Advanced Materials Characterization Workshop June 3 and 4, 2013

Size: px
Start display at page:

Download "Advanced Materials Characterization Workshop June 3 and 4, 2013"

Transcription

1 University of Illinois at Urbana-Champaign Materials Research Laboratory Advanced Materials Characterization Workshop June 3 and 4, 2013 Rutherford Backscattering & Secondary Ion Mass Spectrometery Timothy P. Spila, Ph.D. Frederick Seitz Materials Research Laboratory University of Illinois at Urbana Champaign

2 Rutherford Backscattering Spectrometry He + He RBS is an analytical technique where high energy ions (~2 MeV) are scattered from atomic nuclei in a sample. The energy of the back-scattered ions can be measured to give information on sample composition as a function of depth.

3 Geiger Marsden Experiment Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated positive charge.

4 Rutherford Backscattering Spectrometry 2 MeV Van de Graaff accelerator beam size Φ1-3 mm flat sample can be rotated

5 Primary Beam Energy energy loss per cm log(de/dx) 1 kev 1 MeV (log E) 1 kev 1 MeV thin film projected on to a plane: atoms/cm 2 (Nt)[at/cm 2 ] = N[at/cm 3 ] * t[cm] Figure after W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978).

6 Elastic Two Body Collision Elastic Scattering M 1 v o2 = M 1 v 12 + M 2 v 2 2 M 1 v o = M 1 v 1 + M 2 v 2 K M E 1 = KE o 2 2 sin 2 cos t M i M i M i M t 2 Kinematic factor: K He 4 = 150 o Target mass (amu) M 1 <M 2, 0 θ 180 o 0 Φ 90 o RBS: He backscatters from M 2 >4

7 Rutherford Scattering Cross Section Coulomb interaction between the nuclei: exact expression -> quantitative method M Z Z Z R( E, ) sin ( ) 2( ) 4E 2 M E

8 Electron Stopping energy loss per cm log(de/dx) 1 kev 1 MeV (log E) Figure after W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978).

9 Kinematic factor: K RBS Simulated Spectra hypothetical alloy Au 0.2 In 0.2 Ti 0.2 Al 0.2 O 0.2 /C Element (Z,M): O(8,16), Al(13,27), Ti(22,48), In(49,115), Au(79,197) (, ) Z R E E He ML 2 = 150 o Target mass (amu) 2 In Au C 10 ML 100 ML Au O Al Ti In Au ML ML C O Al Ti In C O Al Ti

10 SIMNRA Simulation Program for RBS and ERD

11 Thickness Effects Counts 11,500 11,000 10,500 10,000 9,500 9,000 8,500 8,000 7,500 7,000 6,500 6,000 5,500 5,000 4,500 4,000 3,500 3,000 2,500 2,000 1,500 1, Energy [kev] nm N, O, Mg interface N surface Channel Ti interface TiN/MgO Series 0 Series 1 Ti surface Scattered D N Incident He 14,000 13,000 12,000 11,000 10,000 Energy [kev] nm Series 0 Simulated 14,000 13,000 12,000 11,000 10,000 Energy [kev] nm Series 0 Simulated Counts 9,000 8,000 7,000 6,000 N surface Counts 9,000 8,000 7,000 6,000 N surface 5,000 4,000 3,000 2,000 1, N, O, Mg interface Channel 450 Ti interface Ti surface 5,000 4,000 3,000 2,000 1,000 0 N, O, Mg interface Channel Ti interface Ti surface

12 Incident Angle Effects Scattered TiN/MgO N Incident He N 14,000 13,000 12,000 11,000 Energy [kev] nm Ti surface Series 0 Simulated 8,500 8,000 7,500 7,000 6,500 Energy [kev] nm Ti surface Series 0 Simulated 10,000 6,000 Counts 9,000 8,000 7,000 6,000 N surface Counts 5,500 5,000 4,500 4,000 3,500 N surface 5,000 4,000 3,000 2,000 1, N, O, Mg interface Channel 450 Ti interface ,000 N, O, Mg interface 2,500 2,000 1,500 1, Channel Ti interface Surface peaks do not change position with incident angle;

13 Example: Average Composition I. Petrov, P. Losbichler, J. E. Greene, W.-D. Münz, T. Hurkmans, and T. Trinh, Thin Solid Films, (1997)

14 RBS: Oxidation Behavior TiN/SiO 2 As-deposited Experimental spectra and simulated spectra by RUMP Annealed in atmosphere for 12 min at T a = 600 C

15 RBS Summary Scattered D N Incident He Quantitative technique for elemental composition Requires flat samples; beam size Φ1 3 mm Non destructive Detection limit varies from 0.1 to 10 6, depending on Z optimum for heavy elements in/on light matrix, e.g. Ta/Si, Au/C Depth information from monolayers to 1 m

16 Secondary Ion Mass Spectrometry SIMS is an analytical technique based on the measurement of the mass of ions ejected from a solid surface after the surface has been bombarded with high energy (1 25 kev) primary ions. Primary Ions Secondary Ions

17 Technique Comparison

18 Block Diagram of SIMS Technique

19 Comparison of Static and Dynamic SIMS TECHNIQUE DYNAMIC STATIC FLUX ~10 17 ions/cm 2 (minimum dose density) < ions/cm 2 (per experiment) INFORMATION Elemental Elemental + Molecular SENSITIVITY TYPE OF ANALYSIS < 1 ppm (ppb for some elements) Depth Profile Mass Spectrum 3D Image Depth Profile 1 ppm Surface Mass Spectrum 2D Surface Ion Image SAMPLING DEPTH 10 monolayers 2 monolayers SPATIAL RESOLUTION Cameca ims 5f Probe mode: 200 nm Microscope mode: 1 m SAMPLE DAMAGE Destructive in analyzed area up to 500 m per area PHI TRIFT III 0.1 m Minimal

20 Magnetic Sector Mass Spectrometer CAMECA ims 5f SECONDARY ION COLUMN PRIMARY ION COLUMN

21 Time of Flight Mass Spectrometer Physical Electronics TRIFT III TOF-SIMS ESA 3 ESA 2 Cs + or O 2 + SED Post Spectrometer Blanker Energy Slit Sample Pre Spectrometer Blanker Contrast Diaphragm ESA 1 Au + ev 1 mv 2 2

22 Ion Beam Sputtering Sputtered species include: Monoatomic and polyatomic particles of sample material (positive, negative or neutral) Resputtered primary species (positive, negative or neutral) Electrons Photons

23 MD Simulation of ion impact Enhancement of Sputtering Yields due to C 60 vs. Ga Bombardment of Ag{111} as Explored by Molecular Dynamics Simulations, Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Anal. Chem., 75, (2003). Animations downloaded from

24 Quantitative Surface Analysis: SIMS I m s I p y m m In SIMS, the yield of secondary ions is strongly influenced by the electronic state of the material being analyzed. I sm = secondary ion current of species m I p = primary particle flux y m = sputter yield + = ionization probability to positive ions m = factional concentration of m in the layer = transmission of the analysis system

25 Total Ion Sputtering Yield Sputter yield: ratio of number of atoms sputtered to number of impinging ions, typically 5-15 Ion sputter yield: ratio of ionized atoms sputtered to number of impinging ions, 10-6 to 10-2 Ion sputter yield may be influenced by: Matrix effects Surface coverage of reactive elements Background pressure in the sample environment Orientation of crystallographic axes with respect to the sample surface Angle of emission of detected secondary ions + First principles prediction of ion sputter yields is not possible with this technique. Courtesy of Prof. Rockett

26 Effect of Primary Beam on Secondary Ion Yields Oxygen bombardment When sputtering with an oxygen beam, the concentration of oxygen increases in the surface layer and metal-oxygen bonds are present in an oxygen-rich zone. When the bonds break during the bombardment, secondary ion emission process, oxygen becomes negatively charged because of its high electron affinity and the metal is left with the positive charge. Elements in yellow analyzed with oxygen bombardment, positive secondary ions for best sensitivity. Cesium bombardment When sputtering with a cesium beam, cesium is implanted into the sample surface which reduces the work function allowing more secondary electrons to be excited over the surface potential barrier. With the increased availability of electrons, there is more negative ion formation. Elements in green analyzed with cesium, negative secondary ions for best sensitivity. Graphics courtesy of Charles Evans & Associates web site

27 Relative Secondary Ion Yield Comparison From Storms, et al., Anal. Chem. 49, 2023 (1977).

28 Relative Secondary Ion Yield Comparison From Storms, et al., Anal. Chem. 49, 2023 (1977).

29 Determination of RSF Using Ion Implants I m s I p y m m Level Profile: Gaussian Profile: RSF RSF I I m i i I m Ct d Ii di b C Where: RSF = Relative Sensitivity Factor I m, I i = ion intensity (counts/sec) = atom density (atoms/cm 3 ) = implant fluence (atoms/cm 2 ) C = # measurement cycles t = analysis time (s/cycle) d = crater depth (cm) I b = background ion counts

30 Positive and Negative Secondary Ions 10 6 Ion implanted P standard Ion implanted P standard Counts / sec O + beam 2 Si P Cs + beam Si P Concentration (atoms/cm 3 ) O + beam 2 Si P Cs + beam Si P Depth (nm) Depth (nm)

31 Definition of Mass Resolution Mass resolution defined by m/ m Mass resolution of ~1600 required to resolve 32 S from 16 O 2 Graphic courtesy of Charles Evans & Associates web site

32 Depth Profile Application with Hydrogen Detects hydrogen Large dynamic range

33 Isotopic Analysis (a) (a) Ni Al 600 C: 4 h 18 O, 16 h 16 O (a) (b) (c) AES Atomic Concentration (%) Ni Al AES composition depth profile SIMS isotopic oxygen diffusion profile expressed as a percentage of the total oxygen Schematic of layered oxide structure O (b) (c) (b) (c) Oxygen Ion Yield (% Linear Counts) 16 M O M 18 O R.T. Haasch, A.M. Venezia, and C.M. Loxton. J. Mater.Res., 7, 1341 (1992) Sputter Time (min.) NiO M 18 O NiO, NiAl O, Al O M 16 O 16 O + 18 O + Ni Al 3

34 B Depth Profile in Si(001) SIMS depth profiles through a B modulation-doped Si(001):B film grown by GS-MBE from Si 2 H 6 and B 2 H 6 at T s =600 C. The incident Si 2 H 6 flux was J Si2H6 = 2.2x10 16 cm -2 s -1 while the B flux J B2H6 was varied from 8.4x10 13 to 1.2x10 16 cm -2 s -1. The deposition time for each layer was constant at 1 h. G. Glass, H. Kim, P. Desjardins, N. Taylor, T. Spila, Q. Lu, and J. E. Greene. Phys. Rev. B, 61,7628 (2000).

35 Depth Resolution and Ion Beam Mixing SIMS depth profiles through a B -doped layers in a Si(001) film grown by GS-MBE from Si 2 H 6 at T S =700 C. The Si 2 H 6, flux, J Si2H6, was 5X10 16 cm -2 s -1 while the B 2 H 6 flux, J B2H6 varied from X10 14 cm -2 s -1. The inset shows the two-dimensional B concentration N B 2D as a function of J B2H6. Q. Lu, T. R. Bramblett, N.-E. Lee, M.-A. Hasan, T. Karasawa, and J. E. Greene. J. Appl. Phys. 77, 3067 (1995).

36 Static and Dynamic SIMS Dynamic SIMS Static SIMS Material removal Elemental analysis Depth profiling Ultra surface analysis Elemental or molecular analysis Analysis complete before significant fraction of molecules destroyed Courtesy Gregory L. Fisher, Physical Electronics

37 Extreme Mass Range Integral: 1922 TG_SCAN03_NEGSEC_AU2_22KV_BUNCHED_2NA_400UM_90MIN_CDOUT_CHGCOMP_ AMU.TDC - Ions 400µm cts Total Counts Total Counts (9.43 amu bin) Mass (amu)

38 Trace Analysis GaAs Wafer GaOH Si Wafer C 3 H 3 Counts m/ m = 11,600 GaNH 3 Counts K C 2 HN Mass [m/z] Mass [m/z] No sputtering to remove organics on surface. Large C 3 H 3 peak does not have a tail to lower mass which would obscure C 2 HN and K.

39 InAs/GaAs Quantum Dots 15 In + Linescans of Quantum Dots Cts: ; Max: 36; Scale: 1µm µm µm µm

40 GaAs/AlGaAs Depth Profile Al Analysis beam: 15kV Ga + Sputter Beam: 300V O + 2 with oxygen flood Ga

41 Depth Profile Beam Alignment UO U Total_Ion Counts NdO 10 1 Nd Time (Seconds) Total_Ion 10 4 UO U Counts NdO Nd Time (Seconds)

42 TOF SIMS Imaging of Patterned Sample Br O S O O O Si O OH h ( nm) H 2 O H O S O O O Si O OH O O O S Br Br 400 m 400 m 50 m Courtesy Josh Ritchey, Audrey Bowen, Ralph Nuzzo and Jeffrey Moore, University of Illinois

43 TOF SIMS Ion Images of an Isolated Neuron First Images of Vitamin E Distribution in a Cell Courtesy E.B. Monroe, J.C. Jurchen, S.S. Rubakhin, J.V. Sweedler. University of Illinois at Urbana-Champaign

44 TOF SIMS Ion Images of Songbird Brain Selected ion images from the songbird brain. Each ion image consists of ~11.5 million pixels within the tissue section and is the combination of 194 individual 600m 600m ion images prepared on the same relative intensity scale. Ion images are (A) phosphate PO3 (m/z 79.0); (B) cholesterol (m/z 385.4); (C) arachidonic acid C20:4 (m/z 303.2); (D) palmitic acid C16:0 (m/z 255.2); (E) palmitoleic acid C16:1 (m/z 253.2); (F) stearic acid C18:0 (m/z 283.3); (G) oleic acid C18:1 (m/z 281.2); (H) linoleic acid C18:2 (m/z ); and (I) -linolenic acid C18:3 (m/z 277.2). Scale bars = 2 mm. Courtesy Kensey R. Amaya, Eric B. Monroe, Jonathan V. Sweedler, David F. Clayton. International Journal of Mass Spectrometry 260, 121 (2007).

45 Diamond Like Carbon Friction Testing DLC coated ball DLC coated disk Oxygen Carbon C + O Overlay wear tracks and scars formed on DLC coated disk and ball sides during test in dry oxygen Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL USA

46 3 D TOF SIMS imaging of DLC Wear track from hydrogenated DLC tested in dry nitrogen Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL USA

47 3 D TOF SIMS Movies of DLC NFC6 H2 Environment TOF-SIMS Images Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL USA H CH C 2 H C 2 H 2 O

48 SIMS Summary Probe/Detected Species Information Surface Mass Spectrum 2D Surface Ion Image Elemental Depth Profiling 3D Image Depth Profiling Elements Detectable H and above Sensitivity ppb - atomic % Analysis Diameter/Sampling Depth ~1 m - several mm/0.5-1nm

49 Acknowledgments

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Secondary Ion Mass Spectrometry Timothy P. Spila, Ph.D. Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Secondary Ion Mass Spectrometry SIMS is an analytical technique

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry Timothy P. Spila, Ph.D. Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign 214University of Illinois Board of Trustees. All

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky 1 Secondary Ion Mass Spectrometry (SIMS) Thomas Sky Depth (µm) 2 Characterization of solar cells 0,0 1E16 1E17 1E18 1E19 1E20 0,2 0,4 0,6 0,8 1,0 1,2 P Concentration (cm -3 ) Characterization Optimization

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) Lasse Vines 1 Secondary ion mass spectrometry O Zn 10000 O 2 Counts/sec 1000 100 Li Na K Cr ZnO 10 ZnO 2 1 0 20 40 60 80 100 Mass (AMU) 10 21 10 20 Si 07 Ge 0.3 Atomic

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Secondary-Ion Mass Spectrometry

Secondary-Ion Mass Spectrometry Principle of SIMS composition depth profiling with surface analysis techniques? Secondary-Ion Mass Spectrometry erosion of specimen surface by energetic particle bombardment sputtering two possibilities

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources

Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources New technique for surface chemical analysis. SIMS examines the mass of ions, instead of energy

More information

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry.

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry. FIB - SIMS Focussed Ion Beam Secondary Ion Mass Spectrometry Outline Introduction to Hiden Analytical Introduction to SIMS FIB-SIMS - Introduction and key features FIB-SIMS - Applications data Hiden SIMS

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

SIMS XVIII SIMS Course Depth Profiling

SIMS XVIII SIMS Course Depth Profiling SIMS XVIII SIMS Course Depth Profiling Fondazione Bruno Kessler Trento, Italy Fred A. Stevie Analytical Instrumentation Facility North Carolina State University Raleigh, NC USA fred_stevie@ncsu.edu Outline

More information

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis General overview of SIMS - principles, ionization, advantages & limitations SIMS as a surface analysis technique - operation modes, information

More information

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis General overview of SIMS - principles, ionization, advantages & limitations SIMS as a surface analysis technique - operation modes, information

More information

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry Latest Developments in 2D and 3D TOF-SIMS Analysis Surface Analysis Innovations and Solutions for Industry 2017 Coventry 12.10.2017 Matthias Kleine-Boymann Regional Sales Manager matthias.kleine-boymann@iontof.com

More information

ION BEAM TECHNIQUES. Ion beam characterization techniques are illustrated in Fig

ION BEAM TECHNIQUES. Ion beam characterization techniques are illustrated in Fig ION BEAM TECHNIQUES Ion beam characterization techniques are illustrated in Fig. 11.21. 1 ION BEAM TECHNIQUES Incident ions are absorbed, emitted, scattered, or reflected leading to light, electron or

More information

Surface and Interface Analysis. Investigations of Molecular Depth Profiling with Dual Beam Sputtering. Journal: Surface and Interface Analysis

Surface and Interface Analysis. Investigations of Molecular Depth Profiling with Dual Beam Sputtering. Journal: Surface and Interface Analysis Surface and Interface Analysis Investigations of Molecular Depth Profiling with Dual Beam Sputtering Journal: Surface and Interface Analysis Manuscript ID: Draft Wiley - Manuscript type: SIMS proceedings

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Application of Surface Analysis for Root Cause Failure Analysis

Application of Surface Analysis for Root Cause Failure Analysis Application of Surface Analysis for Root Cause Failure Analysis David A. Cole Evans Analytical Group East Windsor, NJ Specialists in Materials Characterization Outline Introduction X-Ray Photoelectron

More information

IN THE NAME OF ALLAH, THE MOST MERCIFUL AND COMPASSIONATE

IN THE NAME OF ALLAH, THE MOST MERCIFUL AND COMPASSIONATE IN THE NAME OF ALLAH, THE MOST MERCIFUL AND COMPASSIONATE Ion Beam Analysis of Diamond Thin Films Sobia Allah Rakha Experimental Physics Labs 04-03-2010 Outline Diamond Nanostructures Deposition of Diamond

More information

Lecture 11 Surface Characterization of Biomaterials in Vacuum

Lecture 11 Surface Characterization of Biomaterials in Vacuum 1 Lecture 11 Surface Characterization of Biomaterials in Vacuum The structure and chemistry of a biomaterial surface greatly dictates the degree of biocompatibility of an implant. Surface characterization

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Surface and Interface Characterization of Polymer Films

Surface and Interface Characterization of Polymer Films Surface and Interface Characterization of Polymer Films Jeff Shallenberger, Evans Analytical Group 104 Windsor Center Dr., East Windsor NJ Copyright 2013 Evans Analytical Group Outline Introduction to

More information

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 11 Ion Beam Analysis

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 11 Ion Beam Analysis 1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 11 Ion Beam Analysis Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 344-7813 Office: P64 Lecture 8: outline Introduction o Ion

More information

Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D Garching, Germany

Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D Garching, Germany DEPTH PROFILE REONSTRUTION FROM RUTHERFORD BAKSATTERING DATA U. V. TOUSSAINT, K. KRIEGER, R. FISHER, V. DOSE Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D-8574 Garching, Germany

More information

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes e -? 2 nd FEBIP Workshop Thun, Switzerland 2008 Howard Fairbrother Johns Hopkins University Baltimore, MD, USA Outline

More information

APPLICATION OF THE NUCLEAR REACTION ANALYSIS FOR AGING INVESTIGATIONS

APPLICATION OF THE NUCLEAR REACTION ANALYSIS FOR AGING INVESTIGATIONS 1 APPLICATION OF THE NUCLEAR REACTION ANALYSIS FOR AGING INVESTIGATIONS G.Gavrilov, A.Krivchitch, V.Lebedev PETERSBURG NUCLEAR PHYSICS INSTITUTE E-mail: lebedev@pnpi.spb.ru kriv@rec03.pnpi.spb.ru We used

More information

Sputtering by Particle Bombardment

Sputtering by Particle Bombardment Rainer Behrisch, Wolfgang Eckstein (Eds.) Sputtering by Particle Bombardment Experiments and Computer Calculations from Threshold to MeV Energies With 201 Figures e1 Springer Contents Introduction and

More information

Applications of XPS, AES, and TOF-SIMS

Applications of XPS, AES, and TOF-SIMS Applications of XPS, AES, and TOF-SIMS Scott R. Bryan Physical Electronics 1 Materials Characterization Techniques Microscopy Optical Microscope SEM TEM STM SPM AFM Spectroscopy Energy Dispersive X-ray

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS Toshio Seki and Jiro Matsuo, Quantum Science and Engineering Center, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan Abstract Gas cluster

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

S. Ichikawa*, R. Kuze, T. Shimizu and H. Shimaoka INTRODUCTION

S. Ichikawa*, R. Kuze, T. Shimizu and H. Shimaoka INTRODUCTION Journal of Surface Analysis,Vol.12 No.2 (2005); S.Ichikawa, et al., Coverage Estimation of Silane. Coverage Estimation of Silane Functionalized Perfluoropolyether Layer by using Time of Flight Secondary

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Atomic Collisions and Backscattering Spectrometry

Atomic Collisions and Backscattering Spectrometry 2 Atomic Collisions and Backscattering Spectrometry 2.1 Introduction The model of the atom is that of a cloud of electrons surrounding a positively charged central core the nucleus that contains Z protons

More information

Nuclear Reaction Analysis (NRA)

Nuclear Reaction Analysis (NRA) Nuclear Reaction Analysis (NRA) M. Mayer Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany Lectures given at the Workshop on Nuclear Data for Science and Technology: Materials

More information

Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions

Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions K. Motohashi Department of Biomedical Engineering, Toyo University motohashi@toyonet.toyo.ac.jp 1. Background Sputtering and

More information

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering.

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. L. Houssiau, N. Mine, N. Wehbe Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP),

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

The Controlled Evolution of a Polymer Single Crystal

The Controlled Evolution of a Polymer Single Crystal Supporting Online Material The Controlled Evolution of a Polymer Single Crystal Xiaogang Liu, 1 Yi Zhang, 1 Dipak K. Goswami, 2 John S. Okasinski, 2 Khalid Salaita, 1 Peng Sun, 1 Michael J. Bedzyk, 2 Chad

More information

Auger Electron Spectrometry. EMSE-515 F. Ernst

Auger Electron Spectrometry. EMSE-515 F. Ernst Auger Electron Spectrometry EMSE-515 F. Ernst 1 Principle of AES electron or photon in, electron out radiation-less transition Auger electron electron energy properties of atom 2 Brief History of Auger

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex. For MChem, Spring, 2009 5) Surface photoelectron spectroscopy Dr. Qiao Chen (room 3R506) http://www.sussex.ac.uk/users/qc25/ University of Sussex Today s topics 1. Element analysis with XPS Binding energy,

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) Secondary Ion Mass Spectrometry (SIMS) SIMS: a desorption/ionization technique 1960s - A. Benninghoven, University of Münster, Germany (Benninghoven A., Rudenauer F.G., Werner H.W., Secondary Ion Mass

More information

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Lecture 5-8 Instrumentation Requirements 1. Vacuum Mean Free Path Contamination Sticking probability UHV Materials Strength Stability Permeation Design considerations Pumping speed Virtual leaks Leaking

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification A DIVISION OF ULVAC-PHI Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification Designed for Confident Molecular Identification and Superior Imaging

More information

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Why ICP Mass Spectrometry? Ultra-trace multi-element analytical

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

Characterization of individual free-standing nanoobjects by cluster SIMS in transmission

Characterization of individual free-standing nanoobjects by cluster SIMS in transmission Characterization of individual free-standing nanoobjects by cluster SIMS in transmission Running title: Characterization of individual free-standing nano-objects by cluster SIMS in transmission Running

More information

Materials Science. Hand axes like this one found in the United Arab Emirates indicate humans left Africa 125,000 years ago.

Materials Science. Hand axes like this one found in the United Arab Emirates indicate humans left Africa 125,000 years ago. Summary Materials Science Ion Beam Analysis (IBA) @ 3 MV Tandetron TM Accelerator Rutherford Backscattering Spectrometry (RBS) Elastic Recoil Detection (ERD) Nuclear Reaction Analysis (NRA) Ion implant/channeling

More information

Low Energy Nuclear Fusion Reactions in Solids

Low Energy Nuclear Fusion Reactions in Solids Kasagi, J., et al. Low Energy Nuclear Fusion Reactions in Solids. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy. Low Energy Nuclear

More information

CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION

CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION T. Seki 1,2), T. Murase 1), J. Matsuo 1) 1) Quantum Science and Engineering Center, Kyoto University 2) Collaborative Research

More information

Secondary Ion-Mass Spectroscopy (SIMS)

Secondary Ion-Mass Spectroscopy (SIMS) Secondary Ion-Mass Spectroscopy (SIMS) Prof. Bing-Yue Tsui ( 崔秉鉞 ) Department of Electronics Engineering and Institute of Electronics National Chiao-Tung University 1 Outline Introduction to SIMS Instruments

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

produced a sputter rate of 0.9 nm/s for the radially profiled, un-etched wires. A slightly

produced a sputter rate of 0.9 nm/s for the radially profiled, un-etched wires. A slightly Supporting Information: Beam Current and Sputtering Rate: Using a 16 kev Cs + primary ion beam and a 1 µm 2 rastered area, a 10 pa beam current produced a sputter rate of 0.9 nm/s for the radially profiled,

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 Bob O'Handley Martin Schmidt Quiz Nov. 17, 2004 Ion implantation, diffusion [15] 1. a) Two identical p-type Si wafers (N a = 10 17 cm

More information

Some more equations describing reactive magnetron sputtering.

Some more equations describing reactive magnetron sputtering. Some more equations describing reactive magnetron sputtering D. Depla, S. Mahieu, W. Leroy, K. Van Aeken, J. Haemers, R. De Gryse www.draft.ugent.be discharge voltage (V) 44 4 36 32 28..5 1. 1.5 S (Pumping

More information

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS)

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) EXECUTIVE SUMMARY Secondary Ion Mass Spectrometry (SIMS) is used for elemental

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

SIMS: Secondary Ion Mass Spectrometry

SIMS: Secondary Ion Mass Spectrometry SIMS: Secondary Ion Mass Spectrometry SIMS is based on the emission of ions (secondary ions) from the first monolayers of a solid surface after bombardment by high energy primary ions. The cascade collision

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry Yoko Tada Kunihiro Suzuki Yuji Kataoka (Manuscript received December 28, 2009) As complementary metal oxide

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) OpenStax-CNX module: m50227 1 Secondary Ion Mass Spectrometry (SIMS) Kourtney Wright Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: Ion Implantation alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: mass separation allows wide varies of dopants dose control: diffusion

More information

Application of NanoSIMS on Organo Mineral Structures

Application of NanoSIMS on Organo Mineral Structures Application of NanoSIMS on Organo Mineral Structures Carmen Höschen*, Carsten W. Mueller, Katja Heister, Johann Lugmeier and Ingrid Kögel-Knabner Lehrstuhl für Bodenkunde, TU München, 85350 Freising-Weihenstephan,

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions

Interactions of Particulate Radiation with Matter. Purpose. Importance of particulate interactions Interactions of Particulate Radiation with Matter George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To describe the various mechanisms by which particulate

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

Accelerator Mass Spectroscopy

Accelerator Mass Spectroscopy Accelerator Mass Spectroscopy Accelerator Mass Spectroscopy (AMS) is a highly sensitive technique that is useful in isotopic analysis of specific elements in small samples (1mg or less of sample containing

More information

A DIVISION OF ULVAC-PHI

A DIVISION OF ULVAC-PHI A DIVISION OF ULVAC-PHI X-ray photoelectron spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and research applications. XPS provides

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Segregated chemistry and structure on (001) and (100) surfaces of

Segregated chemistry and structure on (001) and (100) surfaces of Supporting Information Segregated chemistry and structure on (001) and (100) surfaces of (La 1-x Sr x ) 2 CoO 4 override the crystal anisotropy in oxygen exchange kinetics Yan Chen a, Helena Téllez b,c,

More information

Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications October 2013

Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications October 2013 2495-03 Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications 21-25 October 2013 Ion Beam Analysis Techniques for non-destructive Profiling Studies M. Kokkoris Department of Physics National

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

An Introduction to Auger Electron Spectroscopy

An Introduction to Auger Electron Spectroscopy An Introduction to Auger Electron Spectroscopy Spyros Diplas MENA3100 SINTEF Materials & Chemistry, Department of Materials Physics & Centre of Materials Science and Nanotechnology, Department of Chemistry,

More information

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller Text optional: Institute Prof. Dr. Hans Mousterian www.fzd.de Mitglied der Leibniz-Gemeinschaft Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller IBA Techniques slide

More information

Surface Analysis by XPS & ToF-SIMS Basics, Strengths, and Limitations

Surface Analysis by XPS & ToF-SIMS Basics, Strengths, and Limitations Surface Analysis by XPS & ToF-SIMS Basics, Strengths, and Limitations Michael Bruns michael.bruns@kit.edu KIT University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

More information

Physics 2D Lecture Slides Lecture 15: Feb 2nd Vivek Sharma UCSD Physics. Where are the electrons inside the atom?

Physics 2D Lecture Slides Lecture 15: Feb 2nd Vivek Sharma UCSD Physics. Where are the electrons inside the atom? Physics D Lecture Slides Lecture 15: Feb nd 005 Vivek Sharma UCSD Physics Where are the electrons inside the atom? Early Thought: Plum pudding model Atom has a homogenous distribution of Positive charge

More information

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications

Bhas Bapat MOL-PH Seminar October Ion Matter Interactions and Applications Ion-matter interactions and applications Bhas Bapat MOL-PH Seminar October 2013 Outline Ion-atom collisions Energy loss in matter Applications Atmospheric Science Astrophysics Material science Medicine

More information

P627/Chem 542 Surface/Interface Science Spring 2013 Rutherford Backscattering Lab: Answers to Questions

P627/Chem 542 Surface/Interface Science Spring 2013 Rutherford Backscattering Lab: Answers to Questions Intro Questions: 1) How is a tandem ion accelerator different from a so-called van der Graaf accelerator, and what are some of the advantages (and drawbacks) of the tandem design? A tandem ion accelerator

More information

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb O.D. DUBON, P.G. EVANS, J.F. CHERVINSKY, F. SPAEPEN, M.J. AZIZ, and J.A. GOLOVCHENKO Division of Engineering and Applied Sciences,

More information