Supplementary Materials for

Size: px
Start display at page:

Download "Supplementary Materials for"

Transcription

1 advances.sciencemag.org/cgi/content/full/2/7/e /dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina dos Santos, Bruno R. Carvalho, Ruitao Lv, Qing Li, Kazunori Fujisawa, Ana Laura Elías, Yu Lei, Nestor Perea-López, Morinobu Endo, Minghu Pan, Marcos A. Pimenta, Mauricio Terrones Published 22 July 2016, Sci. Adv. 2, e (2016) DOI: /sciadv This PDF file includes: Supplementary Materials and Methods fig. S1. NG sheets on different substrates and their typical Raman spectra with different synthesis conditions. fig. S2. Raman mapping of PG and NG showing monolayer coverage. fig. S3. XPS spectra (C1s and N1s) of NG synthesized at 850 C. fig. S4. Probing-enhanced Raman scattering effect between NG and PG sheets for different dye molecules. fig. S5. Comparison of Raman spectra with bare SiO2/Si substrates and NG for probing different dye molecules at their resonant condition. fig. S6. Enhancement factors for three different dye molecules between NG and PG. fig. S7. Comparison of GERS and SERS by applying sputtered Au nanoparticles as SERS substrates for comparison. fig. S8. Testing the molecular sensibility of the NG with different laser energies. fig. S9. Photos of RhB in ethanol solution with different concentrations. fig. S10. AFM images of NG samples with different concentrations of RhB. fig. S11. Raman spectrum of M RhB on NG. fig. S12. Probing GERS effect between NG and PG for additional molecules such as R6G and PPP. table S1. Calculated HOMO-LUMO gap, adsorption data, and resonant Raman laser excitation energy for each molecule.

2 Supplementary Materials and Methods 1. Optical images of transferred graphene on various substrates and Raman spectra for NG sample with different synthesis conditions. Figure S1A presents as synthesized graphene sample on copper foil. Figure S1 (B and C) present optical images of transferred graphene on SiO2/Si substrate and quartz. As can be seen, the graphene sample on quartz is highly transparent. Figure S1 (D and E) present Raman spectra of the as-grown NG with different synthesis conditions. It is observed that when the synthesis condition changes, the intensity ratio between graphene D-band and G- band considerably changes, indicating N doping level changes. fig. S1. NG sheets on different substrates and their typical Raman spectra with different synthesis conditions. (A) A photograph of the as-grown NG on copper foil. (B) Astransferred NG sheet on a SiO2/Si wafer. The scale unit of the ruler shown in (A) and (B) is in centimeter. (C) As-transferred NG on a quartz slide is highly transparent. The logo of Penn State underneath the NG sheet can be clearly seen. (D) Raman spectra of NG sheets synthesized with constant ammonia reaction time (10 min), but with different reaction

3 temperature. (E) Raman spectra of NG sheets synthesized with constant ammonia reaction temperature (800 C), but with different reaction time. 2. As synthesized NG and PG sheets monolayer coverage. In order to estimate the uniformity of PG and NG, we performed Raman mapping on PG and NG. The Raman intensity ratio between the graphene 2D-band versus the G-band (I2D/IG) is plotted in fig. S2. From fig. S2A, it can be observed that most of the areas are green-yellow colored, indicating an I2D/IG ratio of 3 or above, and that monolayer graphene (PG) is of high crystalline quality. The blue region shows I2D/IG around 2 and only very few black points gives I2D/IG equal to 1. It can be calculated that more than 94% of the areas have I2D/IG ratio equal to 2 and above, meaning that less than 6% of the surface corresponds to few-layer graphene, which is very similar to NG (fig. S2B). fig. S2. Raman mapping corresponding to the intensity ratio between the graphene 2Dband and the G-band (I2D/IG) for (A) PG and (B) NG. Most of the areas are green-yellow colored, indicating an I2D/IG ratio of 3 or above, and that monolayer graphene is of high crystalline quality. The blue region shows I2D/IG around 2 and only the very few black points gives I2D/IG equal to 1. More than 94% of the area has I2D/IG ratio equal to 2 and above, meaning that less than 6% of the surface consists of few layer graphene.

4 3. Nitrogen concentration in NG synthesized at 850 o C evaluated by X-ray photoelectron spectroscopy Figure S3 shows C 1s and N 1s region of XPS spectra. As a result of quantization based on XPS, N content was found to be 2.25 at. % for NG sample synthesized at 850 o C. For C 1s region, three peaks were found. The one which has the highest peak intensity and located at ev corresponds to graphite-like sp 2 C, whereas the other two (285.8 ev and ev) can be attributed to C-N bonding as well as oxygen related functionality. By deconvoluting the peak at N 1s region, we found that most of nitrogen atoms were at substitutional nitrogen (400.6 ev) position rather than pyridinic (398.6 ev) position which consists with the STM measurement. fig. S3. XPS spectra (C1s and N1s) of NG synthesized at 850 o C. The quantification results based on XPS showing that the N content in the sample was around 2.25 at. %. The peak located at ev corresponds to graphite-like sp 2 C while the other peaks (285.8 ev and ev) in C 1s region can be attributed to C-N bonding as well as oxygen related functionality. The observed two peaks located at ev and ev in N 1s region, correspond to substitutional and pyridinic nitrogen, respectively.

5 4. Probing enhanced Raman scattering effect between NG and PG sheets for different dye molecules. Figure S4 presents the enhanced Raman scattering effect between NG and PG sheets for different types of dye molecules with the same concentration (510-5 mol/l). Figure S4A presents the structure of three molecules used for molecular sensing. Figure S4 (B-D) present the Raman spectra when RhB, CRV and MB are used to probe the sensing ability. It can be seen that with PG quenching the fluorescent background, the spectra presents vibrational peaks that correspond to some of the Raman fingerprints of these molecules. Interestingly, when NG sheets were used as substrate, the intensities of all the Raman peaks associated with these molecules are greatly improved and clearly resolved. Furthermore, some small Raman features that cannot be observed with PG as a substrate can now be clearly detected. The intensity of major Raman fingerprints for molecules are on average about 10 times stronger with NG sheets as substrate than with PG sheets. In this way, we can conclude that NG sheets could be considered as an excellent substrate for a unique type of molecular sensing.

6 fig. S4. Probing-enhanced Raman scattering effect between NG and PG sheets for different dye molecules. (A) Molecular structures of the dye molecules, Rhodamine B (RhB), Crystal Violet (CRV) and Methylene Blue (MB). Color scheme: gray=carbon, red=oxygen, blue=nitrogen, yellow=sulfur, white=hydrogen. The excitation laser lines are 2.41 ev for RhB and CRV, and 1.92 ev for MB. Raman signals of (B) RhB, (C) CRV and (D) MB molecules on PG and NG sheets are shown, respectively. Beyond the typical Raman features (D, G and 2D peaks), additional features correspondent to the Raman signal of the molecules are observed. The inset in (B), (C) and (D) represent the structure of the RhB, CRV, and MB, respectively.

7 5. Comparison of Raman spectra with bare SiO2/Si substrates and NG for probing different dye molecules at their resonant condition. fig. S5. Comparison of Raman spectra with bare SiO2/Si substrates and NG for probing different dye molecules at their resonant condition. (A, C, and E) shows the Raman

8 spectra when dye molecules are on top of bare SiO2/Si sheets. (B, D, and F) shows Raman spectra when dye molecules are on top of NG sheets. It is clearly observed that with bare SiO2/Si substrates, Raman spectra presents a huge fluorescent signal and no Raman peak for dye molecules can be observed, while with NG sheets, it quenches the fluorescent signal and Raman signal from dye molecules get enhanced. This demonstrates that the enhancement of the Raman signal is not only the resonance of each dye but from the NG substrate. 6. Comparison of enhancement factor (EF) of NG and PG for different dye molecules. fig. S6. Enhancement factors for three different dye molecules between NG and PG: A) RhB, B) CRV, and C) MB. It is clear that Raman intensities are larger for NG in all cases and range between 2 and 16 depending on the dye molecules and Raman peaks.

9 7. Comparison of GERS and SERS effects by applying sputtered Au nanoparticles on SiO2 as SERS substrates. fig. S7. Raman spectra comparing MB deposited on NG, PG, and Au nanoparticles. The peak marked as "*" is Si substrate peak. It can be clearly observed that NG performs around 10 times and PG performs around 5 times better than Au nanoparticles. 8. Testing the molecular sensibility of the NG with different laser excitation energies. Figure S8 (A to C) presents the Raman intensity ratio between the highest molecule Raman peaks (1650 cm -1 for RhB, 1625 cm -1 for CRV and 1620 cm -1 for MB) and the graphene G- band. It can be clearly observed that for certain molecules on top of NG sheets, the intensity of Raman fingerprint of those molecules will be most enhanced with certain laser excitation lines, while smaller or no enhancement can be detected with other laser lines.

10 fig. S8. Testing the molecular sensibility of the NG with different laser excitation energies. It shows the Raman intensity ratio between the strongest Raman peak of (A) RhB 1650 cm -1, (B) CRV 1625 cm -1 and (C) MB 1620 cm -1, and the graphene G-band. It can be clearly observed from the graph that 2.41 ev laser line enhances the Raman signal of RhB and CRV the most, while 1.92 ev laser line enhances the Raman signal of MB the most. 9. Photos of RhB in ethanol solutions with different concentration fig. S9. Photos of RhB in ethanol solution with different concentrations. It should be noted that when the concentration of RhB is below 10-8 mol/l, the solution is almost transparent limiting the detection of the molecules by eyes. 10. AFM images of NG samples with different concentrations of RhB showing clustering effect at high concentration. Our tested dyes are salts, and their interactions are strong, so that when deposited on a surface they will usually diffuse and cluster together. The electronic structure of an aggregate is different from that of a single molecule, as is well documented in the literature. In order to

11 better understand the clustering effect, we have performed AFM studies of NG samples with different concentrations of RhB. AFM images of NG sample with 1 x 10-5 mol/l RhB is shown in fig. S10A while fig. S10B represents 1 x 10-8 mol/l concentration of RhB on top of NG. It can be seen that even if we have rinsed the sample with ethanol after soaking, there are still many clusters remaining for the high dye concentrations (1 x 10-5 mol/l RhB dyes), while this clustering effect decreases significantly when the concentration drops to 1 x 10-8 mol/l. Therefore, the rinsing does not remove all the clusters that contribute to the diminishing of the Raman signal of the molecules. fig. S10. AFM images of NG samples with different concentrations of RhB. (A) 1 x 10-5 mol/l concentration RhB, and (B) 1 x 10-8 mol/l concentration RhB. It can be observed that even after rinsing the sample with ethanol followed by solution soaking, many clusters remain for the high dye concentrations (e.g. 1 x 10-5 mol/l RhB). Note that the clustering effect decreases significantly when the concentration drops to 1 x 10-8 mol/l. 11. Raman Spectrum of 5x10-12 mol/l RhB on NG. Figure S11 demonstrates the Raman spectrum of 5x10-12 mol/l concentration of RhB on top of NG. In this spectrum, we observed that only one peak of RhB can be clearly observed (marked with a black arrow), and its intensity is very low compared to any graphene Raman peak (1/10 of the intensity when compared to the graphene G-band.), and very close to the noise level. In this context, we assumed this could not be considered as a good spectrum to

12 detect molecules, so we draw the conclusion that the absolute detection limit of RhB for our NG sample is 5x10-11 mol/l. fig. S11. Raman spectrum of M RhB on NG sheets. The laser excitation line is 2.41 ev and the integration time is 10 s, where the arrows indicate RhB peak. 12. The HOMO-LUMO gap of molecule with resonant Raman laser excitation energy Table S1 summarizes the value of calculated HOMO-LUMO gap of each molecule, experiment adsorption peak for each molecule and the laser excitation energy when resonant Raman happens with each molecule performed in this work (Fig. 3, fig. S8). It should be noted that the Raman sensing is the strongest when the laser energy is close to the molecular HOMO-LUMO gap. This provides a possible way to determine the HOMO-LUMO gap of a molecule simply by performing resonant Raman measurements using graphene as substrate.

13 table S1. Calculated HOMO-LUMO gap, adsorption data, and resonant Raman laser excitation energy for each molecule. Dye Molecule HOMO-LUMO gap on PG (calculated) HOMO-LUMO gap on NG (calculated) HOMO-E F gap on NG (calculated) Adsorption peak Resonant Laser excitation energy RhB 2.73 ev 2.65 ev 2.39 ev 2.29 ev 2.41 ev CRV 2.62 ev 2.61 ev 2.41 ev 2.11 ev 2.41 ev MB 2.48 ev 2.38 ev 2.22 ev 1.89 ev 1.92 ev

14 13. Probing enhanced Raman scattering effect between NG and PG sheets for additional molecules such as R6G and PPP. fig. S12. Raman spectra comparing R6G and PPP molecules on NG and PG using different concentrations ( mol/l and mol/l). We noted that NG performs 6 times better than PG, while for PPP, NG performs 2 times better. The spectra are normalized by graphene 2D-band.

Band-like transport in highly crystalline graphene films from

Band-like transport in highly crystalline graphene films from Supplementary figures Title: Band-like transport in highly crystalline graphene films from defective graphene oxides R. Negishi 1,*, M. Akabori 2, T. Ito 3, Y. Watanabe 4 and Y. Kobayashi 1 1 Department

More information

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping

Formation of N-doped Graphene Nanoribbons via Chemical Unzipping SUPPORTING INFORMATION FILE FOR: Formation of N-doped Graphene Nanoribbons via Chemical Unzipping Rodolfo Cruz-Silva 1, Aaron Morelos-Gómez 3, Sofia Vega-Díaz 1, Ferdinando Tristán- López 1, Ana L. Elias

More information

Supporting Information. Molecular Selectivity of. Graphene-Enhanced Raman Scattering

Supporting Information. Molecular Selectivity of. Graphene-Enhanced Raman Scattering 1 Supporting Information 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Molecular Selectivity of Graphene-Enhanced Raman Scattering Shengxi Huang,, Xi Ling,,, * Liangbo Liang, ǁ Yi Song,

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Supplementary Figures GO Supplementary Figure S1 1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Schematic illustration of synthesis of Au square sheets on graphene oxide sheets.

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/9/e1600858/dc1 Supplementary Materials for Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis This PDF file includes: Jiawei Liu,

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

Supporting Information

Supporting Information Supporting Information Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules Jing Liu #, Jianhe Guo #, Guowen Meng and Donglei Fan*

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering

Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Supporting Information Cyclic Electroplating and Stripping of Silver on Au@SiO 2 Core/Shell Nanoparticles for Sensitive and Recyclable Substrates of Surface-enhanced Raman Scattering Dan Li a, Da-Wei Li

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

4. Synthesis of graphene from methane, acetonitrile, xylene and

4. Synthesis of graphene from methane, acetonitrile, xylene and CHAPTER 4 4. Synthesis of graphene from methane, acetonitrile, xylene and ethanol 4.1 Introduction In this chapter, the synthesis of graphene from three different carbon precursors include gases (methane,

More information

Highly efficient SERS test strips

Highly efficient SERS test strips Electronic Supplementary Information (ESI) for Highly efficient SERS test strips 5 Ran Zhang, a Bin-Bin Xu, a Xue-Qing Liu, a Yong-Lai Zhang, a Ying Xu, a Qi-Dai Chen, * a and Hong-Bo Sun* a,b 5 10 Experimental

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/e1701661/dc1 Supplementary Materials for Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface Jun Hong Park,

More information

The Inclusion of Impurities in Graphene Grown on Silicon Carbide

The Inclusion of Impurities in Graphene Grown on Silicon Carbide The Inclusion of Impurities in Graphene Grown on Silicon Carbide Sara Rothwell May 23, 2013 Goal: Experimentally Fabricate Doped Graphene Procedure: 1. Introduce dopant in substrate ImplantaEon NO Process

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer Supplementary Information for Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer MoS 2 Films Yifei Yu 1, Chun Li 1, Yi Liu 3, Liqin Su 4, Yong Zhang 4, Linyou Cao 1,2 * 1 Department

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Shell-isolated nanoparticle-enhanced Raman spectroscopy Shell-isolated nanoparticle-enhanced Raman spectroscopy Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong

More information

Supporting Information

Supporting Information Supporting Information Fluorescent Carbon Nanoparticle: Synthesis, Characterization and Bio-imaging Application S.C. Ray (a),*, Arindam Saha, Nikhil R. Jana * and Rupa Sarkar Centre for Advanced Materials,

More information

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Supporting Information Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Baoshan Tang 1,2,, Zhi Gen Yu 3,, Li Huang 4, Jianwei Chai

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information Engineering the Intermediate Band States in Amorphous

More information

Supporting Information

Supporting Information Supporting Information Oh et al. 10.1073/pnas.0811923106 SI Text Hysteresis of BPE-PTCDI MW-TFTs. Fig. S9 represents bidirectional transfer plots at V DS 100VinN 2 atmosphere for transistors constructed

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide Supporting online material Konstantin V. Emtsev 1, Aaron Bostwick 2, Karsten Horn

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Covalent Bulk Functionalization of Graphene Jan M. Englert a, Christoph Dotzer a, Guang Yang b, Martin Schmid c, Christian Papp c, J. Michael Gottfried c, Hans-Peter Steinrück

More information

[Supporting Information]

[Supporting Information] Transmittance (a.u.) Intensity (a.u.) Intensity (a.u.) [Supporting Information] New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content Sunita Dey, P. Chithaiah,

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Instantaneous reduction of graphene oxide at room temperature

Instantaneous reduction of graphene oxide at room temperature Instantaneous reduction of graphene oxide at room temperature Barun Kuma Burman, Pitamber Mahanandia and Karuna Kar Nanda Materials Research Centre, Indian Institute of Science, Bangalore-560012, India

More information

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before conversion. Most of the graphene sample was folded after

More information

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation

Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Supplementary Information Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation Yu Liu, Shuping Xu, Haibo Li, Xiaoguang Jian, Weiqing Xu* State Key

More information

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in Supporting Information High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids Suchithra Padmajan Sasikala 1, Lucile Henry 1, Gulen Yesilbag Tonga

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links Journal Name Dynamic Article Links Cite this: DOI:.39/c0xx00000x www.rsc.org/xxxxxx Supporting Information Significant enhancement in blue emission and electrical conductivity of N-doped graphene Tran

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/6/e1501764/dc1 Supplementary Materials for Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells Yongcai Qiu, Wei Liu, Wei Chen, Wei

More information

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008 A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide Ryan Huschka LANP Seminar February 19, 2008 TiO 2 Applications White Pigment Photocatalyst Previous methods to

More information

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Supporting Information Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Zhongbo Yan, Ming Xia, Pei Zhang, and Ya-Hong Xie* Department of

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Information Vertical Heterostructures of MoS2 and Graphene Nanoribbons

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

Cu 2 graphene oxide composite for removal of contaminants from water and supercapacitor

Cu 2 graphene oxide composite for removal of contaminants from water and supercapacitor Electronic Supplementary Information (ESI) for Cu 2 O@reduced graphene oxide composite for removal of contaminants from water and supercapacitor Baojun Li, a Huaqiang Cao,* a Gui Yin, b Yuexiang Lu, a

More information

Supplementary Information. "Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays"

Supplementary Information. Enhanced light-matter interactions in. graphene-covered gold nanovoid arrays Supplementary Information "Enhanced light-matter interactions in graphene-covered gold nanovoid arrays" Xiaolong Zhu,, Lei Shi, Michael S. Schmidt, Anja Boisen, Ole Hansen,, Jian Zi, Sanshui Xiao,,, and

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Electronic Supplementary Information. Experimental details graphene synthesis

Electronic Supplementary Information. Experimental details graphene synthesis Electronic Supplementary Information Experimental details graphene synthesis Graphene is commercially obtained from Graphene Supermarket (Reading, MA, USA) 1 and is produced via a substrate-free gas-phase

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 218 Supporting Information Multi-Functional Organosilane-Polymerized Carbon Dots Inverse Opals Junchao

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Effect of airborne contaminants on the wettability of supported graphene and graphite Zhiting Li 1,ǂ, Yongjin Wang 2, ǂ, Andrew Kozbial 2, Ganesh Shenoy 1, Feng Zhou 1, Rebecca McGinley 2, Patrick Ireland

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 216 Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

More information

Wide-gap Semiconducting Graphene from Nitrogen-seeded SiC

Wide-gap Semiconducting Graphene from Nitrogen-seeded SiC Wide-gap Semiconducting Graphene from Nitrogen-seeded SiC F. Wang, 1 G. Liu, 2 S. Rothwell, 3 M. Nevius, 1 A. Tejeda, 4, 5 A. Taleb-Ibrahimi, 6 L.C. Feldman, 2 P.I. Cohen, 3 and E.H. Conrad 1 1 School

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating Atomic Force icroscopy Characterization of Room- Temperature Adlayers of Small Organic olecules through Graphene Templating Peigen Cao, Ke Xu,2, Joseph O. Varghese, and James R. Heath *. Kavli Nanoscience

More information

Supporting information. Uniform Graphene Quantum Dots Patterned from Selfassembled

Supporting information. Uniform Graphene Quantum Dots Patterned from Selfassembled Supporting information Uniform Graphene Quantum Dots Patterned from Selfassembled Silica Nanodots Jinsup Lee,,, Kyungho Kim,, Woon Ik Park, Bo-Hyun Kim,, Jong Hyun Park, Tae-Heon Kim, Sungyool Bong, Chul-Hong

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/e1701373/dc1 Supplementary Materials for Atomically thin gallium layers from solid-melt exfoliation Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick,

More information

One-step Solution Processing of Ag, Au and Hybrids for SERS

One-step Solution Processing of Ag, Au and Hybrids for SERS 1 2 3 Supplementary Information One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS 4 5 6 Elumalai Satheeshkumar 1, Taron Makaryan 2, Armen Melikyan 3, Hayk Minassian 4, Yury Gogotsi 2*

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/5/e1603282/dc1 Supplementary Materials for Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states

More information

Supporting Information

Supporting Information Supporting Information Confined Synthesis of Two-Dimensional Covalent Organic Frameworks Thin Films within Superspreading Water Layer Qing Hao,, Chuangqi Zhao, Bing Sun, Cheng Lu,, Jian Liu,, MingJie Liu,*

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Supplemental Information for

Supplemental Information for Supplemental Information for Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates Yoshimasa

More information

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using

Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using Supplementary Figure 1: Power dependence of hot-electrons reduction of 4-NTP to 4-ATP. a) SERS spectra of the hot-electron reduction reaction using 633 nm laser excitation at different powers and b) the

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/3/e1602215/dc1 Supplementary Materials for Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution Changdeuck Bae, Thi Anh Ho, Hyunchul

More information

Other SPM Techniques. Scanning Probe Microscopy HT10

Other SPM Techniques. Scanning Probe Microscopy HT10 Other SPM Techniques Scanning Near-Field Optical Microscopy (SNOM) Scanning Capacitance Microscopy (SCM) Scanning Spreading Resistance Microscopy (SSRM) Multiprobe techniques Electrostatic Force Microscopy,

More information

Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors

Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors Ming Li, Nianqiang (Nick) Wu* Mechanical & Aerospace Engineering West Virginia University Morgantown, WV 26506 Presentation Outline

More information

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways

Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Single Gold Nanoparticles as Real-Time Optical Probes for the Detection of NADH-Dependent Intracellular Metabolic Enzymatic Pathways Lei Zhang, Yang Li, Da-Wei Li, Chao Jing,Xiaoyuan Chen, Min Lv, Qing

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification

Fabrication of graphene quantum dot-decorated graphene sheets via. chemical surface modification Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for: Fabrication of graphene quantum dot-decorated graphene sheets via

More information

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection Te-Wei Chang, Manas Ranjan Gartia and Gang Logan Liu Department of Electrical

More information

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces SUPPORTING INFORMATION. Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces Lon A. Porter, Jr., Hee Cheul Choi, Alexander E. Ribbe, and Jillian M. Buriak Department

More information

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Supplementary information Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Hak Ki Yu 1,2, Kannan Balasubramanian 3, Kisoo Kim 4,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

sheets in the exfoliation step

sheets in the exfoliation step Optimization of the size and yield of graphene oxide sheets in the exfoliation step Cristina Botas, Ana M. Pérez-Mas, Patricia Álvarez, Ricardo Santamaría, Marcos Granda, Clara Blanco, and Rosa Menéndez

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/333/6045/999/dc1 Supporting Online Material for Visualizing Individual Nitrogen Dopants in Monolayer Graphene Liuyan Zhao, Rui He, Kwang Taeg Rim, Theanne Schiros, Keun

More information

Supplementary information for: Making graphene. nanoribbons photoluminescent

Supplementary information for: Making graphene. nanoribbons photoluminescent Supplementary information for: Making graphene nanoribbons photoluminescent B.V. Senkovskiy,,,@ M. Pfeiffer,,@ S.K. Alavi,,,@ A. Bliesener, J. Zhu, S. Michel, A.V. Fedorov,,, R. German, D. Hertel, D. Haberer,

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e16534/dc1 Supplementary Materials for Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases Hong-Hua Fang,

More information

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Electronic Supplementary Material Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Li Wu 1,2, Jiasi Wang 1,2, Nan Gao 1, Jinsong Ren 1, Andong Zhao 1,2, and

More information

Identifying the crystal orientation of the black phosphorus

Identifying the crystal orientation of the black phosphorus Identifying the crystal orientation of the black phosphorus Yu ZHANG I. Introduction Black phosphorus is a new member of 2D materials family. It has several noticeable properties, for instance, the direct

More information

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating Supplementary Figures Tetramethyl orthosilicate (TMOS) Tetrahydrofuran anhydrous (THF) Trimethyl methoxy silane (TMMS) Trimethyl silil acetate (TMSA) Starting solution Hydrolysis reaction under thermostatic

More information