Physics of Radioactive Decay. Purpose. Return to our patient

Size: px
Start display at page:

Download "Physics of Radioactive Decay. Purpose. Return to our patient"

Transcription

1 Physics of Radioactive Decay George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To demonstrate qualitatively the various processes by which unstable nuclides may undergo radioactive decay Emphasis will be placed on those decay processes that produce radiation used in either radiation therapy or medical imaging Return to our patient Treated with implant of 125 I sources What process does the 125 I undergo that delivers radiation? Why are we not as concerned about isolating the patient as we are for an HDR treatment? 1

2 Radioactive decay modes Many nuclei unstable emit particles and energy as they go to more stable state Classify mode of decay by identifying radiation emitted Alpha particle is 4 2He 2 nucleus Process occurs mainly in heavy nuclei Alpha decay 88Ra Rn He Alpha decay Ra Rn + He Note: Both Z and A conserved in decay process Mass of products < mass of Ra Energy equivalence of mass difference is 4.78 MeV Transition energy of process Goes primarily into kinetic energy of α particle 4 2 2

3 94% of nuclei decay by giving off 4.78 MeV α 6% of nuclei decay by giving off 4.59 MeV α and 0.19 MeV γ Branching ratio for given path is that fraction of nuclei which decay by that path Alpha decay Beta decay Emission of electron from nucleus Occurs when n/p ratio too large for stability n decreases by 1 p increases by 1 Beta decay Note that for 137 Cs the gamma ray from decay of 137 Ba is used for radiation therapy, not the β 3

4 Beta decay Energy considerations: mass of P nucleus = m 0 mass of S nucleus = m 0 mass of beta = 1 m 0 energy released in mass units = Beta decay Energy considerations: energy released in mass units = energy released in MeV = = 1.70 MeV which is transition energy of beta decay of 32 P Beta decay Not all β particles have kinetic energy equal to transition energy. β's have energy spectrum with mean energy approx 1/3 max energy 4

5 Beta decay Must postulate the existence of an additional particle to carry away excess energy Particle called a neutrino Zero mass and zero charge Gamma emission After radioactive decay, nuclide generally left in excited state Nuclide decays to ground state by emission of gamma ray Gamma rays are penetrating and are used for radiation therapy as well as for imaging Gamma emission 5

6 Positron decay Positron is anti-electron same mass, charge of opposite sign Process occurs when n/p ratio too low for stability Anti-matter interacts with matter, giving rise to annihilation complete conversion of matter into energy Positron decay Look at energy relationship: mass of N nucleus = m 0 mass of C nucleus = m 0 mass of positron = 1 m 0 mass of neutrino = 0 m 0 energy released in mass units = m 0 Positron decay energy released in mass units = m 0 note threshold of 2m 0 =1.02 MeV transition energy 6

7 Positron decay Electron capture Competing process with positron decay Nucleus captures inner shell (generally K shell) electron Hole left behind resulting in emission of characteristic radiation and Auger electrons Can define branching ratio for electron capture Electron capture e.g., for 22 Na, branching ratio for electron capture is 10%, for positron emission is 90% 7

8 Electron capture Examples of nuclides that decay via electron capture: 125 I 103 Pd Emitted radiation is characteristic radiation Low energy Non-penetrating Internal conversion Process competes with gamma emission Energy of emitted gamma ray sufficient to ionize inner shell electron Hole left behind characteristic radiation and Auger electrons Local energy deposition Internal conversion Coefficient increases with increasing Z Coefficient increases with increasing lifetime of excited nucleus 8

9 Complex decay scheme Summary Process Alpha Beta-minus Gamma Beta-plus Electron capture Internal conversion Energy Deposition Immediate vicinity of nucleus Immediate vicinity of nucleus, but gammas are penetrating Penetrating radiation Immediate vicinity of nucleus, but annihilation gammas are penetrating Non-penetrating Non-penetrating 9

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D., Chapter 18: Radioactivity And Nuclear Transformation Presented by Mingxiong Huang, Ph.D., mxhuang@ucsd.edu 18.1 Radionuclide Decay Terms and Relationships Activity Decay Constant Physical Half-Life Fundamental

More information

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1 Decay Mechanisms 1. Alpha Decay An alpha particle is a helium-4 nucleus. This is a very stable entity and alpha emission was, historically, the first decay process to be studied in detail. Almost all naturally

More information

Nuclear Physics Part 2A: Radioactive Decays

Nuclear Physics Part 2A: Radioactive Decays Nuclear Physics Part 2A: Radioactive Decays Last modified: 23/10/2018 Links What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are electrons Anti-particles

More information

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A) Alpha Decay Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit an alpha particle Nuclides with A>150 are unstable against

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information

Units and Definition

Units and Definition RADIATION SOURCES Units and Definition Activity (Radioactivity) Definition Activity: Rate of decay (transformation or disintegration) is described by its activity Activity = number of atoms that decay

More information

The United States Nuclear Regulatory Commission and Duke University Present: Regulatory and Radiation Protection Issues in Radionuclide Therapy

The United States Nuclear Regulatory Commission and Duke University Present: Regulatory and Radiation Protection Issues in Radionuclide Therapy The United States Nuclear Regulatory Commission and Duke University Present: Regulatory and Radiation Protection Issues in Radionuclide Therapy Copyright 2008 Duke Radiation Safety and Duke University.

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion General information Nuclei are composed of combinations of nucleons (protons and neutrons); certain combinations of these nucleons (i.e., certain nuclides) possess a high degree of stability while others

More information

Karlsruhe Nuclide Chart

Karlsruhe Nuclide Chart Karlsruhe uclide Chart The ew Edition in 2015 s. Sóti 1, J. Magill 2 1 European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany https://ec.europa.eu/jrc/

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

CHEMISTRY - MCQUARRIE 4E CH.27 - NUCLEAR CHEMISTRY.

CHEMISTRY - MCQUARRIE 4E CH.27 - NUCLEAR CHEMISTRY. !! www.clutchprep.com CONCEPT: NUCLEAR REACTIONS Nuclear Reactions deal with chemical processes in nuclei atoms. Unlike normal chemical reactions where the identity of the elements stay the same, nuclear

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

Chapter Three (Nuclear Radiation)

Chapter Three (Nuclear Radiation) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Three (Nuclear Radiation) (3-1) Nuclear Radiation Whenever a nucleus can attain a

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Radioactive Decay What is Radioactivity? http://explorecuriocity.org/explore/articleid/3033 http://explorecuriocity.org/explore/articleid/3035 http://explorecuriocity.org/explore/articleid/2160 Quick Review

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Nuclear Physics Part 2: Radioactive Decay

Nuclear Physics Part 2: Radioactive Decay Nuclear Physics Part 2: Radioactive Decay Last modified: 17/10/2017 Part A: Decay Reactions What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

7.2 RADIOACTIVE DECAY HW/Study Packet

7.2 RADIOACTIVE DECAY HW/Study Packet 7.2 RADIOACTIVE DECAY HW/Study Packet Required: Tsokos, pp 373-378 Hamper pp 244-255 SL/HL Supplemental: Cutnell and Johnson, pp 963-979, 986-990 REMEMBER TO. Work through all of the example problems in

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics Lecture 33 Chapter 22, Sections -2 Nuclear Stability and Decay Energy Barriers Types of Decay Nuclear Decay Kinetics Nuclear Chemistry Nuclei Review Nucleons: protons and neutrons Atomic number number

More information

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei 2. Range of Measured Half-Lives (~10 44 ) 10 16 y > t 1/2 > 10 21 s 3. Why α? a. Proton & Neutron Emission: Q p, Q n are negative

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 43 Nuclear Physics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 43 To understand some key properties

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability.

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability. Radioactive Decay Mechanisms (cont.) Beta (β) Decay: Radioactive decay process in which the charge of the nucleus is changed without any change in the number of nucleons. There are three types of beta

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 7-1B RADIOACTIVITY Essential Idea: In the microscopic world energy is discrete. Nature Of Science: Accidental discovery: Radioactivity

More information

Objectives: Atomic Structure: The Basics

Objectives: Atomic Structure: The Basics Objectives: Atomic Structure: The Basics 1. To be able to sketch an atom and indicate the location of the nucleus, the shells, and the electronic orbitals 2. To be able to calculate the maximum number

More information

Outline. Absorbed Dose in Radioactive Media. Introduction. Radiation equilibrium. Charged-particle equilibrium

Outline. Absorbed Dose in Radioactive Media. Introduction. Radiation equilibrium. Charged-particle equilibrium Absorbed Dose in Radioactive Media Chapter F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry Outline General dose calculation considerations, absorbed fraction Radioactive disintegration

More information

Section 10: Natural Transmutation Writing Equations for Decay

Section 10: Natural Transmutation Writing Equations for Decay Section 10: Natural Transmutation Writing Equations for Decay Alpha Decay If a radioactive substance changes into another substance because particles are emitted from its nucleus, we say that the original

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or.

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. Chapter 19 1 RADIOACTIVITY Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. TYPES OF RADIATION OR EMITTED ENERGY IN NUCLEAR CHANGES Radiation is

More information

1/28/2013. The Nuclear Age. X-Rays. Discovery of X-Rays. What are X-Rays? Applications. Production of X-Rays

1/28/2013. The Nuclear Age. X-Rays. Discovery of X-Rays. What are X-Rays? Applications. Production of X-Rays The Nuclear Age X-Rays Radioactivity Decay Processes Discovery of X-Rays 1895 Production of X-Rays What are X-Rays? Applications X-Rays first x-ray picture Discovery of X-Rays Production of X-Rays What

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Nuclear Reactions Homework Unit 13 - Topic 4

Nuclear Reactions Homework Unit 13 - Topic 4 Nuclear Reactions Homework Unit 13 - Topic 4 Use the laws of conservation of mass number and charge to determine the identity of X in the equations below. Refer to a periodic table as needed. 222 a. Rn

More information

More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 Balancing Nuclear Reactions mass number (A) atomic number (Z) 12 6 C In an ordinary

More information

Multiple Choice Questions

Multiple Choice Questions Nuclear Physics & Nuclear Reactions Practice Problems PSI AP Physics B 1. The atomic nucleus consists of: (A) Electrons (B) Protons (C)Protons and electrons (D) Protons and neutrons (E) Neutrons and electrons

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

3 Types of Nuclear Decay Processes

3 Types of Nuclear Decay Processes 3 Types of Nuclear Decay Processes Radioactivity is the spontaneous decay of an unstable nucleus The radioactive decay of a nucleus may result from the emission of some particle from the nucleus. The emitted

More information

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity PS-21 First Spring Institute say 2012-2013: Teaching Physical Science Radioactivity What Is Radioactivity? Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an

More information

Chemistry 132 NT. Nuclear Chemistry. Not everything that can be counted counts, and not everything that counts can be counted.

Chemistry 132 NT. Nuclear Chemistry. Not everything that can be counted counts, and not everything that counts can be counted. Chemistry 132 NT Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein 1 Chem 132 NT Nuclear Chemistry Module 1 Radioactivity and Nuclear Bombardment

More information

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 9. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (tomic number) N = no. of neutrons

More information

4 Nuclear Stability And Instability

4 Nuclear Stability And Instability 4 Nuclear Stability nd Instability Figure 4.1 Plot of N vs. Each black dot in Figure 4.1 represents a stable nuclide. Where more than one dot appears for a particular atomic number, those dots represent

More information

RADIOACTIVITY. An atom consists of protons, neutrons and electrons.

RADIOACTIVITY. An atom consists of protons, neutrons and electrons. RADIOACTIVITY An atom consists of protons, neutrons and electrons. - Protons and neutrons are inside the nucleus - Electrons revolve around the nucleus in specific orbits ATOMIC NUMBER: - Total number

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PAN Summer Science Program University of Notre Dame June, 2014 Tony Hyder Professor of Physics Topics we will discuss Ground-state properties of the nucleus size, shape,

More information

Lecture 1. Introduction to Nuclear Science

Lecture 1. Introduction to Nuclear Science Lecture 1 Introduction to Nuclear Science Composition of atoms Atoms are composed of electrons and nuclei. The electrons are held in the atom by a Coulomb attraction between the positively charged nucleus

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics

Chapter 20 Nuclear Chemistry. 1. Nuclear Reactions and Their Characteristics Chapter 2 Nuclear Chemistry 1. Nuclear Reactions and Their Characteristics Nuclear reactions involve the particles located in the nucleus of the atom: nucleons:. An atom is characterized by its atomic

More information

Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP)

Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 3 Radioactivity In radioactive processes, particles or electromagnetic radiation

More information

Atomic and Nuclear Radii

Atomic and Nuclear Radii Atomic and Nuclear Radii By first approx. the nucleus can be considered a sphere with radius given by R 1.25 x A (1/3) {fm} A atomic mass number, fm 10-15 m Since the volume of a sphere is proportional

More information

Lesson 1. Introduction to Nuclear Science

Lesson 1. Introduction to Nuclear Science Lesson 1 Introduction to Nuclear Science Introduction to Nuclear Chemistry What is nuclear chemistry? What is the relation of nuclear chemistry to other parts of chemistry? Nuclear chemistry vs nuclear

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Final Exam. Evaluations. From last time: Alpha radiation. Beta decay. Decay sequence of 238 U

Final Exam. Evaluations. From last time: Alpha radiation. Beta decay. Decay sequence of 238 U Evaluations Please fill out evaluation and turn it in. Written comments are very helpful! Lecture will start 12:15 Today, evaluate Prof. Rzchowski If you weren t here Tuesday, also evaluate Prof. Montaruli

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Sources of Radiation

Sources of Radiation Radioactivity Sources of Radiation Natural Sources Cosmic Radiation The Earth is constantly bombarded by radiation from outside our solar system. interacts in the atmosphere to create secondary radiation

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

Information Nuclide = is an atomic species characterized by the specific constitution of its nucleus (protons and neutrons) Neutron

Information Nuclide = is an atomic species characterized by the specific constitution of its nucleus (protons and neutrons) Neutron NAME: DUE DATE: JULY nd AP Chemistry SUMMER REV: Balancing Nuclear Reactions Why? Nuclear reactions are going on all around us in the form of transmutation, fission and fusion. Using correctly balanced

More information

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Properties of the nucleus. 8.2 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus Properties of the nucleus 8. Nuclear Physics Properties of nuclei Binding Energy Radioactive decay Natural radioactivity Consists of protons and neutrons Z = no. of protons (Atomic number) N = no. of neutrons

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

Atomic and nuclear physics

Atomic and nuclear physics Chapter 4 Atomic and nuclear physics INTRODUCTION: The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen s discovery of X rays and Becquerel

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation.

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation. RADIOACTIVITY - SPONTANEOUS NUCLEAR PROCESSES OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. For~, p and 7 decays a) Write a typical equation for the production of each type

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Chapter from the Internet course SK180N Modern Physics

Chapter from the Internet course SK180N Modern Physics Nuclear physics 1 Chapter 10 Chapter from the Internet course SK180N Modern Physics Contents 10.4.1 Introduction to Nuclear Physics 10.4.2 Natural radioactivity 10.4.3 alpha-decay 10.4.4 beta-decay 10.4.5

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia Nuclear Physics A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions Updated: 0Feb07 Rough draft A. Nuclear Structure. Parts of Atom. Parts of

More information

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons

Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Isotopes Atoms of an element (same # p+) that differ in their number of neutrons Radio-isotopes Isotope of an element that is UNSTABLE. They spontaneously emit particles (energy) in order to achieve a

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Radioactivity Solutions - Lecture 28B (PHY315)

Radioactivity Solutions - Lecture 28B (PHY315) Radioactivity s - Lecture 8B (PHY35) Problem solutions.strategy In beta-minus decay, the atomic number Z increases by while the mass number A remains constant. Use Eq. (9-). 4 For the parent 9 K Z 9, so

More information

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay History and Discovery of Radioactivity The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A.

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A. AstroPhysics Notes Tom Lehrer: Elements Dr. Bill Pezzaglia Nuclear Physics Updated: 0Feb Rough draft Nuclear Physics A. Nuclear Structure A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions. Parts

More information

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine Treatments and Clinical Applications INAYA MEDICAL COLLEGE (IMC) RAD 243- LECTURE 4 Nuclear Medicine Treatments and Clinical Applications DR. MOHAMMED MOSTAFA EMAM References "Advancing Nuclear Medicine Through Innovation". Committee on State

More information

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1 Unit 08 Nuclear Structure Unit 08 Nuclear Structure Slide 1 The Plan Nuclear Structure Nuclear Decays Measuring Radiation Nuclear Power Plants Major Nuclear Power Accidents New Possibilities for Nuclear

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information