Thomas Fischer Weiss. Cellular Biophysics. Volume 1: Transport. A Bradford Book The MIT Press Cambridge, Massachusetts London, England

Size: px
Start display at page:

Download "Thomas Fischer Weiss. Cellular Biophysics. Volume 1: Transport. A Bradford Book The MIT Press Cambridge, Massachusetts London, England"

Transcription

1 Thomas Fischer Weiss Cellular Biophysics Volume 1: Transport A Bradford Book The MIT Press Cambridge, Massachusetts London, England

2 1996 Massachusetts Institute of Technology All rights reserved. No part of this publication may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from. the publisher. This book was set in Lucida Bright by Windfall Software using ZzT X and was printed and bound in the United States of America. library of Congress Cataloging-in-Publication Data Weiss, Thomas Fischer Cellular biophysics I Thomas Fischer Weiss v. <1- > ; em. Includes bibliographical references and index. Contents: v. 1. Transport- v. 2. Electrical properties. ISBN (v. 1).- ISBN (v. 2) 1. Cell physiology. 2. Biophysics. 3. Biological transport. 4. Electrophysiology. I. Title. QH63l.W '6041-dcZO RS WEI HD H CIP To Aurice B, Max, Elisa, and Eric

3 Contents Preface xix ix Units, Physical Constants, and Symbols xxvii 1 Introduction to Membranes 1 2 Introduction to Transport 49 3 Diffusion 83 4 Solvent Transport Concurrent Solute and Solvent Transport Carrier-Mediated Transport Ion Transport and Resting Potential Cellular Homeostasis 571 List of Figures 645 List of Tables 659 Contents of Volume Index 669

4 Preface xix Subject and Orientation of the Book Expected Background of the Reader A Note to the Instructor xx Preparation of the Manuscript Personal Perspective Acknowledgments References xxvi xxiv xxiii Units, Physical Constants, and Symbols Units xxvii xxi xxvii xix Base SI Units xxvii Derived SI Units xxvii Decimal Multiples and Submultiples of SI Units Commonly Used Non-SI Units and Conversion Factors xxviii Physical Constants xxix Fundamental Physical Constants xxix Physical Properties of Water xxix Atomic Numbers and Weights xxx Symbols xxxii References xxxv xx xxviii

5 xi X 1 2 Introduction to Membranes Historical Perspective Fundamental Concepts of Living Organisms Emerging Concepts of Cell Membranes Survey of Cell Structure Molecules Atoms, Elements, and Bonds Organic Molecules Cell Membrane Structure Contents of Membranes-Lipids, Proteins, and Carbohydrates The Ubiquitous Phospholipid Bilayer Membrane Fluidity Disposition of Membrane Proteins 40 Exercises 44 References 46 Introduction to Transport Introduction Cell Requirements Transport in the Body Illustrated Using a Potato Composition of a Potato Digestion of a Potato Structure of the Small Intestine Structure of Enterocytes Final Stage of Digestion Sugar Transport into and out of Enterocytes Sugar Transport into and out of the Circulatory System Sugar Transport into Cells and Utilization of Sugars 2.4 Cellular Transport Functions Maintenance of Intracellular Composition Water Homeostasis Secretion and Absorption Survey of Transport Mechanisms Methods for Studying Membrane Transport Physicochemical Methods Preparations Summary 79 Exercises 80 References 81 Diffusion Macroscopic Description Background Diffusion Variables Fick's First Law The Continuity Equation Fick's Second Law: The Diffusion Equation Diffusion with Convection and Chemical Reactions Postscript on Diffusion: The Second Law of Thermodynamics Microscopic Model Introduction The Microscopic Basis for Fick's First Law The Microscopic Space-Time Evolution of Particle Location: The Binomial Distribution The Macroscopic Space-Time Evolution of Particle Location: The Gaussian Distribution Concentration as a Statistical Average of the Number of Particles per Unit Volume The Diffusion Coefficient Solute in a Simple Fluid Solute in a Polymer Equivalent Diffusion "Force" Diffusion Processes Time-Invariant Diffusion Processes Time-Varying Diffusion Processes Membrane Diffusion Homogeneous Membranes Porous Membranes 124

6 xii xiii Two-Compartment Diffusion Derivation for a Thin Membraneh T1hi3? M mbrane Conditions for the Validity of t e n- e l 133 Approximation: A Specific Examp e 3.8 Measurements of Diffusion Through Cellular Membranes Overton's Rules Methods A Seminal Study The Dissolve-Diffuse Mechanism The Water Channel Hypothesis Appendix 3.1 Moments of the Binomial Distri~uti.on Appendix 3.2 Moments of the Gaussian Distnbutwn Appendix 3.3 Solution of the Homogeneous Diffusion Equation 156 Exercises 158 Problems 162 References 1 79 Solvent Transport Introduction Hydraulic Pressure Osmotic Pressure Historical Perspective The Van't Hoff Law of Osmotic Pressure Osmotic and Hydraulic Flow in Porous Media Differential Laws of Solvent Transport Conservation of Mass Steady-State Solvent Transport Steady-State Solvent Transport Through Thin Membranes Macroscopic Relations Microscopic Mechanisms of Water Transport for Simple Membrane Models The Physical Basis of Osmotic Pressure and Osmosis Some Proposed Mechanisms General Conclusions Concerning the Mechamsm of Osmotic Pressure and of Osmosis An Intuitive Explanation of Osmotic Pressure and Osmosis Primary Responses of Cells to Changes in Osmotic Pressure Osmotic Equilibrium of Cells Kinetics of Volume Changes of Cells in Response to Osmotic Pressure Changes The Complexity of Cellular Volume Control Molecular Mechanisms of Water Transport Through Cellular Membranes Osmotic and Diffusive Permeability of Membranes Molecular Biology of Water Channels Summary of Water Transport Mechanisms in Cell Membranes 247 Appendix 4.1 Thermodynamic Relations for an Ideal, Dilute Solution 248 Appendix 4.2 Poiseuille's Law 251 Exercises 253 Problems 258 References 2 72 Concurrent Solute and Solvent Transport Introduction Concurrent, Uncoupled Transport of Solute and Solvent Derivation of Equations Solutions for a Cell with Constant Surface Area Measurements Inadequacies of Uncoupled Flow Equations Conceptual Problems The Distinction Between Uncoupled and Coupled Transport Indistinguishable and Impermeant Solutes Diffusion and Convection Through a Porous Membrane: Indistinguishable Solute Derivation of Flux Equations The Linearized Equation of Coupled Flow for an "Indistinguishable" Solute 299

7 xiv XV The Kedem-Katchalsky Equations for Linear, Coupled Flow Through a Membrane Macroscopic Laws of Transport Microscopic Mechanisms of Transport of Water and a Permeant Solute in Simple Membrane Models 305 Coupled Solute and Solvent Transport for a Cell Theory Measurements Conclusions 315 Exercises 316 Problems 320 References 329 carrier-mediated Transport Introduction Distinguishing Characteristics The Notion of a Carrier 339 Chemical Reactions: A Macroscopic Description Chemical Reactions of Low Order Reaction Rates Discrete Diffusion Through Membranes carrier Models Simple, Symmetric, Four-State Carrier Model with One Solute Simple, Symmetric, Six-State Carrier Model With Two Ligands Introduction to Active Transport General, Four-State Carrier Model Other Carrier Models Hexose Transport in Cells Experimental Measurements and Methods for Estimatmg the Kinetic Parameters Applicability of Carrier Models to Measurements from Cells Conclusions Regulation of Glucose The Discovery of the Role of Insulin: A Historical Perspective Glucose Absorption, Utilization, Storage, and Control Summary Molecular Biology of Glucose Transporters Density of Glucose Transporters Isolation of the Glucose Transporter Structure of Glucose Transporters Exercises Problems Recruitment of Glucose Transporters by Insulin References 440 Ion Transport and Resting Potential Introduction The Importance of Ion Transport The Maintained Difference of Potential and Concentration Across Cellular Membranes Continuum Electrodiffusion Electrodiffusion Equations Electrodiffusive Equilibrium Condition Electroneutrality Steady-State Conditions The State of Intracellular Ions Macroscopic Model of Passive Ion Transport Derivation from Microscopic Models Properties of the Macroscopic Model Resting Potential of Uniform Isolated Cells Modell: A Single Permeant Ion (the Bernstein Model) Dependence of Resting Potential on Ion Concentration Model 2: Multiple Permeant Ions Model 3: Independent Passive Voltage-Gated Ion Channels Molecular Basis of Passive Ion Transport Through Channels 495

8 xvii xvi Instability of the Resting Potential Instability of the Cell Volume Active Ion Transport Model 4: Model of Resting Potential, Including Both Active and Passive Transport Properties of Active Transport of Ions by the Sodium- Potassium Pump (Na+ - K+)-ATPase Comparison of Active and Passive Transport 527 Appendix 7.1 The Goldman Constant Field Model 528 Derivation of the Voltage-Current Characteristic 529 Properties of the Voltage-Current Characteristic 530 The Unidirectional Flux Ratio 531 The Goldman Equation for the Resting Potential 532 Exercises 533 Problems 541 References Cellular Homeostasis Introduction Volume Regulation Background Volume Regulatory Responses Conclusions General Equations for Homeostasis Kinetic Equations Quasi-Equilibrium Equations Solutions of the Equations for Homeostasis Homeostasis for Simple Cell Models Solute Flux Equations Nonelectrolyte Solutes Ionic Solutes Summary Inventory of Homeostatic Mechanisms Transport Mechanisms Intracellular Solute-Binding/Release Mechanisms Transporter Regulatory Mechanisms Transport Mechanisms in Selected Cell Types Uniform Isolated Cells Cells in an Epithelium Electrically Excitable Cells General Comments on the Mechanisms of Volume Regulation 619 Exercises 622 Problems 624 References 635 List of Figures 645 List of Tables 659 Contents of Volume Index 669

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

There should be nothing new for you in this lecture. If there is, stay for office hours and / or ask for help from the TAs.

There should be nothing new for you in this lecture. If there is, stay for office hours and / or ask for help from the TAs. Membranes 02 The goal of this lecture is to review pre-requisite material related to the structure and function of biological membranes and to provide students a further overview of material to be covered

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

Electrical Properties of the Membrane

Electrical Properties of the Membrane BIOE 2520 Electrical Properties of the Membrane Reading: Chapter 11 of Alberts et al. Stephen Smith, Ph.D. 433 Biotech Center shs46@pitt.edu Permeability of Lipid membrane Lipid bilayer is virtually impermeable

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

2.6 The Membrane Potential

2.6 The Membrane Potential 2.6: The Membrane Potential 51 tracellular potassium, so that the energy stored in the electrochemical gradients can be extracted. Indeed, when this is the case experimentally, ATP is synthesized from

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Chapter 2 Cellular Homeostasis and Membrane Potential

Chapter 2 Cellular Homeostasis and Membrane Potential Chapter 2 Cellular Homeostasis and Membrane Potential 2.1 Membrane Structure and Composition The human cell can be considered to consist of a bag of fluid with a wall that separates the internal, or intracellular,

More information

Cell membrane resistance and capacitance

Cell membrane resistance and capacitance Cell membrane resistance and capacitance 1 Two properties of a cell membrane gives rise to two passive electrical properties: Resistance: Leakage pathways allow inorganic ions to cross the membrane. Capacitance:

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Chapter 7-3 Cells and Their Environment

Chapter 7-3 Cells and Their Environment Chapter 7-3 Cells and Their Environment 7-3 Passive Transport Passive transport-the movement of substances across the cell membrane without using NRG Concentration Gradient-difference in concentration

More information

Physiology. Biol 219 Lec 1 Fall The Science of Body Function. Themes of Physiology. Themes of Physiology

Physiology. Biol 219 Lec 1 Fall The Science of Body Function. Themes of Physiology. Themes of Physiology Physiology The Science of Body Function Themes of Physiology 1. Physical-chemical basis of body function Scientific method to study and understand the body Descriptive and quantitative Focus on processes

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations Nonlinear Parabolic and Elliptic Equations Nonlinear Parabolic and Elliptic Equations c. V. Pao North Carolina State University Raleigh, North Carolina Plenum Press New York and London Library of Congress

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

one day Time t past deadline (hours)

one day Time t past deadline (hours) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science, Department of Mechanical Engineering, Division of Bioengineering and Environmental Health, Harvard-MIT Division

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation EXCITABLE TISSUES The tissues can change the properties under

More information

Nerve and Muscle MEMBRANES, CELLS, AND SYSTEMS

Nerve and Muscle MEMBRANES, CELLS, AND SYSTEMS Nerve and Muscle MEMBRANES, CELLS, AND SYSTEMS Nerve and Muscle MEMBRANES, CEllS, AND SYSTEMS Richard B. Stein University of Alberta Edmonton, Alberta, Canada PLENUM PRESS NEW YORK AND LONDON Stein, Richard

More information

Mathematics for Economics

Mathematics for Economics Mathematics for Economics third edition Michael Hoy John Livernois Chris McKenna Ray Rees Thanasis Stengos The MIT Press Cambridge, Massachusetts London, England c 2011 Massachusetts Institute of Technology

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

Biol2174 Cell Physiology in Health & Disease

Biol2174 Cell Physiology in Health & Disease Biol2174 Cell Physiology in Health & Disease Lecture 4: Membrane Transport Proteins Kiaran Kirk Research School of Biology Learning objectives To understand: The need for membrane transport proteins in

More information

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Department of Chemical Engineering ChE 170 University of California, Santa Barbara Fall 2010 Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Objective: To understand the thermodynamic and

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Membrane Structure and Function POGIL

Membrane Structure and Function POGIL Why? Membrane Structure and Function POGIL Advertisements for sports drinks, such as Gatorade, Powerade, and Vitaminwater seem to be everywhere. All of these drinks are supposed to help your body recover

More information

Electrochemical Process Engineering. A Guide to the Design of Electrolytic Plant

Electrochemical Process Engineering. A Guide to the Design of Electrolytic Plant Electrochemical Process Engineering A Guide to the Design of Electrolytic Plant Electrochemical Process Engineering A Guide to the Design of Electrolytic Plant F. Goodridge and K. Scott University of Newcastle

More information

Biotransport: Principles

Biotransport: Principles Robert J. Roselli Kenneth R. Diller Biotransport: Principles and Applications 4 i Springer Contents Part I Fundamentals of How People Learn (HPL) 1 Introduction to HPL Methodology 3 1.1 Introduction 3

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

DERIVATION OF PRACTICAL KEDEM - KATCHALSKY EQUATIONS FOR MEMBRANE SUBSTANCE TRANSPORT

DERIVATION OF PRACTICAL KEDEM - KATCHALSKY EQUATIONS FOR MEMBRANE SUBSTANCE TRANSPORT DERIVATION OF PRACTICAL KEDEM - KATCHALSKY EQUATIONS FOR MEMBRANE SUBSTANCE TRANSPORT M. Jarzyńska Technical High School of Environment Developing, Piotrków Trybunalski, Broniewskiego 16, Poland, e-mail:

More information

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Introduction to Physiology II: Control of Cell Volume and Membrane Potential Introduction to Physiology II: Control of Cell Volume and Membrane Potential J. P. Keener Mathematics Department Math Physiology p.1/23 Basic Problem The cell is full of stuff: Proteins, ions, fats, etc.

More information

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme CELL BIOLOGY by the numbers Ron Milo Rob Phillips illustrated by Nigel Orme viii Detailed Table of Contents List of Estimates xii Preface xv Acknowledgments xiii The Path to Biological Numeracy Why We

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Stephen Wilson Theoretical Chemistry Department

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

Physical Pharmacy. Diffusion

Physical Pharmacy. Diffusion Physical Pharmacy Diffusion Diffusion Diffusion is defined as a process of mass transfer of individual molecules of a substance brought about by random molecular motion and associated with a driving force

More information

Slide 1. Slide 2. Membrane Transport Mechanisms II and the Nerve Action Potential. Epithelia

Slide 1. Slide 2. Membrane Transport Mechanisms II and the Nerve Action Potential. Epithelia Slide 1 Membrane Transport Mechanisms II and the Nerve Action Potential Slide 2 Apical Basolateral Epithelia Microvilli Tight junction Basal Lamina Lie on a sheet of connective tissue (basal lamina) Tight

More information

An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics An Introduction to Chemical Kinetics Michel Soustelle WWILEY Table of Contents Preface xvii PART 1. BASIC CONCEPTS OF CHEMICAL KINETICS 1 Chapter 1. Chemical Reaction and Kinetic Quantities 3 1.1. The

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7 STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 12, 2009 -- PAGE 1 of 7 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

6 Mechanotransduction. rotation

6 Mechanotransduction. rotation rotation inflow outflow Figure 6.3: Circumferential and uniaxial flow devices applying shear stress to the cell culture. They are stimulated through a circumferential fluid flow generating by a rotating

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Neuroscience: Exploring the Brain

Neuroscience: Exploring the Brain Slide 1 Neuroscience: Exploring the Brain Chapter 3: The Neuronal Membrane at Rest Slide 2 Introduction Action potential in the nervous system Action potential vs. resting potential Slide 3 Not at rest

More information

Biophysics I (BPHS 3090)

Biophysics I (BPHS 3090) Biophysics I (BPHS 3090) Instructors: Prof. Christopher Bergevin (cberge@yorku.ca) Website: http://www.yorku.ca/cberge/3090w2015.html York University Winter 2015 Lecture 16 Reference/Acknowledgement: -

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. CONTEMPORARY MATHEMATICS 22 Factorizations of b n ±1, b = 2, 3, 5, 6, 7,10, 11, 12 Up to High Powers Third Edition John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

More information

Biology Exam: Chapters 6 & 7

Biology Exam: Chapters 6 & 7 Biology Exam: Chapters 6 & 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following compounds may be polymers? A) carbohydrates C) proteins

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside.

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside. Resting Membrane potential (V m ) or RMP Many cells have a membrane potential (Vm) that can be measured from an electrode in the cell with a voltmeter. neurons, muscle cells, heart cells, endocrine cells...

More information

ION EXCHANGE TRAINING MANUAL

ION EXCHANGE TRAINING MANUAL ION EXCHANGE TRAINING MANUAL GEORGE P. SIMON ~ SPRINGER SCIENCE+BUSINESS MEDIA, LLC Copyright 1991 by Springer Science+ Business Media New York Originally published by Van Nostrand Reinhold in 1991 Library

More information

Passive Membrane Properties

Passive Membrane Properties Passive Membrane Properties Communicating through a leaky garden hose... Topics I Introduction & Electrochemical Gradients Passive Membrane Properties Action Potentials Voltage-Gated Ion Channels Topics

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

BIOLOGY YEAR AT A GLANCE RESOURCE ( )

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) BIOLOGY YEAR AT A GLANCE RESOURCE (2016-17) DATES TOPIC/BENCHMARKS QUARTER 1 LAB/ACTIVITIES 8/22 8/25/16 I. Introduction to Biology Lab 1: Seed Germination A. What is Biology B. Science in the real world

More information

7. Which letter in the diagram below indicates the structure that is most closely associated with excretion?

7. Which letter in the diagram below indicates the structure that is most closely associated with excretion? 1. Which sequence of terms is in the correct order from simplest to most complex? 1) cells tissues organs organ systems 2) tissues organisms cells organ systems 3) cells tissues organ systems organs 4)

More information

Biological membranes and bioelectric phenomena

Biological membranes and bioelectric phenomena Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno Biological membranes and bioelectric phenomena A part of this lecture was prepared on the basis of a presentation

More information

Cell Theory Essential Questions

Cell Theory Essential Questions Cells Vocab words 1. Cell 2. Cell theory 3. Nucleus 4. Eukaryote 5. Prokaryote 6. Organelle 7. Cytoplasm 8. Nuclear envelope 9. Chromatin 10. Chromosome 11. Nucleolus 12. Ribosome 13. Endoplasmic reticulum

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur Lecture - 15 Nucleic Acids III In the last two classes we spoke about lipids and membranes. Now, what we

More information

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) REVISED FOR HURRICANE DAYS

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) REVISED FOR HURRICANE DAYS BIOLOGY YEAR AT A GLANCE RESOURCE (2017-18) REVISED FOR HURRICANE DAYS DATES TOPIC/BENCHMARKS QUARTER 1 LAB/ACTIVITIES 8/21 8/24/17 I. Introduction to Biology A. What is Biology B. Science in the real

More information

Biomedical Instrumentation

Biomedical Instrumentation ELEC ENG 4BD4: Biomedical Instrumentation Lecture 5 Bioelectricity 1. INTRODUCTION TO BIOELECTRICITY AND EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

c 2011 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED

c 2011 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED c 211 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED ANALYTICALLY AND NUMERICALLY MODELING RESERVOIR-EXTENDED POROUS SLIDER AND JOURNAL BEARINGS INCORPORATING CAVITATION EFFECTS A Dissertation Presented to

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.aw.com/bc) ** It is suggested that you carefully label each ion

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

The Nervous System and the Sodium-Potassium Pump

The Nervous System and the Sodium-Potassium Pump The Nervous System and the Sodium-Potassium Pump 1. Define the following terms: Ion: A Student Activity on Membrane Potentials Cation: Anion: Concentration gradient: Simple diffusion: Sodium-Potassium

More information

- the flow of electrical charge from one point to the other is current.

- the flow of electrical charge from one point to the other is current. Biology 325, Fall 2004 Resting membrane potential I. Introduction A. The body and electricity, basic principles - the body is electrically neutral (total), however there are areas where opposite charges

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

me239 mechanics of the cell - syllabus me239 mechanics of the cell me239 mechanics of the cell - grading me239 mechanics of the cell - overview

me239 mechanics of the cell - syllabus me239 mechanics of the cell me239 mechanics of the cell - grading me239 mechanics of the cell - overview 6 mechanotransduction wong, goktepe, kuhl [2010] me239 mechanics of the cell add l information http://biomechanics.stanford.edu and coursework 1 me239 mechanics of the cell - syllabus favorite topics in

More information

Neurons and the membrane potential. N500 John Beggs 23 Aug, 2016

Neurons and the membrane potential. N500 John Beggs 23 Aug, 2016 Neurons and the membrane potential N500 John Beggs 23 Aug, 2016 My background, briefly Neurons Structural elements of a typical neuron Figure 1.2 Some nerve cell morphologies found in the human

More information

Unit 5: Cells Mr. Nagel Meade High School

Unit 5: Cells Mr. Nagel Meade High School Unit 5: Cells Mr. Nagel Meade High School Hierarchy of Biology Organize the following from smallest to greatest: Tissue, atom, organism, organelle, organ, population, cell, community, ecosystem, organ

More information

CELL STRUCTURE & FUNCTION

CELL STRUCTURE & FUNCTION CELL STRUCTURE & FUNCTION CELL TYPES Living cells can be classified into 2 different types on the basis of their internal structure: 4. Prokaryotic Cells 5. Eukaryotic Cells 1. Prokaryotic Cells Are the

More information

Quantum Biological Information Theory

Quantum Biological Information Theory Quantum Biological Information Theory Ivan B. Djordjevic Quantum Biological Information Theory Ivan B. Djordjevic Department of Electrical and Computer Engineering University of Arizona Tucson, AZ, USA

More information

Introduction to Magnetism and Magnetic Materials

Introduction to Magnetism and Magnetic Materials Introduction to Magnetism and Magnetic Materials Second edition David Jiles Ames Laboratory, US Department of Energy Department of Materials Science and Engineering and Department of Electrical and Computer

More information

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018 Introduction to cardiac electrophysiology 1. Dr. Tóth ndrás 2018 Topics Transmembran transport Donnan equilibrium Resting potential 1 Transmembran transport Major types of transmembran transport J: net

More information

TRANSPORT PHENOMENA AND UNIT OPERATIONS

TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS A COMBINED APPROACH Richard G. Griskey A JOHN WILEY & SONS, INC., PUBLICATION This book is printed on acid-free paper Copyright

More information

Resting membrane potential,

Resting membrane potential, Resting membrane potential Inside of each cell is negative as compared with outer surface: negative resting membrane potential (between -30 and -90 mv) Examination with microelectrode (Filled with KCl

More information

FRACTIONAL CALCULUS IN PHYSICS

FRACTIONAL CALCULUS IN PHYSICS APPLICATIONS OF FRACTIONAL CALCULUS IN PHYSICS APPLICATIONS OF FRACTIONAL CALCULUS IN PHYSICS Editor Universitat Mainz and Universitat Stuttgart Germany Vfe World Scientific «Singapore New Jersey London

More information

Solutes & Water Chapter 4

Solutes & Water Chapter 4 4 th Lecture, 23 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Solutes & Water Chapter 4 Kevin Bonine & Kevin Oh 1. Finish Molecules, Membranes, etc. 2. Solutes

More information

Electrophysiology of the neuron

Electrophysiology of the neuron School of Mathematical Sciences G4TNS Theoretical Neuroscience Electrophysiology of the neuron Electrophysiology is the study of ionic currents and electrical activity in cells and tissues. The work of

More information

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter Vertebrate Physiology 437

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 04, 01 Sept 2005 Chapters 2, 3, and 10 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter 1 Vertebrate Physiology

More information

CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW TEKS

CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW TEKS Lesson 5: Active Transport Protein Pumps Objectives: In this lesson the student will: CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW 1. Identify how the unique structure of the cell membrane

More information

Biology IA & IB Syllabus Mr. Johns/Room 2012/August,

Biology IA & IB Syllabus Mr. Johns/Room 2012/August, Biology IA & IB Syllabus Mr. Johns/Room 2012/August, 2017-2018 Description of Course: A study of the natural world centers on cellular structure and the processes of life. First semester topics include:

More information

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life.

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory The cell theory grew out of the work of many scientists and improvements in the microscope. Many scientists contributed to

More information

Module A Unit 4 Homeostasis and Transport. Mr. Mitcheltree

Module A Unit 4 Homeostasis and Transport. Mr. Mitcheltree Module A Unit 4 Homeostasis and Transport Mr. Mitcheltree Surface area to Volume Ratio in Plants Surface area to Volume Ratio in us There are a number of necessary conditions that allow effective gaseous

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

... Cardiac Gap Junctions Physiology, Regulation, Pathophysiology and Pharmacology

... Cardiac Gap Junctions Physiology, Regulation, Pathophysiology and Pharmacology ... Cardiac Gap Junctions Physiology, Regulation, Pathophysiology and Pharmacology S. Dhein, Cologne 23 figures and 3 tables, 1998 StefanDhein InstituteofPharmacology UniversityofCologne (Germany) All

More information

Arrow Pushing in Organic Chemistry

Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry An Easy Approach to Understanding Reaction Mechanisms Daniel E. Levy Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry An Easy Approach to Understanding

More information

Action Potential Propagation

Action Potential Propagation Action Potential Propagation 2 Action Potential is a transient alteration of transmembrane voltage (or membrane potential) across an excitable membrane generated by the activity of voltage-gated ion channels.

More information

AN INTRODUCTION TO PROBABILITY AND STATISTICS

AN INTRODUCTION TO PROBABILITY AND STATISTICS AN INTRODUCTION TO PROBABILITY AND STATISTICS WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Noel A. C. Cressie, Garrett M.

More information

Chem Lecture 9 Pumps and Channels Part 1

Chem Lecture 9 Pumps and Channels Part 1 Chem 45 - Lecture 9 Pumps and Channels Part 1 Question of the Day: What two factors about a molecule influence the change in its free energy as it moves across a membrane? Membrane proteins function as

More information

NON-EQUILIBRIUM THERMODYNAMICS

NON-EQUILIBRIUM THERMODYNAMICS NON-EQUILIBRIUM THERMODYNAMICS S. R. DE GROOT Professor of Theoretical Physics University of Amsterdam, The Netherlands E MAZUR Professor of Theoretical Physics University of Leiden, The Netherlands DOVER

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

in this web service Cambridge University Press

in this web service Cambridge University Press CONTINUUM MECHANICS This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials.

More information

METHODS FOR PROTEIN ANALYSIS

METHODS FOR PROTEIN ANALYSIS METHODS FOR PROTEIN ANALYSIS Robert A. Copeland, PhD The DuPont Merck Pharmaceutical Company Experimental Station P.O. Box 80400 Wilmington, DE 19880-0400 METHODS FOR PROTEIN ANALYSIS A Practical Guide

More information

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the

More information

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials SUPPORTING INFORMATION Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials Li Wen, Jon P. Nietfeld, Chad M. Amb,

More information

Physiology Coloring Book: Panels 29, 32, 33,

Physiology Coloring Book: Panels 29, 32, 33, ELEC4623/ELEC9734: Semester 2, 2009 Dr Stephen Redmond School of Electrical Engineering & Telecommunications Email: s.redmond@unsw.edu.au Ph: 9385 6101 Rm: 458, ELECENG (G17) Physiology Coloring Book:

More information

Total Hrs Lecture Total Hrs Lab 0.00 Total Course Hrs Total Student Hrs

Total Hrs Lecture Total Hrs Lab 0.00 Total Course Hrs Total Student Hrs HSSCI 21 - LIFE SCIENCE 1- BIOLOGY Total Hrs Lecture 50.00 Total Hrs Lab 0.00 Total Course Hrs 50.00 Total Student Hrs 99.50 High School Credits 5.00 COURSE DESCRIPTION This introductory biology course

More information