Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces

Size: px
Start display at page:

Download "Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces"

Transcription

1 Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces Yinghua Qiu, Jian Ma and Yunfei Chen* Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, , China *Corresponding author: Tel: Fax:

2 Table S1. Numbers of the water molecules and ions in the MD systems with 1.0M NaCl and different surface charge densities. Surface charge density (C/m 2 ) number of water molecules number of Na + ions number of Cl ions Case Case Table S2. Numbers of the water molecules and ions in the MD systems with C/m 2 and different concentrations. Concentration (M) number of water molecules number of Na + ions number of Cl ions Table S3. Numbers of the water molecules and ions in the MD systems with C/m 2 in 4.0M NaCl but different channel widths. channel width (nm) number of water molecules number of Na + ions number of Cl ions

3 Table S4. LJ potential parameters in the equation U( r) ε ( σ rij ) ( σ rij ) = 4 [ / / ] without consideration of the interaction involving hydrogen atoms. Atom pair σ(å) ε (kj mol -1 ) O-O O-Na O-Cl O-Si Na + -Na Na + -Cl Na + -Si Cl - -Cl Cl - -Si

4 (a) (b) Fig. S1. (a)snapshot of the local structures for Na + ions in inner and outer layers from the MD simulation with surface charge density C/m 2 in 1 M NaCl solution at 3.0 nm separation between the surfaces. The gray and red dashed lines show the outer and inner Helmholtz layer, respectively. (b) Red circle shows the ions in inner Helmholtz layer.

5 Fig. S2. Snapshot of the local structures for Na + ions in inner and outer layers from the MD simulation with surface charge density C/m 2 in 1 M NaCl solution at 3.0 nm separation between the surfaces. The red circles show two Na + ions accumulate near one surface charge.

6 Fig. S3. MD simulation results of ion density profiles and charge distribution perpendicular to the surface with charge density from C/m 2 to 0.3 C/m 2 in 0.5 M CaCl 2 solution at 3.0 nm separation between the surfaces. (a). Ca 2+ ion profiles (b). Cl ion profiles (c). Integrated Charge distributions. (d) The most

7 inverted charges at each interface with different surface charge density from 0.075C/m 2 to 0.3C/m 2.The corresponding charge distributions are shown in Fig 2(a), (b), (c), and (e). Fig. S4 Coulomb coupling constant at charged surfaces with different surface charge densities. (Ref. 1) Fig. S5 Normalized peak values for Na + and Cl - ions in different concentration solutions. The peak values in 0.2 M NaCl solution were set as 1.

8 Fig. S6 Repulsive pressure between two silicon surfaces in NaCl solutions with different concentrations (a), separations (b) and time (c). During the simulation, the pressure was calculated each ps. Each point in (a) and (b) was average over 1ns.

9 Fig. S7 Ion concentration distributions in the normal direction of the same charged surfaces but immersed in differently concentrated NaCl solution. The inset is the ion concentration profiles in the center of the nanospace. The surface charge density is 0.3C/m 2. Fig. S8 Debye lengths in monovalent aqueous solutions with different concentrations.

10 Fig. S9 Ion distributions in the nanoconfined spaces with surface separation from 3.0 to 0.85 nm. The surface charge density in the five cases was the same as 0.15 C/m 2. In the figure of different cases, the y axis has the same range. Fig. S10 Integrated charge distributions in different nanochannels with the same charged surfaces but different confinements in 4.0 M NaCl solution. The surface charge density is 0.15 C/m 2.

11 Fig. S11 Radial distribution function g ( r) Na + O in 1.0 M NaCl solution. The surface charge density is 0.15 C/m 2 and channel height is 3.0 nm. Fig. S12 Coordination number distributions in different nanochannels with the same charged surfaces but different confinements in 4.0 M NaCl solution. The surface charge density is 0.15 C/m 2. Reference:

12 1. Grosberg, A. Y.; Nguyen, T. T.; Shklovskii, B. I., Colloquium: The Physics of Charge Inversion in Chemical and Biological Systems. Rev. Mod. Phys. 2002, 74,

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Ionic Behavior in Highly Concentrated Aqueous. Solutions Nanoconfined between Discretely Charged. Silicon Surfaces

Ionic Behavior in Highly Concentrated Aqueous. Solutions Nanoconfined between Discretely Charged. Silicon Surfaces Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces Yinghua Qiu, Jian Ma and Yunfei Chen* Jiangsu Key Laboratory for Design and Manufacture

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

CHEMISTRY 15 EXAM II-Version A (White)

CHEMISTRY 15 EXAM II-Version A (White) CHEMISTRY 15 EXAM II-Version A (White) Dr. M. Richards-Babb June 8, 2001 An optical scoring machine will grade this examination. The machine is not programmed to accept the correct one of two sensed answers

More information

Research Article MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells

Research Article MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells Computational and Mathematical Methods in Medicine Volume 2016, Article ID 2787382, 5 pages http://dx.doi.org/10.1155/2016/2787382 Research Article MD Study of Solution Concentrations on Ion Distribution

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide.

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide. 1. (6 pts) Given the following data at 25 o C: 2 O 3 (g) > 3 O 2 (g) H o = 427 kj O 2 (g) > 2 O (g) H o = 495 kj NO (g) + O 3 (g) > NO 2 (g) + O 2 (g) H o = 199 kj Calculate H o for the following reaction

More information

Water-methanol separation with carbon nanotubes and electric fields

Water-methanol separation with carbon nanotubes and electric fields Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 215 Supplementary Information: Water-methanol separation with carbon nanotubes and electric fields

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy? Atomic Structure 1. For a hydrogen atom which electron transition requires the largest amount of energy? A. n = 4 to n = 10 B. n = 3 to n = 2 C. n = 3 to n = 4 D. n = 1 to n = 3 E. n = 2 to n = 4 2. Which

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume.

The Mole Concept. It is easily converted to grams, no of particles or in the case of gas volume. The Mole Concept The mole is a convenient unit A mole is the number of atoms present in exactly 12 g of the isotope carbon-12. In 12 g of carbon-12 there are 6.022 x 10 23 carbon atoms It is easily converted

More information

CHAPTER 3 Ionic Compounds. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 3 Ionic Compounds. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 3 Ionic Compounds General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 3: Ionic Compounds Learning Objectives: q Octet Rule & Predicting ionic Charges q Ionic Bonds q Formation

More information

Analysis of cations and anions by Ion- Selective Electrodes (ISEs)

Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Purpose: The purpose of this assignment is to introduce potentiometric measurements of ionic species by ion selective electrodes (ISEs)

More information

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials Bull. Mater. Sci., Vol. 31, No. 3, June 2008, pp. 525 532. Indian Academy of Sciences. Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

A. Incorrect. Check the sum of elements of the same type on both sides of the equation. B. Correct. You have balanced the equation correctly!

A. Incorrect. Check the sum of elements of the same type on both sides of the equation. B. Correct. You have balanced the equation correctly! DAT General Chemistry Problem Drill 07: Balancing Equations Question No. 1 of 10 1. When the following equation is balanced, what is the coefficient for NaOH? H 2 CO 3 (aq) + NaOH (aq) Na 2 CO 3 (aq) +

More information

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons.

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons. Bonding and the Outer Shell Use this table for reference: http://www.dreamwv.com/primer/page/s_pertab.html Atoms with incomplete shells react with others in a way that allows it to complete the outer shell.

More information

Supporting information for. Microfluidic Impedance Cytometer with Inertial Focusing and. Liquid Electrodes for High-Throughput Cell Counting and

Supporting information for. Microfluidic Impedance Cytometer with Inertial Focusing and. Liquid Electrodes for High-Throughput Cell Counting and Supporting information for Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination Wenlai Tang, Dezhi Tang, Zhonghua Ni, Nan Xiang*

More information

2 Answer all the questions. How many neutrons are there in an atom of chlorine-37?... [1] How many electrons are needed to fill one orbital?

2 Answer all the questions. How many neutrons are there in an atom of chlorine-37?... [1] How many electrons are needed to fill one orbital? 2 Answer all the questions 1 The answer to each part of this question is a number (a) (i) How many neutrons are there in an atom of chlorine-37? [1] (ii) How many electrons are needed to fill one orbital?

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

There are two main requirements for atoms to form a covalent bond and make a molecule:

There are two main requirements for atoms to form a covalent bond and make a molecule: HOW ATOMS BOND TO EACH OTHER Covalent bonding Remember that a hydrogen atom has 1 proton and 1 electron and that the electron and the proton are attracted to each other. But if the atoms get close enough

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

Lecture outline: Chapter 7 Periodic properties

Lecture outline: Chapter 7 Periodic properties Lecture outline: Chapter 7 Periodic properties 1. Electrostatic effects 2. Atomic size 3. Ionization energy 4. Electron affinity it 5. Summarize some periodic properties 1 Some important terms Electron

More information

Bohr Model of Hydrogen Atom

Bohr Model of Hydrogen Atom Bohr Model of Hydrogen Atom electrons move in circular orbits around nucleus orbits can only be of certain radii each radius corresponds to different energy ( only certain energies are allowed) n - defines

More information

Group Members: Your Name In Class Exercise #6. Photon A. Energy B

Group Members: Your Name In Class Exercise #6. Photon A. Energy B Group Members: Your Name In Class Exercise #6 Shell Structure of Atoms Part II Photoelectron Spectroscopy Photoelectron spectroscopy is closely related to the photoelectric effect. When high energy photons

More information

Question: How are electrons arranged in an atom?

Question: How are electrons arranged in an atom? Honors Chemistry: Coulomb s Law and periodic trends Question: How are electrons arranged in an atom? Coulomb s Law equation: 1. A) Define what each of the following variables in the equation represents.

More information

Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model

Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model 1154 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 8 Song Hi Lee Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model Song Hi Lee Department of Chemistry, Kyungsung University,

More information

a) how many electrons do you see in the picture? How many protons? d) compare the energy from 3b with the energy in 2a and then in 2c.

a) how many electrons do you see in the picture? How many protons? d) compare the energy from 3b with the energy in 2a and then in 2c. During Class Invention Question: How are electrons arranged in an atom? 1. Describe the nature of the interaction between protons and electrons in an atom? Consider using some or all of the following terms

More information

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ Bonding ¼ Type of interaction Interaction energy w(r) Covalent, metallic Complicated, short range Charge charge þq 1 Q 2 /4p3 0 r (Coulomb energy) Charge dipole Qu cos q/4p3 0 r 2 Q 2 u 2 /6(4p3 0 ) 2

More information

Page Points Score Total: 175

Page Points Score Total: 175 Name: Date: Page Points Score 2 14 3 16 4 26 5 22 6 30 7 14 8 28 9 25 Total: 175 Show all your work. Write in Pen. Check your significant figures and units. Please show all your work. Answers must be circled.

More information

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona Regulació electrostàtica de canals microfluídics i porus biològics Jordi Faraudo Institut de Ciència de Materials de Barcelona A few (interesting?) examples of nanofluidic devices Electrostatic regulation

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Table Of Contents Section.1 Measuring Matter Section.2 Mass and the Mole Section.3 Moles of Compounds Chapter : Section.4 Empirical and Molecular Formulas Section.5 Formulas

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids?

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? States of Mattter What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? What external factors affect whether something is

More information

State one advantage and one disadvantage of using chlorine in water treatment. advantage: disadvantage: [2]

State one advantage and one disadvantage of using chlorine in water treatment. advantage: disadvantage: [2] 1 Chlorine and bromine are elements in Group 7 of the Periodic Table. (a) Chlorine is used in water treatment. State one advantage and one disadvantage of using chlorine in water treatment. advantage:...

More information

Electrochemical Properties of Materials for Electrical Energy Storage Applications

Electrochemical Properties of Materials for Electrical Energy Storage Applications Electrochemical Properties of Materials for Electrical Energy Storage Applications Lecture Note 3 October 11, 2013 Kwang Kim Yonsei Univ., KOREA kbkim@yonsei.ac.kr 39 Y 88.91 8 O 16.00 7 N 14.01 34 Se

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study

Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study This journal is The Royal Society of Chemistry Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study Chandan Kumar Choudhury

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP Shielding & Atomic Radius, Ions & Ionic Radius Chemistry AP Periodic Table Periodic Table Elements in same column have similar properties Column # (IA-VIIIA) gives # valence electrons All elements in column

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Chapter 9 Ionic and Covalent Bonding

Chapter 9 Ionic and Covalent Bonding Chem 1045 Prof George W.J. Kenney, Jr General Chemistry by Ebbing and Gammon, 8th Edition Last Update: 06-April-2009 Chapter 9 Ionic and Covalent Bonding These Notes are to SUPPLIMENT the Text, They do

More information

Nanotube AFM Probe Resolution

Nanotube AFM Probe Resolution Influence of Elastic Deformation on Single-Wall Carbon Nanotube AFM Probe Resolution Ian R. Shapiro, Santiago D. Solares, Maria J. Esplandiu, Lawrence A. Wade, William A. Goddard,* and C. Patrick Collier*

More information

Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement

Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement Xin Yin, Yeqi Shi, Yanbing Wei, Yongho Joo, Padma Gopalan, Izabela Szlufarska,

More information

Name PRACTICE Unit 3: Periodic Table

Name PRACTICE Unit 3: Periodic Table 1. Compared to the atoms of nonmetals in Period 3, the atoms of metals in Period 3 have (1) fewer valence electrons (2) more valence electrons (3) fewer electron shells (4) more electron shells 2. On the

More information

arxiv:cond-mat/ v3 [cond-mat.soft] 12 Sep 2001

arxiv:cond-mat/ v3 [cond-mat.soft] 12 Sep 2001 EUROPHYSICS LETTERS 15 August 2000 Europhys. Lett., 51 (4), pp. 461 468 (2000) arxiv:cond-mat/0006501v3 [cond-mat.soft] 12 Sep 2001 Ground state of two unlike charged colloids: An analogy with ionic bonding

More information

CHEMISTRY Matter and Change. Chapter 10: The Mole

CHEMISTRY Matter and Change. Chapter 10: The Mole CHEMISTRY Matter and Change Chapter 10: The Mole CHAPTER 10 Table Of Contents Section 10.1 Measuring Matter Section 10.2 Mass and the Mole Section 10.3 Moles of Compounds Section 10.4 Empirical and Molecular

More information

Chemistry 11 Unit 2: Chemical Bonding Test Prep. 1. The transfer of two electrons from one atom to another will result in a bond that is a.

Chemistry 11 Unit 2: Chemical Bonding Test Prep. 1. The transfer of two electrons from one atom to another will result in a bond that is a. Chemistry 11 Unit 2: Chemical Bonding Test Prep Chemist: Part 1: Identify the letter of the choice that best completes the statement or answers the question. 1. The transfer of two electrons from one atom

More information

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only.

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only. 1. Identify from the unbalanced equations below the one that does not represent a redox reaction. a. H 2O 2(aq) + MnO 4 - (aq) O 2(g) + Mn 2+ (aq) b. H 2(g) + N 2(g) NH 3(g) c. NaCl (aq) + AgNO 3(aq) NaNO

More information

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements PowerPoint to accompany Chapter 6 Periodic Properties of the Elements Development of the Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical,

More information

(a) Fill in the last two boxes in the table below to show the order in which the next two sub-shells are filled.

(a) Fill in the last two boxes in the table below to show the order in which the next two sub-shells are filled. 1 In atoms, electrons fill up the sub-shells in order of increasing energy. (a) Fill in the last two boxes in the table below to show the order in which the next two sub-shells are filled. 1s 2s 2p s p

More information

Using Molecular Dynamics to Compute Properties CHEM 430

Using Molecular Dynamics to Compute Properties CHEM 430 Using Molecular Dynamics to Compute Properties CHEM 43 Heat Capacity and Energy Fluctuations Running an MD Simulation Equilibration Phase Before data-collection and results can be analyzed the system

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Chapter 6 INORGANIC THERMODYNAMICS. Exercises

Chapter 6 INORGANIC THERMODYNAMICS. Exercises Chapter 6 INORGANIC THERMODYNAMICS Exercises 6. (a) A reaction that occurs without external help, or a reaction for which G is negative. (b) A measure of disorder. (c) The enthalpy change when a mole of

More information

NH + Chemistry 6A F2007. Dr. J.A. Mack 10/19/07. Draw and describe the following molecule: (2) = 16 electrons needed

NH + Chemistry 6A F2007. Dr. J.A. Mack 10/19/07. Draw and describe the following molecule: (2) = 16 electrons needed Chemistry 6A F007 Dr. J.A. Mack 10/19/07 10/19/07 Dr. Mack. CSUS 1 Draw and describe the following molecule: 8 + 4() = 16 electrons needed 5 + 4(1) 1 = 8 electrons needed 16 8 = 8 electrons shared N must

More information

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 8 of Chemical John D. Bookstaver St. Charles Community College Cottleville, MO Chemical Bonds Chemical bonds are the forces that hold the atoms together in substances. Three

More information

CHEM 103 Quantum Mechanics and Periodic Trends

CHEM 103 Quantum Mechanics and Periodic Trends CHEM 103 Quantum Mechanics and Periodic Trends Lecture Notes April 11, 2006 Prof. Sevian Agenda Predicting electronic configurations using the QM model Group similarities Interpreting measured properties

More information

Lesson 01 and 02: Introduction to Chemical Reaction Equations. 01 Chemical Reactions

Lesson 01 and 02: Introduction to Chemical Reaction Equations. 01 Chemical Reactions Chemistry 11, Chemical Reactions, Unit 05 1 Lesson 01 and 02: Introduction to Chemical Reaction Equations 01 Chemical Reactions A chemical reaction is a process by which one or more substances may be transformed

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Chemistry Section Review 7.3

Chemistry Section Review 7.3 Chemistry Section Review 7.3 Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The molar mass of an element

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 9 pages A. Multiple choice (7 points) B. Stoichiometry (10 points) C. Photoelectric

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

CHEMICAL BONDING SUTHERLAND HIGH SCHOOL GRADE 10 PHYSICAL SCIENCE TB. 103 K. FALING EDITED: R. BASSON

CHEMICAL BONDING SUTHERLAND HIGH SCHOOL GRADE 10 PHYSICAL SCIENCE TB. 103 K. FALING EDITED: R. BASSON CHEMICAL BONDING SUTHERLAND HIGH SCHOOL K. FALING EDITED: R. BASSON GRADE 10 PHYSICAL SCIENCE TB. 103 HOW DOES BONDING WORK? The chemical reaction between elements leads to compounds, which have new physical

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

The Chemical Context of Life

The Chemical Context of Life Elements and Compounds The Chemical Context of Life Sodium Chlorine! Sodium chloride! An element is a substance that cannot be broken down to other substances by chemical reactions A compound is a substance

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Review of Chemistry 11

Review of Chemistry 11 Review of Chemistry 11 HCl C 3 H 8 SO 2 NH 4 Cl KOH H 2 SO 4 H 2 O AgNO 3 PbSO 4 H 3 PO 4 Ca(OH) 2 Al(OH) 3 P 2 O 5 Ba(OH) 2 CH 3 COOH 1. Classify the above as ionic or covalent by making two lists. Describe

More information

Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field

Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field Shaoshuai GUO 1,a, Xueyun HAN 1,b, Yufeng PENG 1,c* and Jiangting LI 1,d 1 College of Physics and Electronic

More information

CHAPTER 6 CHEMICAL BONDING TEXT BOOK EXERCISE Q.1. Select the correct statement. i. An ionic compound A + B - is most likely to be formed when ii. iii. a. the ionization energy of A is high and electron

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Supporting information. One-step facile synthesis of novel β-amino alcohol functionalized

Supporting information. One-step facile synthesis of novel β-amino alcohol functionalized Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting information One-step facile synthesis of novel β-amino alcohol functionalized carbon

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information Universal Repulsive Contribution to the Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information B. Shadrack Jabes, Dusan Bratko, and Alenka Luzar Department of Chemistry,

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Figure I. A. Look at the atomic sizes shown in the table and describe all the trends that you see in the space below.

Figure I. A. Look at the atomic sizes shown in the table and describe all the trends that you see in the space below. Question: How do we use the model of the electronic structure of the atom to understand periodic trends of the elements? I. Data Collection Using a web browser access the following address: http://www.chem.iastate.edu/group/greenbowe/sections/projectfolder/flashfiles/matters/periodictbl2.html

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Covalent bonding.

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at   Covalent bonding. Covalent bonding Mark Scheme Level Subject Exam Board Topic Booklet Pre U Chemistry Cambridge International Examinations Covalent bonding-chemical forces Mark Scheme Time Allowed: 72 minutes Score: /60

More information

Periodic Properties of the Elements

Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements DEVELOPMENT OF THE PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. Brown, LeMay,

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

UNIT 12 Solutions. Homework. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Warm-Up

UNIT 12 Solutions. Homework. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Warm-Up Name Period CRHS Academic Chemistry UNIT 12 Solutions Homework Due Date Assignment On-Time (100) Late (70) 12.1 12.2 12.3 12.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

2011 CHEM 120: CHEMICAL REACTIVITY

2011 CHEM 120: CHEMICAL REACTIVITY 2011 CHEM 120: CHEMICAL REACTIVITY INORGANIC CHEMISTRY SECTION Lecturer: Dr. M.D. Bala Textbook by Petrucci, Harwood, Herring and Madura 15 Lectures (4/10-29/10) 3 Tutorials 1 Quiz 1 Take-home test https://chemintra.ukzn.ac.za/

More information

Form A. Exam 1, Ch 1-4 September 23, Points

Form A. Exam 1, Ch 1-4 September 23, Points Chem 130 Name Exam 1, Ch 1-4 September 23, 2011 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units

More information

Elements in the Periodic Table show a periodic trend in atomic radius. In your answer you should use appropriate technical terms, spelled correctly.

Elements in the Periodic Table show a periodic trend in atomic radius. In your answer you should use appropriate technical terms, spelled correctly. 1 The Periodic Table is arranged in periods and groups (a) Elements in the Periodic Table show a periodic trend in atomic radius State and explain the trend in atomic radius from Li to F In your answer

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/310/5753/1480/dc1 Supporting Online Material for Electrowetting in Carbon Nanotubes J. Y. Chen, A. Kutana, C. P. Collier,* K. P. Giapis* *To whom correspondence should

More information

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5 Contents Getting the most from this book... 4 About this book.... 5 Content Guidance Atomic structure......................................... 6 Amount of substance....................................

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information

Atom the smallest unit of matter indivisible. Helium atom

Atom the smallest unit of matter indivisible. Helium atom Atom the smallest unit of matter indivisible Helium atom electron shells a) Atomic number = number of Electrons b) Electrons vary in the amount of energy they possess, and they occur at certain energy

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE International Journal of Modern Physics C Vol. 2, No. 9 (29) 1485 1492 c World Scientific Publishing Company STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE LEI GUO and ERIK

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Cation-Selective Electropreconcentration Il Hyung Shin, a Ki-jung

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

More reaction types. combustions and acid/base neutralizations

More reaction types. combustions and acid/base neutralizations More reaction types combustions and acid/base neutralizations Combustion reactions C x H y + O 2(g) CO 2(g) + H 2 O (l) + E If the hydrocarbon contains nitrogen as well C x H y N z + O 2(g) CO 2(g) + H

More information

3/24/11. Introduction! Electrogenic cell

3/24/11. Introduction! Electrogenic cell March 2011 Introduction Electrogenic cell Electrode/electrolyte interface Electrical double layer Half-cell potential Polarization Electrode equivalent circuits Biopotential electrodes Body surface electrodes

More information