Protein folding. Today s Outline

Size: px
Start display at page:

Download "Protein folding. Today s Outline"

Transcription

1 Protein folding Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem: Prediction of 3-D structure 1

2 Forces that determine protein folding Intrinsic propensities amino acid conformations and permitted torsion angles Hydrophobic interactions Van der Waals interactions Dipole-dipole interactions Ionic interactions Hydrogen bonds W Thermodynamic considerations G = H T S H S ln K ~ bonding W = R ln( ) W o = # ofways G = RT Enthalpic contributions from non-covalent interactions Entropy from conformations, no. of ways possible Note: water, solvent also must be considered: hydration shells around solutes 2

3 Thermodynamic considerations Non-covalent interactions vs. some typical covalent bond energies Adapted from KE Van Holde, WC Johnson, PS Ho (1998) Principles of Physical Biochemistry, Prentice-Hall, p. 10. Thermodynamic considerations Type of Interaction Charge-charge Charge-dipole Dipole-dipole Charge-induced dipole Dispersion Steric repulsion Distance Relationship 1/r (Coulomb s) 1/r 2 1/r 3 1/r 4 1/r 6 1/r 12 And don t forget the dielectric constant! Water = ~80 (78.5) Κε 0 interior can be ~3.5 (about 1-20) Κε 0. 3

4 Water Structure Left, water structure; right, water cage around a methane molecule; center, clathrate of 24x14 water tetrahedra Sep 3. Red clathrate: Martin Chaplin (2007) Water Structure and Science, Updated 1 July Packing Jigsaw puzzle vs. beads in a jar 4

5 Summary of forces that fold globular proteins All residues must have stereochemically allowed conformations. Main chain and side chain atoms Steric collisions raise the energy and decrease stability Buried polar atoms must be hydrogen bonded to other buried polar atoms. After all, in the denatured, open conformation, these residues can interact with water Enough hydrophibic surface must be buried, and the interior must be densely packed, to provide thermodynamic stability After all, hydrophobic surfaces require ordered water! Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem: Prediction of 3-D structure 5

6 An intro to CD Circular Dichroism Principle of CD Incident linearly polarized light, where points 1-5 correspond to equal increasing time intervals. (a) Incident linearly polarized light. (b) Elliptically polarized light after passing through an optically active sample. (c) Resolution of linearly polarized light into left and right handed circularly polarized components. (d) Effect of optically active sample on the two circularly polarized components, where sum in (d) is equal to result in (b). Figure 8.1. Biophysical Chemistry Part II. Techniques for the study of biological structure and function. CR Cantor & PR Schimmel New York: WH Freeman, p Figure 8.1. Biophysical Chemistry Part II. Techniques for the study of biological structure and function. CR Cantor & PR Schimmel New York: WH Freeman, p

7 Measuring CD signals φ = opticalrotation 180l( nl n φ = λ θ = ellipticity θ = 2.303( A A l = samplelength A = absorbance L R ) deg R 180 ) deg 4π [ φ] = residuemolarrotation 100φ [ φ] = C l residue [ θ ] = residuemolarellipticity 100θ [ θ ] = C l residue CD Spectra for alpha-helix, beta-sheet, and random coil conformations VP Saxena & DB Wetlaufer (1971) Proc. Natl. Acad. Sci. USA 66:969. In: CR Cantor & PR Schimmel New York: WH Freeman, p. Figure 8-9, p

8 Measuring the thermodynamics of folding Guanidinium chloride unfolding of phosphoglycerate kinase using fluoresence (filled circles) and CD (open circles). A. Plot of raw data and spectral baselines for folded and unfolded. B. Unfolding curve generated from A. Adapted from H. Nojima et al. (1977) J. Mol. Biol. 116: In: TE Creighton (1993) Proteins: Structures and Molecular Properties, 2/E, Fig. 7.11, p Unfolding by heat Unfolding of RNAse A in HCl-KCl ph 2.1 and ionic strength. Measured by viscosity (open squares), optical rotation at 365 nm (open circles), UV A 287 (open triangles). Closed triangles from 2 nd melting after cooling. Adapted from A Ginsburg & WR Carroll (1965) Biochemistry 4: In: TE Creighton (1993) Proteins: Structures and Molecular Properties, 2/E, Fig. 7.11, p

9 Unfolding in acid Unfolding of staphylococcal nuclease A. Measured by viscosity (squares), circular dichroism at 220 nm (triangles). Open symbols- acidification; solid symbols- on raising ph. Adapted from CB Anfinsen(1972) Biochem. J. 128: In: TE Creighton (1993) Proteins: Structures and Molecular Properties, 2/E, Fig. 7.11, p What curves suggest Folding is a two-state process (for single-domain proteins). Proteins are either unfolded or folded, with minimal partially folded intermediates. K G G m eq = [ native] = [ unfolded] folding folding slope = G N = G G U H2O folding = RT ln K eq + m[ denaturant] 9

10 Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem: Prediction of 3-D structure The Classic Experiment Anfinsen s RNAse experiment 10

11 Bovine RNAse Sequence RNAse A disulfide bonds C40-C95: left: upper left; right: leftmost C84-C26: left: lower left; right: center left C65-C72: left: upper right; right: upper right C110-C58: left: lower right; right: lower right 11

12 Ribonuclease disulfides Ribonuclease folding 12

13 Anfinsen ribonuclease experiment Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem Prediction of 3-D structure 13

14 Levinthal s Paradox A protein cannot try all possible conformations because there is not enough time There must a pathway or process Mystery: Proteins are marginally stable Denatured state is heterogeneous Folding funnel 14

15 Folding models Folding general in the cell 15

16 Chaperones MCB animation 16

17 Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem Prediction of 3-D structure The Protein Folding Problem Given a protein sequence, find the 3-D structure The inverse protein folding problem: Given a protein 3-D structure, find the sequence Note: Many sequences are consistent with one general structure 17

18 Overview of Methods for 3-D Structure Prediction from Sequence Secondary structure prediction without full 3-D structure Homology modeling: prediction based on the known structures of one or more related proteins (at best comparable to a low-resolution experimental structure) Fold recognition: given a library of known structures, which of them shares a folding pattern with the query sequence of unknown 3-D structure, or if no fold matches the query sequence (analogous to a multiple-choice exam) Prediction of novel folds (a priori or knowledgebased), typically main chain only (analogous to an essay exam) Structural alignment 2 di rmsdeviation = n d = distance between ith pair of i n = number of points So: match corresponding atoms Find the distances Minimize the differences atoms 18

19 Prediction of function Sequence Structure Function But as proteins evolve they may Retain function and specificity Retain function but alter specificity Change to a related function, or a similar function in a different metabolic context Change to a completely unrelated function 19

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

= (-22) = +2kJ /mol

= (-22) = +2kJ /mol Lecture 8: Thermodynamics & Protein Stability Assigned reading in Campbell: Chapter 4.4-4.6 Key Terms: DG = -RT lnk eq = DH - TDS Transition Curve, Melting Curve, Tm DH calculation DS calculation van der

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

BCHS 6229 Protein Structure and Function. Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization

BCHS 6229 Protein Structure and Function. Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization BCHS 6229 Protein Structure and Function Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization 1 The folding problem One of the greatest unsolved problems of Science The folding

More information

4 Proteins: Structure, Function, Folding W. H. Freeman and Company

4 Proteins: Structure, Function, Folding W. H. Freeman and Company 4 Proteins: Structure, Function, Folding 2013 W. H. Freeman and Company CHAPTER 4 Proteins: Structure, Function, Folding Learning goals: Structure and properties of the peptide bond Structural hierarchy

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Protein Folding experiments and theory

Protein Folding experiments and theory Protein Folding experiments and theory 1, 2,and 3 Protein Structure Fig. 3-16 from Lehninger Biochemistry, 4 th ed. The 3D structure is not encoded at the single aa level Hydrogen Bonding Shared H atom

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Presenter: She Zhang

Presenter: She Zhang Presenter: She Zhang Introduction Dr. David Baker Introduction Why design proteins de novo? It is not clear how non-covalent interactions favor one specific native structure over many other non-native

More information

Protein Folding. I. Characteristics of proteins. C α

Protein Folding. I. Characteristics of proteins. C α I. Characteristics of proteins Protein Folding 1. Proteins are one of the most important molecules of life. They perform numerous functions, from storing oxygen in tissues or transporting it in a blood

More information

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding Reading: Ch4; 142-151 Problems: Ch4 (text); 14, 16 Ch6 (text); 1, 4 NEXT (after exam) Reading: Ch8; 310-312, 279-285, 285-289 Ch24; 957-961 Problems: Ch8 (text); 1,2,22 Ch8 (study-guide:facts); 1,2,3,4,5,9,10

More information

Biochemistry: Concepts and Connections

Biochemistry: Concepts and Connections Biochemistry: Concepts and Connections Dean R. Appling Spencer J. Anthony-Cahill Christopher K. Mathews Chapter 6 The Three Dimensional Structure of Proteins Cartoon representation of myoglobin, showing

More information

BCH 4053 Spring 2003 Chapter 6 Lecture Notes

BCH 4053 Spring 2003 Chapter 6 Lecture Notes BCH 4053 Spring 2003 Chapter 6 Lecture Notes 1 CHAPTER 6 Proteins: Secondary, Tertiary, and Quaternary Structure 2 Levels of Protein Structure Primary (sequence) Secondary (ordered structure along peptide

More information

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy

Why Proteins Fold. How Proteins Fold? e - ΔG/kT. Protein Folding, Nonbonding Forces, and Free Energy Why Proteins Fold Proteins are the action superheroes of the body. As enzymes, they make reactions go a million times faster. As versatile transport vehicles, they carry oxygen and antibodies to fight

More information

Protein Folding In Vitro*

Protein Folding In Vitro* Protein Folding In Vitro* Biochemistry 412 February 29, 2008 [*Note: includes computational (in silico) studies] Fersht & Daggett (2002) Cell 108, 573. Some folding-related facts about proteins: Many small,

More information

Quiz 2 Morphology of Complex Materials

Quiz 2 Morphology of Complex Materials 071003 Quiz 2 Morphology of Complex Materials 1) Explain the following terms: (for states comment on biological activity and relative size of the structure) a) Native State b) Unfolded State c) Denatured

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Short Announcements. 1 st Quiz today: 15 minutes. Homework 3: Due next Wednesday.

Short Announcements. 1 st Quiz today: 15 minutes. Homework 3: Due next Wednesday. Short Announcements 1 st Quiz today: 15 minutes Homework 3: Due next Wednesday. Next Lecture, on Visualizing Molecular Dynamics (VMD) by Klaus Schulten Today s Lecture: Protein Folding, Misfolding, Aggregation

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Protein structure forces, and folding

Protein structure forces, and folding Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Protein structure forces, and folding

More information

Lecture 34 Protein Unfolding Thermodynamics

Lecture 34 Protein Unfolding Thermodynamics Physical Principles in Biology Biology 3550 Fall 2018 Lecture 34 Protein Unfolding Thermodynamics Wednesday, 21 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Clicker Question

More information

Protein structure and folding

Protein structure and folding Protein structure and folding Levels of protein structure Theory of protein folding: Anfinsen s experiment Levinthal s paradox the folding funnel mode 05.11.2014. Amino acids and protein structure Protein

More information

The protein folding problem consists of two parts:

The protein folding problem consists of two parts: Energetics and kinetics of protein folding The protein folding problem consists of two parts: 1)Creating a stable, well-defined structure that is significantly more stable than all other possible structures.

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS EXAMINATION: Biochemistry of Proteins EXAMINER: J. O'Neil Section 1: You must answer all of

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Protein Folding Prof. Eugene Shakhnovich

Protein Folding Prof. Eugene Shakhnovich Protein Folding Eugene Shakhnovich Department of Chemistry and Chemical Biology Harvard University 1 Proteins are folded on various scales As of now we know hundreds of thousands of sequences (Swissprot)

More information

7.88J Protein Folding Problem Fall 2007

7.88J Protein Folding Problem Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 7.88J Protein Folding Problem Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture Notes - 3 7.24/7.88J/5.48J

More information

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION AND CALIBRATION Calculation of turn and beta intrinsic propensities. A statistical analysis of a protein structure

More information

Charged amino acids (side-chains)

Charged amino acids (side-chains) Proteins are composed of monomers called amino acids There are 20 different amino acids Amine Group Central ydrocarbon N C C R Group Carboxyl Group ALL amino acids have the exact same structure except

More information

Chapter 1. Topic: Overview of basic principles

Chapter 1. Topic: Overview of basic principles Chapter 1 Topic: Overview of basic principles Four major themes of biochemistry I. What are living organism made from? II. How do organism acquire and use energy? III. How does an organism maintain its

More information

arxiv:cond-mat/ v1 7 Jul 2000

arxiv:cond-mat/ v1 7 Jul 2000 A protein model exhibiting three folding transitions Audun Bakk Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway arxiv:cond-mat/0007130v1 7 Jul 2000

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and. Disfavors Mn Binding.

A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and. Disfavors Mn Binding. Supporting information for A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and Disfavors Mn Binding. Anne-Frances Miller* and Ting Wang Department of Chemistry, University

More information

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed.

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed. Macromolecular Processes 20. Protein Folding Composed of 50 500 amino acids linked in 1D sequence by the polypeptide backbone The amino acid physical and chemical properties of the 20 amino acids dictate

More information

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 06 Protein Structure IV We complete our discussion on Protein Structures today. And just to recap

More information

Flexibility of Protein Structure

Flexibility of Protein Structure Flexibility of Protein Structure Proteins show varying degree of conformational flexibility Due to movements of atoms in molecules vibration in bond length and angles Reflects the existence of populations

More information

Student Questions and Answers October 8, 2002

Student Questions and Answers October 8, 2002 Student Questions and Answers October 8, 2002 Q l. Is the Cα of Proline also chiral? Answer: FK: Yes, there are 4 different residues bound to this C. Only in a strictly planar molecule this would not hold,

More information

From Amino Acids to Proteins - in 4 Easy Steps

From Amino Acids to Proteins - in 4 Easy Steps From Amino Acids to Proteins - in 4 Easy Steps Although protein structure appears to be overwhelmingly complex, you can provide your students with a basic understanding of how proteins fold by focusing

More information

BIMS 503 Exam I. Sign Pledge Here: Questions from Robert Nakamoto (40 pts. Total)

BIMS 503 Exam I. Sign Pledge Here: Questions from Robert Nakamoto (40 pts. Total) BIMS 503 Exam I September 24, 2007 _ /email: Sign Pledge Here: Questions from Robert Nakamoto (40 pts. Total) Questions 1-6 refer to this situation: You are able to partially purify an enzyme activity

More information

Macromolecule Stability Curves

Macromolecule Stability Curves Chem728 page 1 Spring 2012 Macromolecule Stability Curves Macromolecule Transitions - We have discussed in class the factors that determine the spontaneity of processes using conformational transitions

More information

Electonegativity, Polar Bonds, and Polar Molecules

Electonegativity, Polar Bonds, and Polar Molecules Electonegativity, Polar Bonds, and Polar Molecules Some Definitions Electronegativity: the ability of an atom to attract bonding electrons to itself. Intramolecular forces: the attractive force between

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Biochemistry 530: Introduction to Structural Biology. Autumn Quarter 2014 BIOC 530

Biochemistry 530: Introduction to Structural Biology. Autumn Quarter 2014 BIOC 530 Biochemistry 530: Introduction to Structural Biology Autumn Quarter 2014 Course Information Course Description Graduate-level discussion of the structure, function, and chemistry of proteins and nucleic

More information

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding?

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding? The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation By Jun Shimada and Eugine Shaknovich Bill Hawse Dr. Bahar Elisa Sandvik and Mehrdad Safavian Outline Background on protein

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

BIOC : Homework 1 Due 10/10

BIOC : Homework 1 Due 10/10 Contact information: Name: Student # BIOC530 2012: Homework 1 Due 10/10 Department Email address The following problems are based on David Baker s lectures of forces and protein folding. When numerical

More information

BIBC 100. Structural Biochemistry

BIBC 100. Structural Biochemistry BIBC 100 Structural Biochemistry http://classes.biology.ucsd.edu/bibc100.wi14 Papers- Dialogue with Scientists Questions: Why? How? What? So What? Dialogue Structure to explain function Knowledge Food

More information

Section Week 3. Junaid Malek, M.D.

Section Week 3. Junaid Malek, M.D. Section Week 3 Junaid Malek, M.D. Biological Polymers DA 4 monomers (building blocks), limited structure (double-helix) RA 4 monomers, greater flexibility, multiple structures Proteins 20 Amino Acids,

More information

Energetics and Thermodynamics

Energetics and Thermodynamics DNA/Protein structure function analysis and prediction Protein Folding and energetics: Introduction to folding Folding and flexibility (Ch. 6) Energetics and Thermodynamics 1 Active protein conformation

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Lec.1 Chemistry Of Water

Lec.1 Chemistry Of Water Lec.1 Chemistry Of Water Biochemistry & Medicine Biochemistry can be defined as the science concerned with the chemical basis of life. Biochemistry can be described as the science concerned with the chemical

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures 3-4. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures 3-4. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lectures 3-4 Based on Profs. Kevin Gardner & Reza Khayat 1 Outline Overview of protein structure Peptide bonds Secondary structure

More information

Biological Thermodynamics

Biological Thermodynamics Biological Thermodynamics Classical thermodynamics is the only physical theory of universal content concerning which I am convinced that, within the framework of applicability of its basic contents, will

More information

ALL LECTURES IN SB Introduction

ALL LECTURES IN SB Introduction 1. Introduction 2. Molecular Architecture I 3. Molecular Architecture II 4. Molecular Simulation I 5. Molecular Simulation II 6. Bioinformatics I 7. Bioinformatics II 8. Prediction I 9. Prediction II ALL

More information

Protein Structure Basics

Protein Structure Basics Protein Structure Basics Presented by Alison Fraser, Christine Lee, Pradhuman Jhala, Corban Rivera Importance of Proteins Muscle structure depends on protein-protein interactions Transport across membranes

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University Thermodynamics Entropy and its Applications Lecture 11 NC State University System and surroundings Up to this point we have considered the system, but we have not concerned ourselves with the relationship

More information

Lattice protein models

Lattice protein models Lattice protein models Marc R. Roussel epartment of Chemistry and Biochemistry University of Lethbridge March 5, 2009 1 Model and assumptions The ideas developed in the last few lectures can be applied

More information

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading

BME Engineering Molecular Cell Biology. Structure and Dynamics of Cellular Molecules. Basics of Cell Biology Literature Reading BME 42-620 Engineering Molecular Cell Biology Lecture 05: Structure and Dynamics of Cellular Molecules Basics of Cell Biology Literature Reading BME42-620 Lecture 05, September 13, 2011 1 Outline Review:

More information

Circular Dichroism. For students of HI Computational Structural Biology

Circular Dichroism. For students of HI Computational Structural Biology T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Circular Dichroism For students of HI 6001-125 Computational Structural Biology

More information

BCMP 201 Protein biochemistry

BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry BCMP 201 Protein biochemistry with emphasis on the interrelated roles of protein structure, catalytic activity, and macromolecular interactions in biological processes. The

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

Methods for the study of the conformation of folding intermediates

Methods for the study of the conformation of folding intermediates 7.88 Lecture Notes - 9 7.24/7.88J/5.48J The Protein Folding and Human Disease Fluorescence spectroscopy Denaturation and Denaturing agents Denatured State as a random coil (First Approx.) Renaturation/Refolding

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

Biology Chemistry & Physics of Biomolecules. Examination #1. Proteins Module. September 29, Answer Key

Biology Chemistry & Physics of Biomolecules. Examination #1. Proteins Module. September 29, Answer Key Biology 5357 Chemistry & Physics of Biomolecules Examination #1 Proteins Module September 29, 2017 Answer Key Question 1 (A) (5 points) Structure (b) is more common, as it contains the shorter connection

More information

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) PROTEINS BIOLOGY BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #6 (Chapter 5) NAME NAME PERIOD PROTEINS GENERAL CHARACTERISTICS AND IMPORTANCES: Polymers of amino acids Each has unique 3-D shape Vary in sequence of amino

More information

Introduction to Protein Folding

Introduction to Protein Folding Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological

More information

Introduction to Computational Structural Biology

Introduction to Computational Structural Biology Introduction to Computational Structural Biology Part I 1. Introduction The disciplinary character of Computational Structural Biology The mathematical background required and the topics covered Bibliography

More information

Guessing the upper bound free-energy difference between native-like structures. Jorge A. Vila

Guessing the upper bound free-energy difference between native-like structures. Jorge A. Vila 1 Guessing the upper bound free-energy difference between native-like structures Jorge A. Vila IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700- San Luis, Argentina Use

More information

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan STRUCTURAL BIOINFORMATICS Barry Grant University of Michigan www.thegrantlab.org bjgrant@umich.edu Bergen, Norway 28-Sep-2015 Objective: Provide an introduction to the practice of structural bioinformatics,

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Chemistry 565 / 665 BIOPHYSICAL CHEMISTRY. - Spring

Chemistry 565 / 665 BIOPHYSICAL CHEMISTRY. - Spring Chemistry 565 / 665 BIOPHYSICAL CHEMISTRY - Spring 2003 - LECTURE: LECTURER: OFFICE HOURS: 9:55 10:45 a.m. MTRF, B383 Chemistry Prof. Silvia Cavagnero Office: 8108 New Chemistry Building (will be 5341

More information

Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles

Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles 1 Today we will... Get practice using Coulomb s law & vector addition Learn about electric dipoles Apply these concepts! Molecular interactions Polar

More information

Denaturation and renaturation of proteins

Denaturation and renaturation of proteins Denaturation and renaturation of proteins Higher levels of protein structure are formed without covalent bonds. Therefore, they are not as stable as peptide covalent bonds which make protein primary structure

More information

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3.

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3. 3. Solutions Many biological processes occur between molecules in aqueous solution. In addition, many protein and nucleic acid molecules adopt three-dimensional structure ( fold ) in aqueous solution.

More information

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram 15 Dana Alsulaibi Jaleel G.Sweis Mamoon Ahram Revision of last lectures: Proteins have four levels of structures. Primary,secondary, tertiary and quaternary. Primary structure is the order of amino acids

More information

BIOC 530 Fall, 2011 BIOC 530

BIOC 530 Fall, 2011 BIOC 530 Fall, 2011 Course Information Course Description Graduate-level discussion of the structure, function, and chemistry of proteins and nucleic acids, control of enzymatic reactions. Please see the course

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE

PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE PROTEIN EVOLUTION AND PROTEIN FOLDING: NON-FUNCTIONAL CONSERVED RESIDUES AND THEIR PROBABLE ROLE O.B. PTITSYN National Cancer Institute, NIH, Laboratory of Experimental & Computational Biology, Molecular

More information

1) Here we review the various types of interactions that can take place between and among molecules.

1) Here we review the various types of interactions that can take place between and among molecules. Chem 431A-L02-W'05 page 1 of 6 Chem 431A-L02-W'05 Summary of lecture topics discussed in lecture 2-3: 1) Here we review the various types of interactions that can take place between and among molecules.

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins 1 Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain. Biochemistry Quiz Review 1I A general note: Short answer questions are just that, short. Writing a paragraph filled with every term you can remember from class won t improve your answer just answer clearly,

More information

Outline for Today. Monday, Nov. 26. Chapter 11: Intermolecular Forces and Liquids. Intermolecular Foces. Comparing States of Matter

Outline for Today. Monday, Nov. 26. Chapter 11: Intermolecular Forces and Liquids. Intermolecular Foces. Comparing States of Matter Outline for Today Monday, Nov. 26 Chapter 11: Intermolecular Forces and Liquids Intermolecular Foces Comparing States of Matter Properties of Liquids Phase Changes!1 Exam 3 Reminders When: Wednesday at

More information

(6 pts) List three general characteristics shared by stable secondary structures.

(6 pts) List three general characteristics shared by stable secondary structures. Biochemistry 461, Section I Your Name: March 19, 1998 Exam #2 Your SS#: Prof. Jason D. Kahn Your Signature: Please have photo ID available. You have 80 minutes for this exam. Exams written in pencil or

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Multimedia : Fibronectin and Titin unfolding simulation movies.

Multimedia : Fibronectin and Titin unfolding simulation movies. I LECTURE 21: SINGLE CHAIN ELASTICITY OF BIOMACROMOLECULES: THE GIANT PROTEIN TITIN AND DNA Outline : REVIEW LECTURE #2 : EXTENSIBLE FJC AND WLC... 2 STRUCTURE OF MUSCLE AND TITIN... 3 SINGLE MOLECULE

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

Biomolecules: The Molecules of Life. 1.2 Biomolecules: The Molecules of Life. Covalent bonding alternatives

Biomolecules: The Molecules of Life. 1.2 Biomolecules: The Molecules of Life. Covalent bonding alternatives Biomolecules: The Molecules of Life What property unites H, O, C and N and renders these atoms so appropriate to the chemistry of life? Answer: Their ability to form covalent bonds by electron-pair sharing.

More information

Typical examination questions (with answer notes)

Typical examination questions (with answer notes) Chemistry with Medicinal Chemistry (CMC)-3 Biophysical Chemistry Module Biomolecular Interactions (Professor Alan Cooper) Typical examination questions (with answer notes) The following questions are adapted

More information

Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8

Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8 Modeling Background; Donald J. Jacobs, University of North Carolina at Charlotte Page 1 of 8 Depending on thermodynamic and solvent conditions, the interrelationships between thermodynamic stability of

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information