The Chemical principles of Coloration

Size: px
Start display at page:

Download "The Chemical principles of Coloration"

Transcription

1 Chapter 2-3 Introduction The Chemical principles of Coloration A single atoms consists of a central core or nucleus which contains numbers of positively charged particles(protons) and uncharged particles(neutrons) together accounting for almost all the mass of the atom. 1 2 Electrolytes Electrolytes Electrolytes are compound made up of ions and are often referred to as ionic compounds. There are many simple electrolytes and the two most commonly used in coloration are - When a fiber is immersed in water a negative electrostatic charge develops on its surface. This charge repels any dye anions present in the solution, so that the fiber can not be dyed satisfactorily. 1) acl : a + + Cl - 2) a 2 S 4 (Glauber s salt) : 2a + + S owever, the dye bath also contains an electrolyte such as acl or a 2 S 4 a diffuse layer of positive sodium ions forms at the fiber surface. Water-soluble dyes are also electrolytes, but the colored part is very large and usually an anion, while the cation(a + ) is very small by comparison. Cellulose Fiber Cellulose Fiber 3 4

2 The Covalent Bond *interaction of a coordinativelyunsaturated transition metal with a C- bond The Covalent Bond **an electron-deficient chemical bond where three atoms share two electrons Covalent bond is a form of chemical bonding that is characterized by the sharing of pairs of electrons between atoms. The stable balance of attractive and repulsive forces between atoms when they share electrons is known as covalent bonding. Covalent bonding includes many kinds of interaction, including σ- bonding, π-bonding, metal-to-metal bonding, *agostic interactions, and **three-center two-electron bonds. The term covalent bond dates from In the molecule 2, the hydrogen atoms share the two electrons via covalent bonding. 5 6 *Sodium stearate : the most common soap. found in many types of solid deodorants, rubbers, latex paints, and inks. The Covalent Bond The Covalent Bond Carbon chains are often represented in the zig-zag fashion which is a two-dimensional representation of the tetrahedral arrangement of the four bonds of the carbon atoms in space zig-zag arrangement. When ionic groups are added to large hydrocarbon molecules in order to make them soluble, they may form a special kind of solution called a colloidal electrolyte. ; this molecule dissociates in water, but the large ions do not remain separate. * ydrocarbons are chemically unreactive and insoluble in water. 7 8

3 *an aggregate of surfactant molecules dispersed in a liquid colloid. ne of the snakes had seized hold of its own tail, and the form whirled mockingly before my eyes. As if by a flash of lightning I awoke. Friedrich August Kekulé ( ) The Covalent Bond Aromatic Compounds They cluster together to form special loosely knit spherical structures called *micelles, in which the insoluble hydrocarbon chains (the tails ) tend to associate together and form a hydrophobic (water-repelling ) environment with the ionic heads on the outer surface, keeping the micelle dissolved. Water-insoluble matter may dissolve within the micelle, suspended in the solution (ex. etergent act) - A C=C bond is shorter than a C C bond, but benzene is perfectly hexagonal all six carbon-carbon bonds have the same length, intermediate between that of a single and that of a double bond. - A better representation is that of the circular π bond in which the electron density is evenly distributed through a π-bond above and below the ring Aromatic Compounds Aromatic Compounds - All dye molecules contain aromatic ring structures. - The reactions of functional groups such as the carboxyl group or the amino group are noticeably different when they are linked to an aromatic ring and when they form part of an aliphatic molecule. - ne of important reaction in dye synthesis is that carried out using the amino(- 2 ) group attached to a benzene ring in phenyl amine (ex. aniline, diazo component) - iazotization reaction : a colorless aromatic base is diazotized with nitrous acid to form a diazonium salt. - Coupling reaction : iazonium salt react readily with an appropriate coupling component to form a dye molecule

4 Aromatic Compounds Color of yes It is more usual in dye molecules to find fused rings, such as naphthalene, or anthraquinone, on which many vat and disperse dyes are based. - The physiological sensation of color arises when an object does not reflect all the incident white light falling on it. - Some of the light energy is absorbed and the remainder is reflected and perceived color. Absorb Blue and appears Yellow-range (complementary color : Blue range ) Violet: nm Indigo: nm Blue: nm Green: nm Yellow: nm range: nm Red: nm Violet avy Blue Green Molecular rbital(m) Theory E = hc / λ Color of yes Color of yes LUM - the molecular orbital picture for the hydrogen molecule consists of one bonding σ M, and a higher energy antibonding σ* M. - When the molecule is in the ground state, both electrons are paired in the lower-energy bonding orbital this is the ighest ccupied Molecular rbital (M). The antibonding σ* orbital, in turn, is the Lowest Unoccupied Molecular rbital (LUM). M 15 - If the molecule is exposed to light of a wavelength with energy equal to E, the M-LUM energy gap, this wavelength will be absorbed and the energy used to bump one of the electrons from the M to the LUM in other words, from the σ to the σ* orbital. - This is referred to as a σ - σ* transition. E for this electronic transition is 258 kcal/mol, corresponding to light with a wavelength of 111 nm. 16

5 Color of yes estructive interference Constructive interference Color of yes - Where UV-vis spectroscopy becomes useful to most organic and biological chemists is in the study of molecules with conjugated pi systems. 3 nodes, 0 constructive interactions node - When a double-bonded molecule such as ethylene absorbs light, it undergoes a π - π* transition. - Because π- π* energy gaps are narrower than σ - σ* gaps, ethylene absorbs light at 165 nm - a longer wavelength than molecular hydrogen 17 The four atomic (2p z ) orbitals have combined to form four π molecular orbitals. node node node 2 nodes, 1 constructive interactions 1 nodes, 2 constructive interactions 0 nodes, 3 constructive interactions 18 Color of yes E = hc / λ - In these groups, the energy gap for π -π* transitions is smaller than for isolated double bonds, and thus the wavelength absorbed is longer. Color of yes - As conjugated pi systems become larger, the energy gap for a π - π* transition becomes increasingly narrow, and the wavelength of light absorbed correspondingly becomes longer. - Comparing this M picture to that of ethylene(isolated pi-bond example), M-LUM energy gap is indeed smaller for the conjugated system. 1,3-butadiene absorbs UV light with a wavelength of 217 nm. - The absorbance due to the π - π* transition in 1,3,5-hexatriene, for example, occurs at 258 nm, corresponding to a E of 111 kcal/mol. - Molecules or parts of molecules that absorb light strongly in the UV-vis region are called chromophores 19 - In molecules with extended pi systems, the M-LUM energy gap becomes so small that absorption occurs in the visible rather then the UV region of the electromagnetic spectrum. 20

6 Color of yes Color of yes - The conjugated pi system in 4-methyl-3-penten-2-one gives rise to a strong UV absorbance at 236 nm due to a π - π* transition. - owever, this molecule also absorbs at 314 nm. This second absorbance is due to the transition of a nonbonding (lone pair) electron on the oxygen up to a π* antibonding M: n - π* transition. - β-carotene, the compound responsible for the orange color of carrots, has an extended system of 11 conjugated π bonds. - β-carotene absorbs light with wavelengths in the blue region of the visible spectrum while allowing other visible wavelengths mainly those in the red-yellow region - to be transmitted. This is why carrots are orange. - The nonbonding (n) M s are higher in energy than the highest bonding p orbitals, so the energy gap for an n - π* transition is smaller that that of a π - π* transition and thus the n - π* peak is at a longer wavelength. - In general, n - π* transitions are weaker (less light absorbed) than those due to π - π* transitions E = hc / λ Color of yes Color of yes - The sigma to sigma* transition requires an absorption of a photon with a wavelength which does not fall in the UV-vis range. - Thus, only pi to pi* and n to pi* transitions occur in the UVvis region are observed E = hc / λ - The absorption of light energy by colorant causes an electron to jump into a higher energy level, thus bringing the dye molecule into an excited state. - It is easier for an electron to jump into an excited state from a double bond, where it exists as π electron. - Less energy still is required for the transition if alternate single and double bonds exist in the same molecule. Consequently, as the excitation of an electron becomes easier, the required spectral energy moves from the invisible ultraviolet into the longer wavelengths of the visible spectrum

7 Color of yes Color of yes - The simplest Azo molecule is Phenylazobenzene which has weak yellow color. - Phenylazobenzene is called the chromospheres group of Azo dyes - and the color of the molecule may be modified and increased in intensity of color by introducing a variety of smaller groups into the molecule is called Auxochrome (X,Y,Z & R 1,R 2,R 3 ). X Phenylazobenzene Y Z R 3 Azo dye R 1 R C S 3a C Color of yes anthracene-9,10-dione (anthraquinone) Vander Waals forces and hydrophobic bonding ye group (C 12 25) S 3a Aliphatic Chain Solubilizing group - Anthraquinone contains two carbonyl groups in a conjugated system - It absorbs ultraviolet light weakly and appears cream in color. - Replacement of hydrogen atoms in the outer rings by suitable auxochromes groups based on nitrogen, oxygen or sulfur brings about the development of strong color. C.I. isperse Blue 56 - The large size of dye molecules contributes to the general attractive forces that they exert on surrounding molecules: van der Waals forces. - ydrophobic groups in molecules tend to associate together and escape from an aqueous environment from a dye bath to a fiber. Bond Type Relative Strength Van der Waals 1.0 ydrogen 3.0 Salt link 7.0 Covalent Such compounds are the basis of many vat and disperse dyes. Indigo 27 28

8 a 3S S 3a a 3S S 3a 3C C Vander Waals forces and hydrophobic bonding ydrogen Bonds 2C 2C 2C 2C 2C - van der Waals forces are individually weak but their collective effect in large organic molecules is considerable. - They originate as weak interactions between the nuclei of the constituent atoms of one molecule with the electrons of another. - They operate only when dye and fiber molecules are in close proximity to each other, when they can become the dominant force of attraction. - A hydrogen bond is the attractive interaction of a hydrogen atom with an electronegative atom, such as nitrogen, oxygen or fluorine that comes from another molecule or chemical group. - Most dye and fiber molecules possess groups with hydrogen bonding capability. Consequently hydrogen bonds are involved in dye fiber attractions ye aggregation Covalent bonding Cell R Cell Cl R Cell Cl R Cell Individual dye molecules are also attracted to each other through van der Waals forces and hydrogen bonds with the result that many dyes exist in solution as large molecular clusters called dye aggregates. ( colloidal electrolytes) Covalent bonding between dye and celluosic fibers is achieved by the incorporation in the dye molecule of special reactive groups, linked to the rest of the molecule through a bridging group. 1) The large size of the dye aggregates can lead to a drastic reduction in the rate of fiber penetration, or in some cases to the precipitation of a dye from solution after prolonged storage. 2) The addition of electrolyte to a dye bath can increase the dye aggregation but the rise in temperature decrease the dye aggregation. 3) A certain degree of aggregation can be beneficial since it tends to increase the attraction of the dye for the fiber. S C C S a Cell S C C 2 Cell S C C + a 2S S C C Cell S C C Cell 31 32

9 Acid and Basic groups in dyes and fibers p Values Cl + Cl -a + a - The sulfonic acid group in a dye molecule will react with sodium hydroxide to form the sodium salt of dye (-S 3 a). - a basic group in a large molecule, Such as a fiber molecule, will react with an acidic group and form a salt. (- 3+ ) a 3 S a 3 S = = CI Acid Yellow 23 Pyrazolone (igh light fastness) Ca S 3 a CC 3 a 3 S S 3 a = CI Acid Red 138 S = ye 34 S S Insoluble Alkali reduction Acid oxidation < Sulfur dyeing > a + + S S a + Soluble and substantive Redox reactions Redox reactions xidation is the loss of electrons or an increase in oxidation state by a molecule, atom, or ion. Insoluble pigment a Alkali reduction Acid oxidation Solubilized sodium leuco vat Reduction is the gain of electrons or a decrease in oxidation state by a molecule, atom, or ion. When a compound is oxidized it gains oxygen and reduction is a substance can gaining hydrogen atoms. - Vat dyes such as indigo and compounds derived from anthraquinone are applied after the temporary reduction of two carbonyl groups in a conjugated chain; this converts the dye into a colorless water-soluble form. - The conversion is carried out using a strong reducing agent, and in the reaction the two oxygen atoms become reduced to - called leuco vat acid, and is applied from an alkaline solution nce on the fiber it can be re-oxidized back to the insoluble carbonyl form by air or by the use of an oxidizing agent. 36

4.3A: Electronic transitions

4.3A: Electronic transitions Ashley Robison My Preferences Site Tools Popular pages MindTouch User Guide FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure Lesmahagow High School CfE Advanced Higher Chemistry Unit 2 Organic Chemistry and Instrumental Analysis Molecular Orbitals and Structure 1 Molecular Orbitals Orbitals can be used to explain the bonding

More information

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT TWO BOOKLET 1 Molecular Orbitals and Hybridisation In the inorganic unit we learned about atomic orbitals and how they could be used to write the electron

More information

Lec.1 Chemistry Of Water

Lec.1 Chemistry Of Water Lec.1 Chemistry Of Water Biochemistry & Medicine Biochemistry can be defined as the science concerned with the chemical basis of life. Biochemistry can be described as the science concerned with the chemical

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline Chapter 2 Polar Covalent Bonds; Acids and Bases Chapter utline I. Polar covalent bonds (Sections 2.1 2.3). A. Electronegativity (Section 2.1). 1. Although some bonds are totally ionic and some are totally

More information

UV / Visible Spectroscopy. Click icon to add picture

UV / Visible Spectroscopy. Click icon to add picture UV / Visible Spectroscopy Click icon to add picture Spectroscopy It is the branch of science that deals with the study of interaction of matter with light. OR It is the branch of science that deals with

More information

Chem 263 Oct. 12, 2010

Chem 263 Oct. 12, 2010 Chem 263 ct. 12, 2010 Alkyl Side Chain xidation Reaction If the carbon directly attached to the aromatic ring has > 1 hydrogen attached to it, it can be oxidized to the corresponding carboxylic acid with

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline rganic Chemistry 9th Edition McMurry SLUTINS MANUAL Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurrysolutions-manual/ rganic Chemistry 9th Edition McMurry

More information

Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy Conjugated Dienes and Ultraviolet Spectroscopy Key Words Conjugated Diene Resonance Structures Dienophiles Concerted Reaction Pericyclic Reaction Cycloaddition Reaction Bridged Bicyclic Compound Cyclic

More information

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation rganic hemistry otes by Jim Maxka hapter 14: Dienes and onjugation Topics Dienes: aming and Properties onjugation 1,2 vs 1,4 addition and the stability of the allyl cation Diels Alder eaction Simple rbital

More information

Organic Chemistry: CHEM2322

Organic Chemistry: CHEM2322 Conjugated Systems Organic Chemistry: We met in Chem 2321 unsaturated bonds as either a C=C bond or C C bond. If these unsaturated bonds are well separated then they react independently however if there

More information

Chapter 16 Aromatic Compounds. Discovery of Benzene

Chapter 16 Aromatic Compounds. Discovery of Benzene Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Relation between Color and constitution

Relation between Color and constitution Relation between Color and constitution Electro magnetic radiation Light is electromagnetic radiation (that is, it has both electrical and magnetic components) vibrating in transverse wave packets, or

More information

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1 Chapter 3: utline-1 Molecular Nature of Water Noncovalent Bonding Ionic interactions van der Waals Forces Thermal Properties of Water Solvent Properties of Water ydrogen Bonds ydrophilic, hydrophobic,

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

Chapter 14: Conjugated Dienes

Chapter 14: Conjugated Dienes Chapter 14: Conjugated Dienes Coverage: 1. Conjugated vs Nonconjugated dienes and Stability 2. MO picture of 1,3-butadiene 3. Electrophilic addition to Dienes 4. Kinetic vs Thermodynamic Control 5. Diels-Alder

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water

Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water Multiple Choice Questions 1. The atomic number of an atom is A. the number of protons in the atom. B. the number of neutrons in the

More information

Definition: An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer.

Definition: An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. 3 Bonding Definition An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form +ve ions. on-metal atoms gain

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Ch. 7- Periodic Properties of the Elements

Ch. 7- Periodic Properties of the Elements Ch. 7- Periodic Properties of the Elements 7.1 Introduction A. The periodic nature of the periodic table arises from repeating patterns in the electron configurations of the elements. B. Elements in the

More information

Four elements make up about 90% of the mass of organisms O, C, H, and N

Four elements make up about 90% of the mass of organisms O, C, H, and N Chapter 2 Chemistry of Life 2-1 Composition of Matter -Mass- quantity of matter- use a balance to measure mass -Weight- pull of gravity on an object- use a scale Elements -cannot be broken down into simpler

More information

CS 2, HCN, BeF 2 Trigonal planar. Cl 120 BF 3, AlCl 3, SO 3, NO 3-, CO NCl 3,PF 3,ClO 3,H 3 O + ...

CS 2, HCN, BeF 2 Trigonal planar. Cl 120 BF 3, AlCl 3, SO 3, NO 3-, CO NCl 3,PF 3,ClO 3,H 3 O + ... Shape of molecules Name No bonding pairs No lone pairs Diagram Bond angle Examples linear 2 0 l Be l 180 2, S 2, N, Be 2 Trigonal planar 3 0 l l 120 B 3, All 3, S 3, N 3-, 2-3 B Tetrahedral 4 0 109.5 Sil

More information

CHEM 261 Notes Nov 22, 2017 REVIEW:

CHEM 261 Notes Nov 22, 2017 REVIEW: 155 CEM 261 Notes Nov 22, 2017 REVIEW: Recall how we can show the energy levels of the atomic orbitals of C. If the C is sp 2 hybridized, two of the 2p orbitals combine with the 2s orbital to form two

More information

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases.

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases. digitalteachers.co.ug Chemical bonding This chapter teaches the different types and names of bonds that exist in substances that keep their constituent particles together. We will understand how these

More information

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Sigma and Pi Bonds: All single bonds are sigma(σ), that

More information

What happens when methanamine reacts with FeCl 3? Methylamine in water reacts with FeCl 3 to givebrown precipitate of hydrated ferric oxide:

What happens when methanamine reacts with FeCl 3? Methylamine in water reacts with FeCl 3 to givebrown precipitate of hydrated ferric oxide: What happens when methanamine reacts with FeCl 3? Methylamine in water reacts with FeCl 3 to givebrown precipitate of hydrated ferric oxide: Due to the electron donating inductive or +I effect of CH 3

More information

Chapter 7. Periodic Properties of the Elements. Lecture Outline

Chapter 7. Periodic Properties of the Elements. Lecture Outline Chapter 7. Periodic Properties of the Elements Periodic Properties of the Elements 1 Lecture Outline 7.1 Development of the Periodic Table The periodic table is the most significant tool that chemists

More information

CHEM J-9 June 2012

CHEM J-9 June 2012 CEM1901 2012-J-9 June 2012 Explain, with the aid of a diagram labelling all the key components, how sodium stearate (C 17 35 CNa) can stabilise long-chain non-polar hydrocarbons ( grease ) in water. Marks

More information

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review Chemistry: The Central Science Chapter 16: Acid-Base Equilibria 16.1: Acids and Bases: A Brief Review Acids have a sour taste and cause certain dyes to change color Base have a bitter taste and feel slippery

More information

Chapter 20 Amines-part 2

Chapter 20 Amines-part 2 Reactions of Amines Lone pair on the nitrogen directs the chemistry of amines Chapter 20 Amines-part 2 The nitrogen lone pair can also make a carbon nucleophilic by resonance Amines can also activate carbons

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds C-C single bond lkene Diene C=C double bonds Conjugate

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

Describe the ionic bond as the electrostatic attraction between oppositely charged ions

Describe the ionic bond as the electrostatic attraction between oppositely charged ions 4.1 Ionic Bonding 4.1.1 - Describe the ionic bond as the electrostatic attraction between oppositely charged ions Ions are formed when electrons are transferred from a metal atom to a non-metal atom in

More information

Lecture 8 MOs and Benzene H H H H

Lecture 8 MOs and Benzene H H H H Lecture 8 MOs and Benzene b February 11, 2016 First Midterm Exam When: Wednesday, 2/17 When: 7-9 PM (please do not be late) Where: WEL 3.502 enter from Inner Campus Drive What: Covers material through

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

I Write the reference number of the correct answer in the Answer Sheet below.

I Write the reference number of the correct answer in the Answer Sheet below. (2016) Nationality No. CHEMISTRY Name (Please print full name, underlining family name) Marks I Write the reference number of the correct answer in the Answer Sheet below. (1) Which of the atoms 1) to

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Molecular geometry. Multiple Bonds. Examples and Questions. Identify procane (an aesthetic) Larger Covalent Molecules. S h a p e

Molecular geometry. Multiple Bonds. Examples and Questions. Identify procane (an aesthetic) Larger Covalent Molecules. S h a p e Molecular Geometry o e Pairs (Lewis Structure) Arrangement of Electron Pairs o of Bond Pairs o of Lone Pairs Molecular geometry Examples Linear Bel,, - The valence shell electron pair repulsion model (VSEPR

More information

Homework 08 - Bonding Theories & IMF

Homework 08 - Bonding Theories & IMF HW08 - Bonding Theories & IMF This is a preview of the published version of the quiz Started: Jun 4 at 11:4am Quiz Instructions Homework 08 - Bonding Theories & IMF Question 1 A sigma bond... stems from

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Chemistry. for the life and medical sciences. Mitch Fry and Elizabeth Page. second edition

Chemistry. for the life and medical sciences. Mitch Fry and Elizabeth Page. second edition hemistry for the life and medical sciences Mitch Fry and Elizabeth Page second edition ontents Preface to the second edition Preface to the first edition about the authors ix x xi 1 elements, atoms and

More information

Chapter 8 Chemical Bonding

Chapter 8 Chemical Bonding Chapter 8 Chemical Bonding Types of Bonds Ionic Bonding Covalent Bonding Shapes of Molecules 8-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1 Two

More information

California State Polytechnic University, Pomona

California State Polytechnic University, Pomona alifornia State Polytechnic University, Pomona 2-1 Dr. Laurie S. Starkey, rganic hemistry M 314, Wade hapter 2: Structure and Physical Properties of rganic Molecules hapter utline 1) rbitals and Bonding

More information

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing Chem 263 ct. 6, 2009 lectrophilic Substitution of Substituted Benzenes Resonance ffect Inductive ffect C=C, π system Single bonds, σ Strong Weak e - donating Activate Activate ortho and para directing

More information

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 ) The branch of science which deals with the interaction of electromagnetic radiation with matter is called spectroscopy The energy absorbed or emitted in each transition corresponds to a definite frequency

More information

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Bio-elements Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Most of the chemical components of living organisms

More information

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions Structure of rganic Molecules Ref. books: 1. A text book of rganic Chemistry - B.S. Bahl and Arun Bahl 2. rganic Chemistry - R.T. Morrison and R. N. Boyd Atom: The smallest part of an element that can

More information

Directions: Please choose the best answer choice for each of the following questions.

Directions: Please choose the best answer choice for each of the following questions. Directions: Please choose the best answer choice for each of the following questions. 1. Kevin is listing the similarities between metallic and ionic bonds for a laboratory project. Which similarity regarding

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

The Periodic Table consists of blocks of elements

The Periodic Table consists of blocks of elements The Periodic Table consists of blocks of elements s block d block p block There is a clear link between the Periodic Table and the electronic configuration of an element 1s 2s 2p 3s 3p 4s 3d 4p 1s ATOMIC

More information

Full file at Chapter 2 Water: The Solvent for Biochemical Reactions

Full file at   Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Summary Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens.

More information

Bio10 Cell and Molecular Lecture Notes SRJC

Bio10 Cell and Molecular Lecture Notes SRJC Basic Chemistry Atoms Smallest particles that retain properties of an element Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Isotopes Atoms of an element with different

More information

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2 17 Alcohols General formula alcohols n 2n+1 Naming Alcohols These have the ending -ol and if necessary the position number for the group is added between the name stem and the ol If the compound has an

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

CHERRY HILL TUITION OCR (SALTERS) CHEMISTRY A2 PAPER Answer all the questions. O, is formed in the soil by denitrifying bacteria. ...

CHERRY HILL TUITION OCR (SALTERS) CHEMISTRY A2 PAPER Answer all the questions. O, is formed in the soil by denitrifying bacteria. ... 2 Answer all the questions. 1 itrous oxide gas, 2, is formed in the soil by denitrifying bacteria. (a) Give the systematic name for nitrous oxide. ne model of the bonding in nitrous oxide includes a dative

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Intermolecular Forces of Attraction

Intermolecular Forces of Attraction Name Unit Title: Covalent Bonding and Nomenclature Text Reference: Pages 189-193 Date Intermolecular Forces of Attraction Intramolecular vs. Intermolecular So far in our discussion of covalent bonding,

More information

Chimica Farmaceutica

Chimica Farmaceutica Chimica Farmaceutica Drug Targets Why should chemicals, some of which have remarkably simple structures, have such an important effect «in such a complicated and large structure as a human being? The answer

More information

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 3: Atomic Structure, Explaining the Properties of Elements Trends to know (and be

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø `1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø Element pure substance only one kind of atom Ø Living things

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

3.10 Benzene : Aromatic Hydrocarbons / Arenes

3.10 Benzene : Aromatic Hydrocarbons / Arenes 3.10 Benzene : Aromatic ydrocarbons / Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six

More information

The Molecules of Life Chapter 2

The Molecules of Life Chapter 2 The Molecules of Life Chapter 2 Core concepts 1.The atom is the fundamental unit of matter. 2.Atoms can combine to form molecules linked by chemical bonds. 3.Water is essential for life. 4.Carbon is the

More information

6.1.1 Aromatic Compounds

6.1.1 Aromatic Compounds 6.1.1 Aromatic ompounds There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon ams with delocalised

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions Understand the arrangements, movements and energy of the particle in each of the 3 states of matter : solid, liquid and gas Describe how the inter-conversion of solids, liquids and gases are achieved and

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis In photosynthesis, green plants absorb energy from the sun and use the energy to drive an endothermic reaction, the reaction between carbon dioxide and water that produces glucose

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c)

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c) Practice Exercises 16.1 Conjugate acid base pairs (a), (c), and (f) (b) The conjugate base of I is I (d) The conjugate base of N 2 is N 2 and the conjugate base of N 4 is N 3 (e) The conjugate acid of

More information

Theoretically because there are 3 double bonds one might expect the amount of energy to be 3 times as much.

Theoretically because there are 3 double bonds one might expect the amount of energy to be 3 times as much. 18. Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon ams with delocalised bonding.

More information

Happy Valentines Day

Happy Valentines Day Lecture 8 MOs and Benzene appy Valentines Day February 14, 2019 First Midterm Exam When: Wednesday, 2/20 When: 7-9 PM (please do not be late) Where: Painter 3.02!!! What: Covers material through Thursday

More information

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES 1. Atomic wave functions and orbitals. LCAO. The important thing to know is that atomic orbitals are represented by wave functions, and they have

More information

3.1 - The Periodic Table

3.1 - The Periodic Table 3.1 - The Periodic Table 3.1.1 - Describe the arrangement of elements in the periodic table in order of increasing atomic number Elements in the periodic table are arranged in order of increasing atomic

More information

Chemistry of Life 9/16/15. Chemistry s Building Block: The Atom. Ch 2 BIOL 160

Chemistry of Life 9/16/15. Chemistry s Building Block: The Atom. Ch 2 BIOL 160 Ch 2 Chemistry of Life BIOL 160 1 Chemistry s Building Block: The Atom Structural Hierarchy (reviewed) Atom Molecule Organelle Cell Tissue Organ The atom is the fundamental unit of matter. Elements Chemistry

More information

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY

ULTRAVIOLET SPECTROSCOPY or ELECTRONIC SPECTROSCOPY ULTRAVILET SPECTRSCPY or ELECTRNIC SPECTRSCPY S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600036, INDIA Sanka@iitm.ac.in Absorption of electromagnetic radiation

More information

Review Outline Chemistry 1B, Fall 2012

Review Outline Chemistry 1B, Fall 2012 Review Outline Chemistry 1B, Fall 2012 -------------------------------------- Chapter 12 -------------------------------------- I. Experiments and findings related to origin of quantum mechanics A. Planck:

More information

Chem 263 Notes Sept. 26, 2013

Chem 263 Notes Sept. 26, 2013 Chem 263 Notes Sept. 26, 2013 Example of Predicting Stereochemistry The following example uses 2Z, 4E-hexadiene (diene) and cyclopentene (dienophile) to produce an endo product. As shown before with the

More information

C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O

C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O Sample Question Solutions for the Individual Round Test 1. Glucose is the most basic sugar involved in human metabolism. Its structure is provided below a. The overall reaction of glucose metabolism is

More information

Topic 3.2: Other Trends (Physical and Chemical)

Topic 3.2: Other Trends (Physical and Chemical) Topic 3.2: Other Trends (Physical and Chemical) Essential Ideas: 3.2: Elements show trends in their physical and chemical properties across periods and down groups Physical/ Chemical Properties Chemical

More information

Advanced Analytical Chemistry

Advanced Analytical Chemistry 84.514 Advanced Analytical Chemistry Part III Molecular Spectroscopy (continued) Website http://faculty.uml.edu/david_ryan/84.514 http://www.cem.msu.edu/~reusch/virtualtext/ Spectrpy/UV-Vis/spectrum.htm

More information

Organic Chemistry. February 18, 2014

Organic Chemistry. February 18, 2014 Organic Chemistry February 18, 2014 What does organic mean? Organic Describes products Grown through natural biological process Without synthetic materials In the 18 th century Produced by a living system

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

MULTIPLE CHOICE 2 points each

MULTIPLE CHOICE 2 points each Name: Date: Score: / 110 Chapter 1/ TEST 1 OPEN BOOK KEY Organic Chemistry MULTIPLE CHOICE 2 points each 1. An atom of which element would have an electron configuration of 1s 2 2s 2 2p 6 3s 2 3p 1? a.

More information

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan 1 Saba Al Fayoumi Tamer Barakat Dr. Mamoun Ahram + Dr. Diala Abu-Hassan What is BIOCHEMISTRY??? Biochemistry = understanding life Chemical reactions are what makes an organism (An organism is simply atoms

More information

Ch 7: Periodic Properties of the Elements

Ch 7: Periodic Properties of the Elements AP Chemistry: Periodic Properties of the Elements Lecture Outline 7.1 Development of the Periodic Table The majority of the elements were discovered between 1735 and 1843. Discovery of new elements in

More information