBrake/Crawford CH301

Unit3Day4-LaBrake. Important Information. Is the molecule CH 2 Cl 2? Vanden Bout/LaBrake/Crawford CH301 Unit3Day4-LaBrake Page 1 Unit3Day4-LaBrake Monday, October 21, 2013 11:32 AM Vanden Bout/LaBrake/Crawford CH301 WHY DOES A FROG FLOAT IN A MAGNETIC FIELS? MORE ON BONDING THEORIES UNIT 3 Day 4 Important

More information

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group. Concept of a basis A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds,

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

Molecular Orbital Theory. Which of the following has zero bond order? N ) O F. The bond order of superoxide ion [ O ] is ).5.5 3. Bonding electrons present in N molecule are ) 4 6 0 4. Bond order of H

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

CHEMISTRY 121 AUTUMN 2009 CHAPTER 8 & 9 PROBLEMS

CHEMISTRY 121 AUTUMN 2009 CHAPTER 8 & 9 PROBLEMS Dr. Fus AU 2009 EM 121 EMISTRY 121 AUTUMN 2009 APTER 8 & 9 PROBLEMS All questions listed below are problems taken from old hemistry 121 exams given here at The Ohio State University. Read hapters 8 and

More information

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2 Physical Chemistry Spring 2006, Prof. Shattuck Final Name Part Ia. Answer 4 (four) of the first 5 (five) questions. If you answer more than 4, cross out the one you wish not to be graded. 1) 8pts) Of absorption

More information

130 points on 6 pages + a useful page Circle the element/compound most likely to have the desired property. Briefly explain your choice

130 points on 6 pages + a useful page Circle the element/compound most likely to have the desired property. Briefly explain your choice Name Chemistry 35 Spring 212 Exam #2, March 3, 212 5 minutes 13 points on 6 pages + a useful page 7 1. Circle the element/compound most likely to have the desired property. Briefly explain your choice

More information

Chm September 2010

Chm September 2010 Inorganic Exam 1 Chm 451 21 September 2010 Name: Instructions. Always show your work where required for full credit. 1. (5 pts) The first ionization energies for the 2 nd row elements generally increase

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Version 188 Exam 2 mccord (51600) 1

Version 188 Exam 2 mccord (51600) 1 Version 188 Exam 2 mccord (51600) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l I l l 001 3.0 points

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

C 2 '' σ v ' C 2 ' "side on" "in-plane" 2S determine how the MO transforms under each symmetry operation, Figure 3.

C 2 '' σ v ' C 2 ' side on in-plane 2S determine how the MO transforms under each symmetry operation, Figure 3. Lecture Model nswers to Problems Self-study Problems / Exam Preparation determine the point group of o use VESPR (from st year) to determine that is planar, then use the flow chart. is the molecule linear?

More information

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Introduction Molecular orbitals result from the mixing of atomic orbitals that overlap during the bonding process allowing the delocalization

More information

character table, determine the reducible representation and irreducible components for the σ-bonding SALCs.

character table, determine the reducible representation and irreducible components for the σ-bonding SALCs. Chm 451 with Dr. Mattson Exam 2 Name: 27 October 2011 Earlier this month Dan Shechtman won the Nobel Prize in chemistry for his discovery of quasicrystals such as the one shown at right consisting of silver,

More information

The heart of group theory

The heart of group theory The heart of group theory. We can represent a molecule in a mathematical way e.g. with the coordinates of its atoms. This mathematical description of the molecule forms a basis for symmetry operation.

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit.

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. 1 1. Draw the molecular geometry and indicate any deviations from ideal VSEPR coordination angles.

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

CH 222 Sample Exam Exam I Name: Lab Section:

CH 222 Sample Exam Exam I Name: Lab Section: 222 Sample Exam Exam I Name: Lab Section: Part I: Multiple hoice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. Which of the following statements

More information

MOLECULAR ORBITAL DIAGRAM KEY

MOLECULAR ORBITAL DIAGRAM KEY 365 MOLECULAR ORBITAL DIAGRAM KEY Draw molecular orbital diagrams for each of the following molecules or ions. Determine the bond order of each and use this to predict the stability of the bond. Determine

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

2. Write the electron configuration notation and the electron dot notation for each: (a) Ni atom (b) Ni 2+ ion (c) Ni 3+ ion

2. Write the electron configuration notation and the electron dot notation for each: (a) Ni atom (b) Ni 2+ ion (c) Ni 3+ ion EXTRA HOMEWORK 2A 1. Predict whether each of the following types of matter will be bonded with ionic, covalent, or metallic bonds, and identify whether each will be composed of atoms, ions, or molcules

More information

Name (printed): Signature:

Name (printed): Signature: CHEM Lab Section Number: Name (printed): Signature: This exam consists of 36 questions all of equal value for a total of 225 points. Make sure that your test has all of the pages. Please read each problem

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

Inorganic Chemistry A. Cl and 37 Cl are and

Inorganic Chemistry A. Cl and 37 Cl are and S e l f - s t u d y e x e r c i s e s 1 Inorganic Chemistry A Self-study exercises Chapters 1 and 2 1. Calculate the value of A r for naturally occurring chlorine if the distribution of isotopes is 75.77%

More information

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds:

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds: Problem 1 (2 points) Part 1 a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions

More information

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Molecular Orbitals Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education, Inc.

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Chem 111 Exam #2 November 8, J h = c E = h E. ΔH = energies of bonds broken - energies of bonds formed SHOW ALL WORK

Chem 111 Exam #2 November 8, J h = c E = h E. ΔH = energies of bonds broken - energies of bonds formed SHOW ALL WORK General Chemistry I NAME: Answer Key Chem 111 Exam #2 November 8, 2013 Some Equations and Constants for your use: -18-2.18 10 J h = c E = h E n = = 2 n mv o ΔH = energies of bonds broken - energies of

More information

Molecular Orbital Approach to Bonding

Molecular Orbital Approach to Bonding Molecular Orbital Approach to Bonding Chemistry 362; spring 2019 Marcetta Y. Darensbourg, Professor Xuemei Yang, Graduate Assistant Kyle Burns, Graduate Assistant The following slides were modified from

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

2. (10%) Correct answers are given below. Every correct answer gives a student 1⅔=1.666 point. There are no negative points for incorrect answers

2. (10%) Correct answers are given below. Every correct answer gives a student 1⅔=1.666 point. There are no negative points for incorrect answers 1. (9%) There are 9 correct answers: (0,0), (1,-1), (1,0), (1,1), (2,-2), (2,-1), (2,0), (2,1), and (2,2). Each correct answer gives a student +1 point. All other answers are incorrect. Every incorrect

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

DESCRIPTIVE INORGANIC CHEMISTRY March 24, 2011 INSTRUCTIONS: PRINT YOUR NAME > NAME.

DESCRIPTIVE INORGANIC CHEMISTRY March 24, 2011 INSTRUCTIONS: PRINT YOUR NAME > NAME. DESCRIPTIVE INORGANIC CHEMISTRY QUIZ II March 24, 2011 INSTRUCTIONS: PRINT YOUR NAME > NAME. SHOW YOUR WORK FOR PARTIAL CREDIT THE LAST PAGE IS A Periodic Table Work 5 of these (40 pts) R = 0.08206 lit-atm/mol-k

More information

CHEM- 457: Inorganic Chemistry

CHEM- 457: Inorganic Chemistry CHEM- 457: Inorganic Chemistry Midterm I March 13 th, 2014 NAME This exam is comprised of six questions and is ten pages in length. Please be sure that you have a complete exam and place your name on each

More information

Chem 121 Exam 4 Practice Exam

Chem 121 Exam 4 Practice Exam Chem 121 Exam 4 Practice Exam 1. What is the correct electron configuration for bromine? b. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 4p 6 c. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 d. 1s 2 2s 2 2p 6 3s 2 3p

More information

130 points on 6 pages + a useful page 7

130 points on 6 pages + a useful page 7 Name KEY Chemistry 350 Spring 2012 Exam #2, March 30, 2012 50 minutes 130 points on 6 pages + a useful page 7 1. Circle the element/compound most likely to have the desired property. Briefly explain your

More information