Predicting physical properties of crystalline solids

Size: px
Start display at page:

Download "Predicting physical properties of crystalline solids"

Transcription

1 redicting physical properties of crystalline solids CSC Spring School in Computational Chemistry Antti Karttunen Department of Chemistry Aalto University

2 Ab initio materials modelling Methods based on quantum mechanics Two major branches of methods Ab initio molecular orbital theory (MO) Density functional theory (DFT) No system-dependent parametrization required Only the universal physical constants and the unit cell coordinates of the system are required to predict the properties of the system Choosing the right level of theory for a chemical problem is a demanding task With the help of powerful computational resources, modern materials modelling techniques can be used to Assist in the interpretation and explanation of experimental results redict the existence and properties of new materials and molecules The predictive power of the modern materials modelling techniques enables computational materials design Most effective in close collaboration with experimental work 2

3 Level of theory The level of theory determines the reliability of the results: 1. How the electron-electron interactions are described (= method ) 2. How a single electron is described (= one electron basis set ) The computational resource requirements depend on The level of theory The size of the model system (number of atoms) The type of the model system (molecular or periodic in 1D/2D/3D) Here the focus is on calculations based on Density Functional Theory (DFT) Currently the most practical computational approach for solids Typically atoms in the unit cell e - e - Nucleus 3

4 Models: Three states of matter Gas Solid Liquid Going from left to right: Accurate, non-parametrized molecular and materials modelling research generally becomes more difficult Reliable interpretation of the experiments also often becomes somewhat more difficult Direct comparison between quantum chemical calculations and experiment becomes more difficult The main challenge for liquid systems: finite temperature (T > 0) 4

5 Solid state models Bulk (3D), surfaces (2D), polymers (1D) eriodic models are defined using a unit cell (lattice vectors + atomic positions) Amorphous solids are much more challenging and comparable to liquids in difficulty! Diamond (3D) Graphene (2D) Graphite (3D) Carbon nanotube (1D) Carbon fullerene (0D) 5

6 How to find structural data? ICSD (Inorganic Crystal Structure Database) Crystal structures of inorganic compounds Currently over structures ( ), over added every year Available at (if your university has a license) CSD (Cambridge Structural Database) Crystal structure data for organic and organometallic compounds Over structures in the 2015 release (> new structures / year) Mostly molecular crystals Available at (if your university has a license) Search the literature, the papers often include Unit cell parameters Atomic positions Or build it from scratch! 6

7 Builders / Visualization Accelrys Materials Studio (available via VESTA ( Mainly for visualization: VMD / Jmol 7

8 Introduction to CRYSTAL A general-purpose program for studying crystalline solids Development began already in the late 1970s, first public release in 1988 Symmetry handling was implemented extremely well very early to speed up the calculations Both ab initio wavefunction and DFT methods implemented First program to enable hybrid DFT calculations on solids (1998) Based on local Gaussian-type basis sets Electron-correlated ab initio calculations on solids are also possible: CRYSCOR Local-M2, feasible for systems with 100+ atoms in the unit cell

9 Models in CRYSTAL eriodic 3D/2D/1D/0D systems with full symmetry treatment 3D crystalline solids (230 space groups) 2D films and surfaces (80 layer groups) 1D polymers and nanotubes (75 rod groups + helical symmetries) 0D molecules (32 crystallographic point groups) Geometry manipulation and transformation with automatic symmetry handling 3D to n3d - supercell creation 3D to 2D - slab parallel to a selected crystalline face (hkl) 3D to 0D - cluster from a perfect crystal (H-saturated) 3D to 0D - extraction of molecules from a molecular crystal 2D to 1D - building nanotubes from a single-layer slab model 2D to 0D - building fullerene-like structures from a single-layer slab model 3D to 1D, 0D - building nanorods and nanoparticles from a perfect crystal 2D to 0D - construction of Wulff's polyhedron from surface energies Insertion, displacement, substitution, deletion of atoms

10 GTOs and lane waves Local Gaussian-type orbitals (GTO) eriodic (augmented) plane-waves Traditional choice in quantum chemistry articularly suitable for molecular calculations Relative performance: 0D > 1D > 2D > 3D Good for wavefunction methods and hybrid DFT Typical programs: CRYSTAL, Gaussian Traditional choice in material physics articularly suitable for 3D periodic calculations Relative performance: 3D > 2D > 1D > 0D Less suitable for wavefunction methods Typical programs: VAS, Quantum Espresso, ABINIT 10

11 Comparison of CRYSTAL and VAS CRYSTAL: BE0/SV; VAS: HSE/AW ( BE0/AW) 1 Lattice constant a Bulk modulus B 0 CRYSTAL (Å) VAS (Å) Exp. (Å) C (-0.1%) (-0.5%) Si (+0.5%) (+0.1%) Ge (+1.0%) (+0.4%) Sn (+1.1%) (+1.1%) CRYSTAL (Ga) VAS (Ga) Exp. (Ga) C 470 (+6.0%) 467 (+5.4%) 442 Si 102 ( %) 99 ( %) Ge 71.8 ( %) 71 ( %) Sn N/A 1 Hummer K.; Harl, J.; Kresse, G. hys. Rev B 2009, 80,

12 hysical properties in CRYSTAL14 1 R. Dovesi, et al. Int. J. Quant. Chem. 2014, 114,

13 Molecular orbitals in a benzene molecule (HOMOs) Orbital/band energies For solids, we take periodicity into account by plotting E(k), where k is a wave vector Energy bands in bulk silicon (band-projected electron density, isovalue 0.02 a.u.) 13

14 Band structure and band gap Empty bands Occupied bands NaCl: insulator, large energy gap between occupied and nonoccupied bands Silicon: semiconductor, energy gap between occupied and nonoccupied bands Copper: metal, partially filled bands 14

15 IR and Raman spectra Both IR and Raman intensities are available Together with an analysis of the normal modes (e.g. Jmol), allows for very detailed interpretation Experimental and predicted Raman spectrum of Ba(BrF 4 ) 2 Ivlev, S.; Sobolev, V.; Hoelzel, M.; Karttunen, A. J., Müller, T.; Gerin, I.; Ostvald, R.; Kraus, F. Eur. J. Inorg. Chem., 2014, 6261.

16 Elastic properties (1) Bulk modulus: The resistance to uniform compression 500 Bulk modulus (Ga) α (dia) I II III IV V VI VII VIII H II-4H I-100 II-100 IV-100 Carbon Silicon Germanium Tin Karttunen, A. J.; Härkönen V. J.; Linnolahti, M.; akkanen, T. A. J. hys. Chem. C 2011, 115,

17 Elastic properties (2) Young s modulus: A measure of the stiffness of a material A F L L 17

18 Thermal expansion Quasiharmonic approximation (utilize frequency / volume dependence) Calculations carried out with Quantum Espresso Härkönen, V. J.; Karttunen, A. J. hys. Rev. B 2014, 89,

19 Thermal conductivity Second and third-order force constants determined with Quantum Espresso Boltzmann Transport Equation solved iteratively with ShengBTE 1. Giannozzi et al. J. hys. 2009, 21, W. Li, J. Carrete, N. A. Katcho, N. Mingo, Comp. hys. Commun. 2014, 185,

20 ZnO lattice thermal conductivity (κ l ) κ l (W/(m K) κ (exp. film - Tynell) κ (exp. Bulk - Slack) κ_xx (DFT-BE) κ_zz (DFT-BE) T (K) 1 T. Tynell et al., J. Mater. Chem. A 2014, 2, 12150; 2 G. A. Slack, hys. Rev. B 1972, 6, A. J. Karttunen, T. Tynell, M. Karppinen, manuscript 20

21 Thermoelectricity 21

22 Thermoelectricity (2) Band structure from CRYSTAL Band structure dependent thermoelectric quantities from Boltzmann transport equation (BoltzTra, Comput. hys. Commun. 2006, 175, 67) I 12 [As 12 Ge 56 ] Karttunen, A. J.; Fässler, T. F. ChemhysChem 2013, 14,

23 How to start? A CRYSTAL14 evaluation copy is available free of charge for Linux & Windows operating systems. All functionalities of the full version are active, the number of atoms in the primitive cell is just restricted to CASTE + Materials Studio (via CSC) Quantum Espresso (large user base, active development) GAW (available at CSC) C2K (available at CSC, great for ab initio molecular dynamics) Gaussian09 Robust, but very slow if you try to run it with the defaults. lease read at least 23

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry From Last Time Several important conceptual aspects of quantum mechanics Indistinguishability particles are absolutely identical Leads to Pauli exclusion principle (one Fermion / quantum state). Symmetry

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:00-12:30 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Who am I? Assistant Professor, Institute for Theoretical and Computational Physics,

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

and strong interlayer quantum confinement

and strong interlayer quantum confinement Supporting Information GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement Yu Jing 1,3, Yandong Ma 1, Yafei Li 2, *, Thomas Heine 1,3 * 1 Wilhelm-Ostwald-Institute

More information

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids Ch 12: Solids and Modern Materials Learning goals and key skills: Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to physical properties Know the

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Supporting Information

Supporting Information Supporting Information Uniformly Sized (112) Facet Co 2 P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution Bin Tian, a, b Zhen Li, a, b Wenlong Zhen c and Gongxuan Lu *a a State Key Laboratory

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE Silica surface - Materials Studio tutorial CREATING SiO 2 SURFACE Our goal surface of SiO2 6.948 Ǻ Import structure The XRD experiment gives us such parameters as: lattice parameters, symmetry group and

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Comparison of various abinitio codes used in periodic calculations

Comparison of various abinitio codes used in periodic calculations Comparison of various abinitio codes used in periodic calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology,

More information

The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree Fock and density functional calculations

The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree Fock and density functional calculations J. Phys.: Condens. Matter 8 (1996) 3993 4000. Printed in the UK The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree Fock and density functional calculations

More information

Li = 1.6, rc Sn = 2.3, and rc S = 1.7 in bohr units. The

Li = 1.6, rc Sn = 2.3, and rc S = 1.7 in bohr units. The : Simulations of Its Structure and Electrolyte Properties N. A. W. Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC 2719, USA First principles simulations show that the ground

More information

Li 4 SnS 4 : Simulations of Its Structure and Electrolyte Properties

Li 4 SnS 4 : Simulations of Its Structure and Electrolyte Properties : Simulations of Its Structure and Electrolyte Properties N. A. W. Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC, USA Introduction Recently, there has been significant progress

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Chem 253. Tutorial for Materials Studio

Chem 253. Tutorial for Materials Studio Chem 253 Tutorial for Materials Studio This tutorial is designed to introduce Materials Studio 7.0, which is a program used for modeling and simulating materials for predicting and rationalizing structure

More information

Chapter 12. Modern Materials. Chapter 12 Problems 7/3/2012. Problems 1, 4, 7, 9, 11, 13, 23, 29, 3143, 53, 55

Chapter 12. Modern Materials. Chapter 12 Problems 7/3/2012. Problems 1, 4, 7, 9, 11, 13, 23, 29, 3143, 53, 55 hemistry, The entral Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten hapter 12 John D. Bookstaver St. harles ommunity ollege ottleville, MO hapter 12 Problems Problems

More information

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2 1 Fundamental concepts Proton and electron,

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

Evaluation of Crystallographic Data with the Program DIAMOND

Evaluation of Crystallographic Data with the Program DIAMOND [J. Res. Natl. Inst. Stand. Technol. 101, 221 (1996)] Evaluation of Crystallographic Data with the Program DIAMOND Volume 101 Number 3 May June 1996 Günter Bergerhoff, Michael Berndt, and Klaus Brandenburg

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

College of Science, Xi an University of Science and Technology, Xi an *Corresponding author

College of Science, Xi an University of Science and Technology, Xi an *Corresponding author 2016 International Conference on Advanced Manufacture Technology and Industrial Application (AMTIA 2016) ISBN: 978-1-60595-387-8 The Study of Coordination Adsorption Effect that CO Adsorption on 4H-SiC

More information

Introduction to Hartree-Fock calculations in Spartan

Introduction to Hartree-Fock calculations in Spartan EE5 in 2008 Hannes Jónsson Introduction to Hartree-Fock calculations in Spartan In this exercise, you will get to use state of the art software for carrying out calculations of wavefunctions for molecues,

More information

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004 Covalent Insulators and Chem 462 September 24, 2004 Diamond Pure sp 3 carbon All bonds staggered- ideal d(c-c) - 1.54 Å, like ethane Silicon, Germanium, Gray Tin Diamond structure Si and Ge: semiconductors

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

Ab initio structure prediction for molecules and solids

Ab initio structure prediction for molecules and solids Ab initio structure prediction for molecules and solids Klaus Doll Max-Planck-Institute for Solid State Research Stuttgart Chemnitz, June/July 2010 Contents structure prediction: 1) global search on potential

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel?

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel? CRYSTAL in parallel: replicated and distributed (MPP) data Roberto Orlando Dipartimento di Chimica Università di Torino Via Pietro Giuria 5, 10125 Torino (Italy) roberto.orlando@unito.it 1 Why parallel?

More information

Avogadro with YAeHMOP Manual

Avogadro with YAeHMOP Manual Avogadro with YAeHMOP Manual Patrick Avery, Herbert Ludowieg, Jochen Autschbach, and Eva Zurek Department of Chemistry University at Buffalo Buffalo, NY 14260-3000, USA September 11, 2017 Contents 1 Installation

More information

Physics 156: Applications of Solid State Physics

Physics 156: Applications of Solid State Physics Physics 156: Applications of Solid State Physics Instructor: Sue Carter Office NSII 349 Office Hours: Wednesdays 11:30 to 1 pm or by appointment Email: sacarter@ucsc.edu Book: http://ece-www.colorado.edu/~bart/book/book/title.htm

More information

The Augmented Spherical Wave Method

The Augmented Spherical Wave Method Introduction Institut für Physik, Universität Augsburg Electronic Structure in a Nutshell Outline 1 Fundamentals Generations 2 Outline 1 Fundamentals Generations 2 Outline Fundamentals Generations 1 Fundamentals

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry:

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry: FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Spring 2012 Chemical Physics Exercise 1 To be delivered by Friday 27.04.12 Introduction Ethene. Ethylene, C 2 H 4, or ethene,

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors N. A. W. Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA Introduction

More information

Week 13 MO Theory, Solids, & metals

Week 13 MO Theory, Solids, & metals Week 13 MO Theory, Solids, & metals Q UEST IO N 1 Using the molecular orbital energy diagrams below, which one of the following diatomic molecules is LEAST likely to exist? A. Li2 B. Be2 C. B2 D. C2 E.

More information

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Chemistry Chemistry is the science of atomic matter, especially its chemical reactions,

More information

Two-dimensional lattice

Two-dimensional lattice Two-dimensional lattice a 1 *, k x k x =0,k y =0 X M a 2, y Γ X a 2 *, k y a 1, x Reciprocal lattice Γ k x = 0.5 a 1 *, k y =0 k x = 0, k y = 0.5 a 2 * k x =0.5a 1 *, k y =0.5a 2 * X X M k x = 0.25 a 1

More information

Energetics in Ice VI

Energetics in Ice VI Energetics in Ice VI Nishanth Sasankan 2011 NSF / REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman Abstract There are many different phases of Ice, which exist in different

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons. ET3034Tux - 2.2.2 - Band Gap 2 - Electrons in Molecular Bonds We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

More information

Defects in TiO 2 Crystals

Defects in TiO 2 Crystals , March 13-15, 2013, Hong Kong Defects in TiO 2 Crystals Richard Rivera, Arvids Stashans 1 Abstract-TiO 2 crystals, anatase and rutile, have been studied using Density Functional Theory (DFT) and the Generalized

More information

Nearly Free Electron Gas model - I

Nearly Free Electron Gas model - I Nearly Free Electron Gas model - I Contents 1 Free electron gas model summary 1 2 Electron effective mass 3 2.1 FEG model for sodium...................... 4 3 Nearly free electron model 5 3.1 Primitive

More information

Molecules and Condensed Matter

Molecules and Condensed Matter Chapter 42 Molecules and Condensed Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 42 To understand

More information

Ab initio Molecular Dynamics and Elastic Properties of TiC and TiN Nanoparticles

Ab initio Molecular Dynamics and Elastic Properties of TiC and TiN Nanoparticles Mat. Res. Soc. Symp. Proc. Vol. 704 2002 Materials Research Society Ab initio Molecular Dynamics and Elastic Properties of TiC and TiN Nanoparticles A. V. Postnikov and P. Entel Theoretical Low-Temperature

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

FYS Vår 2015 (Kondenserte fasers fysikk)

FYS Vår 2015 (Kondenserte fasers fysikk) FYS410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0)

More information

Table of Contents. Table of Contents Initialize from a converged state. Introduction Examples

Table of Contents. Table of Contents Initialize from a converged state. Introduction Examples Table of Contents Table of Contents Initialize from a converged state Introduction Examples Water molecule example Looping over parameters Stepping up in bias Special example: anti-parallel spin in MTJs

More information

Semiconductor Polymer

Semiconductor Polymer Semiconductor Polymer Organic Semiconductor for Flexible Electronics Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic semiconductors with hole

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

ALMA: All-scale predictive design of heat management material structures

ALMA: All-scale predictive design of heat management material structures ALMA: All-scale predictive design of heat management material structures Version Date: 2015.11.13. Last updated 2015.12.02 Purpose of this document: Definition of a data organisation that is applicable

More information

Two-dimensional lattice

Two-dimensional lattice 1 Two-dimensional lattice a 1 *, k x k x = 0, k y = 0 X M a 2, y a 1, x Γ X a 2 *, k y k x = 0.5 a 1 *, k y = 0 k x = 0, k y = 0.5 a 2 * Γ k x = 0.5 a 1 *, k y = 0.5 a 2 * X X M k x = 0.25 a 1 *, k y =

More information

Chemistry, Physics and the Born- Oppenheimer Approximation

Chemistry, Physics and the Born- Oppenheimer Approximation Chemistry, Physics and the Born- Oppenheimer Approximation Hendrik J. Monkhorst Quantum Theory Project University of Florida Gainesville, FL 32611-8435 Outline 1. Structure of Matter 2. Shell Models 3.

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Real and virtual screening for materials discovery through first principles calculations

Real and virtual screening for materials discovery through first principles calculations Real and virtual screening for materials discovery through first principles calculations Isao Tanaka 1,2,3,4 1 Department of Materials Science and Engineering, Kyoto University, JAPAN 2 Elements Strategy

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

MO s in one-dimensional arrays of like orbitals

MO s in one-dimensional arrays of like orbitals MO s in one-dimensional arrays of like orbitals There will be as many MO s as orbitals in the array. Every molecular orbital is characterized by a specific pattern of nodes, The lowest energy orbital will

More information

The electronic structure of solids. Charge transport in solids

The electronic structure of solids. Charge transport in solids The electronic structure of solids We need a picture of the electronic structure of solid that we can use to explain experimental observations and make predictions Why is diamond an insulator? Why is sodium

More information

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Table of Contents Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Bilayer graphene Building a bilayer graphene structure Calculation and analysis Silicene Optimizing

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm Name:.57/.570 Midterm Exam No. April 4, 0 :00 am -:30 pm Instructions: ().57 students: try all problems ().570 students: Problem plus one of two long problems. You can also do both long problems, and one

More information

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS DO PHYSICS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS ELECTRIC CURRENT Different substances vary considerably in their electrical properties. It is a

More information

Lecture 2 Electrons and Holes in Semiconductors

Lecture 2 Electrons and Holes in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 2 Electrons and Holes in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Molecular dynamics simulations of EXAFS in germanium

Molecular dynamics simulations of EXAFS in germanium Cent. Eur. J. Phys. 93 2011 710-715 DOI: 10.2478/s11534-010-0074-0 Central European Journal of Physics Molecular dynamics simulations of EXAFS in germanium Research Article Janis Timoshenko Alexei Kuzmin

More information

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has?

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has? Bonding in Solids Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with

More information

Chapter 10 Review Packet

Chapter 10 Review Packet Chapter 10 Review Packet Name 1. If water and carbon dioxide molecules did interact, what major intermolecular force will exist between these molecules? a) Hydrogen bonding b) London dispersion c) Dipole-dipole

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(4): 589-595 Altering the electronic properties of adamantane

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Table of Contents. Table of Contents Using the Crystal Builder. Introduction Crystal structure of black phosphorus Phosphorene and its bandstructure

Table of Contents. Table of Contents Using the Crystal Builder. Introduction Crystal structure of black phosphorus Phosphorene and its bandstructure Table of Contents Table of Contents Using the Crystal Builder Introduction Crystal structure of black phosphorus Phosphorene and its bandstructure Bandstructure References 1 2 2 3 7 9 10 QuantumATK Try

More information

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany Prerequisites for reliable modeling with first-principles methods P. Kratzer Fritz-Haber-Institut der MPG D-14195 Berlin-Dahlem, Germany Prerequisites for modeling (I) Issues to consider when applying

More information

PART CHAPTER2. Atomic Bonding

PART CHAPTER2. Atomic Bonding PART O N E APTER2 Atomic Bonding The scanning tunneling microscope (Section 4.7) allows the imaging of individual atoms bonded to a material surface. In this case, the microscope was also used to manipulate

More information

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables. M.S. Dresselhaus G. Dresselhaus A. Jorio Group Theory Application to the Physics of Condensed Matter With 131 Figures and 219 Tables 4) Springer Contents Part I Basic Mathematics 1 Basic Mathematical Background:

More information

There are four types of solid:

There are four types of solid: Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with very high melting

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Crystalline Solids. Amorphous Solids

Crystalline Solids. Amorphous Solids Crystal Structure Crystalline Solids Possess rigid and long-range order; atoms, molecules, or ions occupy specific positions the tendency is to maximize attractive forces Amorphous Solids lack long-range

More information

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun Computational Modeling of Molecular Electronics Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University May 9, 2007 Outline: 1. Introduction

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information