Direct Measurement of Electron Transfer through a Hydrogen Bond

Size: px
Start display at page:

Download "Direct Measurement of Electron Transfer through a Hydrogen Bond"

Transcription

1 Supporting Information Direct Measurement of Electron Transfer through a Hydrogen Bond between Single Molecules Tomoaki Nishino,*, Nobuhiko Hayashi, and Phuc T. Bui Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, Sakai, Osaka , Japan Department of Material Science, Osaka Prefecture University, Sakai, Osaka , Japan CONTENTS Control experiments using an unmodified Au substrate or tip Additional PDOS data for the hydrogen-bonded molecular junction (Figure S1) Experimental procedure (Figure S2) References S1

2 Control experiments using a clean Au substrate or tip No plateaus in I z curves were observed when the C 2 COOH tips were used for the measurements with clean Au substrates or when unmodified Au tips were used with the C 2 COOH-covered surface. Although the carboxyl group was shown to be an effective contact group for the single molecule junction, 1,2 the above experiments exclude the possibility that the C 2 COOH tip formed a molecular junction directly on the Au surface without involving the sample molecule on the substrate. We ascribe this absence of the contact between the carboxyl group and substrate surface to the small set-point current in the present study. On the basis of the reported conductance values, 1,2 HOOC(CH 2 ) 2 COOH and HS(CH 2 ) 2 SH molecular junctions, comprising the same number of methylene groups and contact groups as C 2 COOH, exhibit the current larger than 10 na under the bias voltage in the present study (0.2 V). The initial set-point currents in the present measurements (7.5 or 0.75 na) are smaller than this expected current. As a result, the C 2 COOH molecule on the tip cannot contact with the gold surface. S2

3 Additional PDOS data for the hydrogen-bonded molecular junction Figure S1. PDOS of the molecular junction consisting of hydrogen-bonded C 2 COOH dimer. (a) Schematic illustration of the junction structure. (b) PDOS on each S (S-1 and S-2), CH 2 (CH 2-1 to CH 2-4), and COOH group (COOH-1 and COOH-2). Cutoff energy, 400 ev. It should be noted that the PDOS peaks of the two sulfur atoms at different binding sites (S-1 and S-2) appeared at nearly the same position though the peak shapes are different. S3

4 Experimental Procedure Reagents. The reagents were of the highest grade available. De-ionized water purified with a Milli-Q water purification system (Japan Millipore, Tokyo, Japan) was used for all the experiments. Tip Preparation. Small pieces of gold wire (0.25 mm diameter, 99.95%) were electrochemically etched in 3 M NaCl at AC 10 V. They were then washed by sonication in pure water, dipping in piranha solution (7:3 concentrated H 2 SO 4 /H 2 O 2. Caution: piranha solution reacts violently with organic compounds and should not be stored in closed containers), and finally, thoroughly washed with pure water. For the preparation of molecular tips using the -carboxyl alkanethiols (HS(CH2) n COOH, C n COOH), the gold tips were immersed into the 7.5 mm ethanolic solution of C n COOH for 12 h. Full, or at least highly dense, monolayer formation is expected on the tips based on the concentration and immersion time. 3 The modified tips were thoroughly withed with ethanol and water prior to use. Sample Preparation. Ultraflat gold films epitaxially grown on mica were used as Au(111) substrates. 4 The gold substrate was immersed in a 50 μm ethanolic solution of C n COOH or octanedithiol (C 8 DT) for 30 s and 1 h for the current time (I t) and current distance (I z) measurements, respectively. Based on the selected concentration and immersion time, adlayer formation during the thiol adsorption process should be in the initial stages. 5 Thus, the concentration of sample molecules on the substrate surface should be low, which reduces the possibility of multiple junction formation. The substrate was washed with pure ethanol and blown dry with pure nitrogen. The substrate was then mounted on a sample cell of the scanning tunneling microscopy (STM). The S4

5 cell was filled with pure 1,2,4-trichlorobenzene to prevent unwanted contamination during the measurements. I t and I z measurements. Before taking the I t and I z measurements, the STM was equilibrated with the room temperature for 30 min to reduce thermal drift. The piezo scanner of the STM was allowed to settle under feedback control without being driven during the equilibration. This procedure suppresses unwanted hysteresis and the creep of the piezo scanner. In the I t measurements using the C 2 COOH tips and C 2 COOH-covered surfaces, the bias voltage and set-point current were +0.2 V and 0.5 na, respectively. Successful acquisition of I t data is contingent on careful control of these two parameters given that the tip sample distance depends on them. The set-point current was optimized by using a constant bias voltage (0.2 V) and varying the set-point current in the range of 0.1 to 1.5 na, which gave an optimal value of 0.5 na. Set-point values higher than this, corresponding to closer tip sample separation, resulted in broadening of the current histograms due to formation of multiple molecular junctions. On the other hand, with lower set-point currents, the probability of observing the plateaus (as shown in Figure 2a) decreased, plausibly because the separation was too long for junction formation. In the case of the I t measurements using the unmodified gold tips and C 8 DT-covered surface, the bias voltage and set-point current were +0.2 V and 1 na, respectively. In the I t measurements, the feedback loop was disabled for 1 s, and the current flowing between the molecular tip and the sample surface was recorded at a 20 khz sampling frequency using a data acquisition unit (SL1000, Yokogawa Electric Corporation). In the I z measurements, the C 2 COOH molecular tip was first brought into close proximity with the sample surface using high set-point currents (7.5 na for the C 1 COOH and C 2 COOH samples and 0.75 na for the C 3 COOH sample) at a S5

6 bias voltage of +0.2 V. The molecular tip was then raised at a tip velocity of 5 nm/s, and the current was recorded at a 20 khz sampling frequency using the data acquisition unit. The current measurements were repeatedly performed on different days, and each time the sample surface was freshly prepared. Statistical analysis procedure for I t and I z data. The current histograms were constructed from the I t traces that exhibited the current plateaus, as shown in Fig. 2A, or from the I z traces with current steps, as shown in Fig. 3B. Approximately 10% of the measured I t and I z traces exhibited these plateaus or steps. This ratio is comparable to that observed when alkanedithiol molecular tips were used to measure the conductance change induced by the formation of a single covalent bond with a sample alkanedithiol. 6 The bin size of the current histogram is 0.5 pa. At least 200 I t or I z traces were used to create each histogram. For each sample molecule, multiple current histograms were constructed from several data sets (at least three) obtained using independently prepared sample surfaces. The standard deviations depicted as error bars in Figure 3c were determined by the peak values of these histograms. First-principle calculations. First-principle density functional theory calculations were performed using the VASP code 7 using the generalized gradient approximation by Perdew, Burke and Ernzerhof (GGA-PBE). 8 A test calculation was performed for PDOS onto a (CH 2 ) 6 chain and a COOH end group of a HOOC(CH 2 ) 6 COOH molecule. The result (Figure S2) agrees well with literature (Figure 4 in reference 9), demonstrating the robustness of the calculation. The molecular junctions were constructed by sandwiching either the C 2 COOH or the C 8 DT molecule, both of which were geometrically optimized in a gas phase, between Au electrodes. A pyramidal cluster composed of 10 Au atoms was used as one of the electrodes to represent the STM tip. The other electrode was a S6

7 Au(111) slab of three layers with a size of Å 2, and repeated slab geometry was used. The molecule was placed at the hollow site at the center of the slab; 10 it was connected to the pyramidal cluster at the atop site of the apex atom. The calculations were performed without full relaxation of the atomic positions, which is justified by the fact that the molecular junctions cannot reach their equilibrium due to continuous movement of the sample molecule or the tip in I t or I z experiments, respectively, during measurements. The S-Au bond length was Å in both cases. Single point calculations were performed with a supercell of dimensions Å 3. The convergence criterion in the self-consistent iterative calculations was chosen as 10-5 ev. The plane-wave cutoff energy was 200 ev. We also employed the cutoff energy of 400 ev under the same convergence criterion (10-5 ev) in calculations presented in Figure 4. The results obtained at 200 ev and 400 ev cutoff energies are consistent with each other, demonstrating that the cutoff energy of 200 ev is sufficient. The cutoff energies of calculations were presented in each figure caption. The Brillouin zone was sampled with special k-points on a grid for the C 2 COOH dimer and a grid for the C 8 DT. Figure S2. PDOS onto a (CH 2 ) 6 chain (blue line) and a COOH end group (red bars) of a HOOC(CH 2 ) 6 COOH molecule. Cutoff energy, 200 ev. S7

8 References (1) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc. 2006, 128, (2) Martin, S.; Haiss, W.; Higgins, S.; Cea, P.; Lopez, M. C.; Nichols, R. J. J. Phys. Chem. C 2008, 112, (3) Ulman, A. Chem. Rev. 1996, 96, (4) Wagner, P.; Hegner, M.; Güntherodt, H.-J.; Semenza, G. Langmuir 1995, 11, (5) Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321. (6) Nishino, T. ChemPhysChem 2010, 11, (7) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, (8) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, (9) Wang, J. G.; Selloni, A. J. Phys. Chem. C 2009, 113, (10) Jiang, J.; Kula, M.; Luo, Y. J. Chem. Phys. 2006, 124. S8

Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals Dominik Meyer*,1, Tobias Schäfer 1, Philip Schulz 1,2,3, Sebastian Jung 1, Daniel Mokros 1, Ingolf

More information

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions Supplemental Information Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions M. Frei 1, S Aradhya 1, M. S. Hybertsen 2, L. Venkataraman 1 1 Department of Applied Physics and Applied

More information

Construction of Two Dimensional Chiral Networks

Construction of Two Dimensional Chiral Networks Supporting Information Construction of Two Dimensional Chiral Networks through Atomic Bromine on Surfaces Jianchen Lu, De-Liang Bao, Huanli Dong, Kai Qian, Shuai Zhang, Jie Liu, Yanfang Zhang, Xiao Lin

More information

Electron tunneling through alkanedithiol molecules

Electron tunneling through alkanedithiol molecules Electron tunneling through alkanedithiol molecules R. C. Hoft, J. Liu, M. B. Cortie, and M. J. Ford, Institute for Nanoscale Technology, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007,

More information

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT Supporting Information Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity Minhua Shao,, * Amra Peles,, * Krista Shoemaker UTC Power, South Windsor, CT

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

SUPPORTING INFORMATION Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts

SUPPORTING INFORMATION Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts SUPPORTING INFORMATION Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts Artem Mishchenko 1, David Vonlanthen 2, Velimir Meded 3, Marius Bürkle 4, Chen Li 1, Ilya V.

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Measurement of Current-Induced Local Heating in a Single Molecule Junction

Measurement of Current-Induced Local Heating in a Single Molecule Junction Measurement of Current-Induced Local Heating in a Single Molecule Junction NANO LETTERS 2006 Vol. 6, No. 6 1240-1244 Zhifeng Huang, Bingqian Xu, Yuchang Chen, Massimiliano Di Ventra,*, and Nongjian Tao*,

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules

Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules Published on Web 11/15/2006 Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules Fang Chen, Xiulan Li, Joshua Hihath,

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Supporting Information

Supporting Information Supporting Information A Porous Two-Dimensional Monolayer Metal-Organic Framework Material and its Use for the Size-Selective Separation of Nanoparticles Yi Jiang, 1 Gyeong Hee Ryu, 1, 3 Se Hun Joo, 4

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Modulating the Conductance of a Au octanedithiol Au Molecular Junction**

Modulating the Conductance of a Au octanedithiol Au Molecular Junction** DOI: 10.1002/smll.200700287 Molecular junctions Modulating the Conductance of a Au octanedithiol Au Molecular Junction** Bingqian Xu* [*] Prof. Dr. B. Xu Molecular Nanoelectronics Faculty of Engineering

More information

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information: Graphene field effect transistor as a probe of electronic structure

More information

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Yan Chen, 1,2,,$, * Shengxi Huang, 3,6, Xiang Ji, 2 Kiran Adepalli, 2 Kedi Yin, 8 Xi Ling, 3,9 Xinwei

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT Spontaneous Oxidation of Ni Nanoclusters on MgO Monolayers Induced by Segregation of Interfacial Oxygen. M. Smerieri 1, J. Pal 1,2, L. Savio 1*, L. Vattuone 1,2, R. Ferrando 1,3, S. Tosoni 4, L. Giordano

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

The interpretation of STM images in light of Tersoff and Hamann tunneling model

The interpretation of STM images in light of Tersoff and Hamann tunneling model The interpretation of STM images in light of Tersoff and Hamann tunneling model The STM image represents contour maps of constant surface LDOS at E F, evaluated at the center of the curvature of the tip.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Measuring charge transport through molecules

Measuring charge transport through molecules Measuring charge transport through molecules utline Indirect methods 1. ptical techniques 2. Electrochemical techniques Direct methods 1. Scanning probe techniques 2. In-plane electrodes 3. Break junctions

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/325/5948/1670/dc1 Supporting Online Material for Coordinatively Unsaturated Al 3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-al 2 O 3 Ja Hun

More information

High resolution STM imaging with oriented single crystalline tips

High resolution STM imaging with oriented single crystalline tips High resolution STM imaging with oriented single crystalline tips A. N. Chaika a, *, S. S. Nazin a, V. N. Semenov a, N. N Orlova a, S. I. Bozhko a,b, O. Lübben b, S. A. Krasnikov b, K. Radican b, and I.

More information

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction

Molybdenum compound MoP as an efficient. electrocatalyst for hydrogen evolution reaction Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Molybdenum compound MoP as an efficient electrocatalyst for hydrogen evolution

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/315/5819/1692/dc1 Supporting Online Material for Enhanced Bonding of Gold Nanoparticles on Oxidized TiO 2 (110) D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub,

More information

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces

Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces SUPPORTING INFORMATION. Controlled Electroless Deposition of Nanostructured Precious Metal Films on Germanium Surfaces Lon A. Porter, Jr., Hee Cheul Choi, Alexander E. Ribbe, and Jillian M. Buriak Department

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts

Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts Supporting Information For Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts Minhua Shao, *, Krista Shoemaker, Amra Peles, Keiichi Kaneko #, Lesia Protsailo UTC Power, South Windsor,

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Materials for Oxygen-induced self-assembly of quaterphenyl molecule on metal surfaces

More information

References in the Supporting Information:

References in the Supporting Information: Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning Supporting

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using

Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using the protocol in the Methods sections concerning tip and

More information

arxiv: v1 [cond-mat.mtrl-sci] 16 Jul 2007

arxiv: v1 [cond-mat.mtrl-sci] 16 Jul 2007 Amine-Gold Linked Single-Molecule Junctions: Experiment and Theory arxiv:0707.2091v1 [cond-mat.mtrl-sci] 16 Jul 2007 Su Ying Quek, 1 Latha Venkataraman, 2,3 Hyoung Joon Choi, 4 Steven G. Louie, 1, 5 Mark

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Influence of lauric Acid on the Adsorption of 12-Bromododecanoic Acid at the Liquid Solid Interface as Studied by STM

Influence of lauric Acid on the Adsorption of 12-Bromododecanoic Acid at the Liquid Solid Interface as Studied by STM Influence of lauric Acid on the Adsorption of 12-Bromododecanoic Acid at the Liquid Solid Interface as Studied by STM A. Cavanagh Fort Lewis College, Durango, CO K. Kannappan and G. Flynn Columbia University,

More information

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating Atomic Force icroscopy Characterization of Room- Temperature Adlayers of Small Organic olecules through Graphene Templating Peigen Cao, Ke Xu,2, Joseph O. Varghese, and James R. Heath *. Kavli Nanoscience

More information

Self-Assembled Monolayers

Self-Assembled Monolayers Self-Assembled Monolayers Literature and Further Information Surface Chemistry: www.chem.qmul.ac.uk/surfaces/scc/ www.nottingham.ac.uk/~ppzpjm/amshome.htm venables.asu.edu/grad/lectures.html SAM s: www.ifm.liu.se/applphys/ftir/sams.html

More information

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT ASSOCIATED CONTENT Supporting Information Gold Cluster-CeO 2 Nanostructured Hybrid Architectures as Catalysts for Selective Oxidation of Inert Hydrocarbons Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang,

More information

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations Zhu Feng( ), Dong Shan( ), and Cheng Gang( ) State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Rectification and Stability of a Single Molecular Diode with Controlled Orientation SUPPLEMENTARY INFORMATION Ismael Díez-Pérez 1, Joshua Hihath 1, Youngu Lee #2, Luping Yu* 2, Lyudmyla Adamska 3, Mortko

More information

Supplementary Material

Supplementary Material Supplementary Material Digital Electrogenerated Chemiluminescence Biosensor for the Determination of Multiple Proteins Based on Boolean Logic Gate Honglan Qi*, Xiaoying Qiu, Chen Wang, Qiang Gao, Chengxiao

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

Adsorption of Iodine on Pt(111) surface. Alexandre Tkachenko Marcelo Galván Nikola Batina

Adsorption of Iodine on Pt(111) surface. Alexandre Tkachenko Marcelo Galván Nikola Batina Adsorption of Iodine on Pt(111) surface Alexandre Tkachenko Marcelo Galván Nikola Batina Outline Motivation Experimental results Geometry Ab initio study Conclusions Motivation Unusual structural richness

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Supporting Information: Engineering the thermopower of C 60 molecular junctions

Supporting Information: Engineering the thermopower of C 60 molecular junctions Supporting Information: Engineering the thermopower of C 60 molecular junctions Charalambos Evangeli, Katalin Gillemot, Edmund Leary, M. Teresa González, Gabino Rubio-Bollinger, Colin J. Lambert, NicolásAgraït

More information

Structure and energetics of alkanethiol adsorption on the Au 111 surface

Structure and energetics of alkanethiol adsorption on the Au 111 surface JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 2 8 JULY 2002 Structure and energetics of alkanethiol adsorption on the Au 111 surface Yashar Yourdshahyan a) and Andrew M. Rappe Department of Chemistry

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Lecture 3. Self-assembled Monolayers (SAM)

Lecture 3. Self-assembled Monolayers (SAM) 10.524 Lecture 3. Self-assembled Monolayers (SAM) Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 3: Self-assembled Monolayers (SAMs) Table of Contents

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder Zhi Wei Seh, Qianfan Zhang, Weiyang Li, Guangyuan Zheng, Hongbin Yao,

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1488 Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules Ying Jiang 1,2*, Qing Huan 1,3*, Laura Fabris 4, Guillermo C. Bazan

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Scanning Tunneling Microscopy and Single Molecule Conductance

Scanning Tunneling Microscopy and Single Molecule Conductance Scanning Tunneling Microscopy and Single Molecule Conductance Erin V. Iski, Mahnaz El-Kouedi, and E. Charles H. Sykes Department of Chemistry, Tufts University, Medford, Massachusetts 02155-5813 Pre-Lab

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

In Situ Monitoring of Kinetics of Charged Thiol Adsorption on Gold Using an Atomic Force Microscope

In Situ Monitoring of Kinetics of Charged Thiol Adsorption on Gold Using an Atomic Force Microscope 4790 Langmuir 1998, 14, 4790-4794 In Situ Monitoring of Kinetics of Charged Thiol Adsorption on Gold Using an Atomic Force Microscope Kai Hu and Allen J. Bard* Department of Chemistry and Biochemistry,

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Supporting Information for. A Molecular Half-Wave Rectifier

Supporting Information for. A Molecular Half-Wave Rectifier Supporting Information for A Molecular Half-Wave Rectifier Christian A. Nijhuis, 1,* William F. Reus, 2 Adam C. Siegel, 2 and George M. Whitesides 2,* 1 Department of Chemistry, National University of

More information

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were Supplementary Information Pd induced Pt(Ⅳ) reduction to form Pd@Pt/CNT core-shell catalyst for a more complete oxygen reduction Preparation of SH- functionalized CNT In a typical routine, the pristine

More information

Graphene Annealing: How Clean Can It Be?

Graphene Annealing: How Clean Can It Be? Supporting Information for Graphene Annealing: How Clean Can It Be? Yung-Chang Lin, 1 Chun-Chieh Lu, 1 Chao-Huei Yeh, 1 Chuanhong Jin, 2 Kazu Suenaga, 2 Po-Wen Chiu 1 * 1 Department of Electrical Engineering,

More information

Supporting Information

Supporting Information Supporting Information A fishnet electrochemical Hg 2+ sensing strategy based on gold nanopartical-bioconjugate and thymine-hg 2+ -thymine coordination chemistry Xuemei Tang 1, Huixiang Liu 1, Binghua

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Dec 2006

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Dec 2006 arxiv:cond-mat/678v [cond-mat.mes-hall] 9 Dec 6 Abstract Electronic structure of the Au/benzene-,-dithiol/Au transport interface: Effects of chemical bonding U. Schwingenschlögl, C. Schuster Institut für

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Uniform and Rich Wrinkled Electrophoretic Deposited Graphene Film: A Robust Electrochemical Platform for TNT Sensing Longhua Tang, Hongbin Feng, Jinsheng Cheng and

More information

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and

Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of nm and Supplementary Figure 1. SEM characterization. SEM image shows the freshly made CoSe 2 /DETA nanobelt substrates possess widths of 100-800 nm and lengths up to several tens of micrometers with flexible,

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL The fhi-aims code [1] was employed for the DFT calculations. The repeated slab method was used to model all the systems with the size of the vacuum gap chosen between 16 and 25 Å.

More information

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40%

were obtained from Timesnano, and chloroplatinic acid hydrate (H 2 PtCl 6, 37%-40% Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Support Information Chemicals: Potassium borohydride (KBH 4 ), sodium oxalate (NaC 2 O 4

More information

The development of molecular-scale electronics hinges

The development of molecular-scale electronics hinges Reliable Formation of Single Molecule Junctions with Air-Stable Diphenylphosphine Linkers R. Parameswaran, J. R. Widawsky, H. Vazquez, Y. S. Park,, B. M. Boardman,, C. Nuckolls,, M. L. Steigerwald,, M.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Simultaneous and coordinated rotational switching of all molecular rotors in a network Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,

More information

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Scanning Probe Microscopy of Adsorbates on Insulating Films: From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Gerhard Meyer, Jascha Repp, Peter Liljeroth

More information

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica Scanning Tunneling Microscopy Wei-Bin Su, Institute of Physics, Academia Sinica Tunneling effect Classical physics Field emission 1000 ~ 10000 V E V metal-vacuum-metal tunneling metal metal Quantum physics

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

FOCUSED ON SURFACE AND

FOCUSED ON SURFACE AND A SUITE OF UNDERGRADUATE LABORATORIES FOCUSED ON SURFACE AND INTERFACE SCIENCE K.G. Severin, G.J. Blanchard and M.L. Bruening, Department of Chemistry, Michigan State University, East Lansing, MI 48824

More information

Supporting Information for

Supporting Information for Supporting Information for Odd-Even Effects in Chiral Phase Transition at the Liquid/Solid Interface Hai Cao, a Kazukuni Tahara, bc Shintaro Itano, b Yoshito Tobe b* and Steven De Feyter a* a Division

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Medium effects in single molecule conductance measurements.

Medium effects in single molecule conductance measurements. Medium effects in single molecule conductance measurements. Edmund Leary 1, Chris Finch 2, Iain Grace 2, Horst Höbenreich 1, Harm van Zalinge 1, Wolfgang Haiss 1, Richard Nichols 1, Colin Lambert 2 and

More information

Interdisciplinary Nanoscience Center University of Aarhus, Denmark. Design and Imaging. Assistant Professor.

Interdisciplinary Nanoscience Center University of Aarhus, Denmark. Design and Imaging. Assistant Professor. Interdisciplinary Nanoscience Center University of Aarhus, Denmark Design and Imaging DNA Nanostructures Assistant Professor Wael Mamdouh wael@inano.dk Molecular Self-assembly Synthesis, SPM microscopy,

More information

Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments Gabino Rubio-Bollinger 1,*, Andres Castellanos-Gomez 1,2,*, Stefan Bilan 3, Linda A. Zotti 3, Carlos R. Arroyo 1,

More information

Chapter 12 Simultaneous Measurement of Force and Conductance Across Single Molecule Junctions

Chapter 12 Simultaneous Measurement of Force and Conductance Across Single Molecule Junctions Chapter 12 Simultaneous Measurement of Force and Conductance Across Single Molecule Junctions Sriharsha V. Aradhya, Michael Frei, Mark S. Hybertsen, and Latha Venkataraman Abstract Measurement of electronics

More information

Local spectroscopy. N. Witkowski W. Sacks

Local spectroscopy. N. Witkowski W. Sacks Local spectroscopy N. Witkowski W. Sacks Outlook 1. STM/STS theory elements a. history of STM and basic idea b. tunnel effect c. STM/STS 2. Technology a. STM design : vibration and thermal drift b. STM

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Chapter - 5 SELF ASSEMBLED MONOLAYERS

Chapter - 5 SELF ASSEMBLED MONOLAYERS Chapter - 5 SELF ASSEMBLED MONOLAYERS (a) (b) (c) Figure 1. Langmuir Blodgett methodology. a) Surfactant in water. The black dot represents th head and the line represents the tail. The molecules are disordered.

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Supplementary Information. Introducing Ionic and/or Hydrogen Bonds into the SAM//Ga 2 O 3 Top-

Supplementary Information. Introducing Ionic and/or Hydrogen Bonds into the SAM//Ga 2 O 3 Top- Supplementary Information Introducing Ionic and/or Hydrogen Bonds into the SAM//Ga 2 O 3 Top- Interface of Ag TS /S(CH 2 ) n T//Ga 2 O 3 /EGaIn Junctions Carleen M. Bowers, 1 Kung-Ching Liao, 1, Hyo Jae

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Significant enhancement of conductance for a hybrid layered molybdate semiconductor

More information

Probing into the Electrical Double Layer Using a Potential Nano-Probe

Probing into the Electrical Double Layer Using a Potential Nano-Probe A3 Foresight Program, 2. 27-3. 1, 26 Probing into the Electrical Double Layer Using a Potential Nano-Probe Heon Kang ( 姜憲 ) Department of Chemistry, Seoul National University, Republic of Korea (E-mail:

More information

For preparing Sn adatoms on the Si(111)-(7 7) surface, we used a filamenttype

For preparing Sn adatoms on the Si(111)-(7 7) surface, we used a filamenttype Supplementary Methods 1 1.1 Germanium For preparing Ge adatoms on the Si(111)-(7 7) surface, we used a filamenttype source which wrapped a grain of Ge (Purity: 99.999 %). After preparing the clean Si(111)-(7

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

CN NC. dha-7. dha-6 R' R. E-vhf (s-trans) E-vhf (s-cis) R CN. Z-vhf (s-cis) Z-vhf (s-trans) R = AcS R' = AcS

CN NC. dha-7. dha-6 R' R. E-vhf (s-trans) E-vhf (s-cis) R CN. Z-vhf (s-cis) Z-vhf (s-trans) R = AcS R' = AcS R' R R' R dha-6 dha-7 R' R R' R E-vhf (s-cis) E-vhf (s-trans) R R' R R' Z-vhf (s-cis) Z-vhf (s-trans) R = R' = Supplementary Figure 1 Nomenclature of compounds. Supplementary Figure 2 500 MHz 1 H NMR spectrum

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information