Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating

Size: px
Start display at page:

Download "Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating"

Transcription

1 DOI: 1.138/NNANO Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

2 DOI: 1.138/NNANO I. MATERIAL DETAILS The dual-gated device contains an exfoliated graphene flake, contacted by two chromium-gold contacts, on top of 3 nm of SiO 2 and a doped silicon substrate. The silicon serves a back gate to control the Fermi level in the graphene flake. The graphene is covered by an exfoliated flake of hexagonal boron nitride (1-2 nm) and a chromium-gold top gate that locally controls the Fermi level of the graphene sheet. Further fabrication details are given in Ref. S1. The transparent substrate device contains an exfoliated flake with a monolayer region, connected to a bilayer region, which in turn is connected to a graphite region. The monolayer and graphite regions are each connected to titanium-gold contacts (made using laser writing and evaporation) that serve as source and drain contacts. Figure 1 shows the details of this device, with characterization by Raman spectroscopy to identify the monolayer, bilayer and graphite regions. The substrate of this device is a 1 mm thick crystal of SiO 2, which is used to avoid any graphene absorption enhancement due to reflections at the interface of SiO 2 and doped Si in typically used substrates (see main text). The suspended device contains an exfoliated flake on top of a substrate of 3 nm SiO 2 and Si, where the oxide underneath the flake is etched away in a BOE solution for 7 seconds, thus producing a suspended flake. The distance between the graphene flake and the oxide is estimated to be 24 nm. The flake is contacted with gold contacts, made using e-beam lithography. II. TIME-RESOLVED PHOTOCURRENTSCANNING MICROSCOPY SETUP Here we describe in detail the time-resolved photovoltage microscopy setup with 3 fs time resolution (see Fig. 1c of the main text). We use a broadband Titanium Sapphire laser (Octavius 85M, Menlo Systems) tuned to a central wavelength of 8 nm with a bandwidth of 12 nm combined with a liquid crystal based spatial light modulator (SLM) pulse shaper arranged in a 4f-configuration. After propagating through the shaper, the laser 2 NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

3 DOI: 1.138/NNANO a SUPPLEMENTARY INFORMATION b 3 Photon counts (a.u.) 2 1 Graphite Bilayer graphene Monolayer graphene 5 µm Raman shift (cm ) Supplementary Fig. 1: a) Raman spectrum of three different locations on the Device B, showing monolayer graphene, bilayer graphene and graphite. b) Microscope image of the device with indications where the Raman spectra of panel a are taken. The dashed lines indicate the monolayer and bilayer graphene areas. beam is spectrally split using a dichroic filter (Semrock, 83 nm Edge Basic) into two parts: the pump (<8 nm) and the probe (>8nm), each with a bandwidth of 55nm. Due to this spectral separation, the two pulses do not show any coherent artefact when they overlap in time. One of the beams travels through a motorized delay line that is used to control the delay time t between the pulses. The other beam is modulated with a mechanical chopper. The two beams are recombined through the same dichroic filter, propagated collinearly into an inverted microscope (Zeiss Axiovert 2) and focused with a.65na objective (Olympus LCPLN-5X-IR) onto the graphene device. The studied devices are mounted ontoa3d piezo-scanner that allows for measuring spatially resolved photovoltage maps. Both beams are linearly polarized, parallel to each other. The reflected laser light is collected through the same objective and sent to an avalanche photo-diode (APD) that allowes for confocal optical imaging of the device, in addition to the photovoltage detection. In order to obtain transform limited pulses we use the MIIPS method in combination with second harmonic nanoparticles, an approach described in detail elsewhere [S2]. Briefly, NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

4 DOI: 1.138/NNANO the second harmonic signal from BaTiO 3 nanoparticles (few hundred nanometers in size) is used to detect the phase dispersion of the laser pulses. An appropriate phase mask is then applied onto the SLM to compensate for the dispersion. This allows for obtaining transform limited pulses in the focal spot of the microscope objective. The same nanoparticles are used to measure the cross-correlation signal of the two pulses. The generated photovoltage is detected using a lock-in amplifier locked to the driving frequency of the chopper and recorded as a function of the delay line position. III. ANALYSIS OF THE TIME-RESOLVED PHOTOVOLTAGE SIGNALS The reason we are able to resolve the dynamics of hot electrons is that there is an intrinsic nonlinearity between the amount of created photovoltage and the amount of power absorbed in the graphene sheet (see Fig. 2a): The signal is smaller for excitation with 4 µw than twice the signal for excitation with 2 µw. Here we are dealing with the strong excitation regime ( T el >> T ), in contrast to the weak excitation regime that applies to our spectrally resolved measurements. The reason for this nonlinearity is the nonlinear relation between the amount of absorbed power and the electron temperature for pulsed excitation, which has an approximate square-root dependence [S3]. This follows from the electronic heat capacity C el = α T and Q = T el T C el dt, which gives T el = T Q. α Here C el is the electronic heat capacity, α = 2πE F k 2 3 h 2 vf 2 B (with E F the Fermi energy, h the reduced Planck constant, v F the Fermi velocity and k B Boltzmann s constant), and Q the amount of power absorbed from the incident light. Furthermore, T el saturates at higher fluences due to the lower heating efficiency [S4]. As a result, the photovoltage decreases around t = and forms the photovoltage dip I PC with dynamics that reflect the dynamics of the electron temperature, as explained in the main text. Interestingly, we closely recover the original heating dynamics from our photovoltage dip I PC by taking its time derivative. We show this numerically in Fig. 2b, where we use two different heat dynamics curves and use these to calculate the photovoltage dip, following the procedure described in the Methods section. The heat dynamics contain an exponential heating time and an exponential cooling time. We find that taking the time derivative of 4 NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

5 DOI: 1.138/NNANO SUPPLEMENTARY INFORMATION the dip very closely reproduces the original heat dynamics. a Photocurrent (na) I PC I PC Power ( W) T -T (K) el 4 2 b d/dt( I PC ) (norm.) 1 5 fs 1.3 ps 25 fs 1.3 ps Delay time t (ps) Supplementary Fig. 2: a) Photocurrent I PC (left vertical axis) as a function of power, showing the nonlinear dependence. The fit is the hot electron temperature increase T el T directly after laser pulse absorption and electron thermalization (right vertical axis), calculated using E F =.2 ev, a spot size of 1.5 µm and an absorption of 1%. The agreement shows that the photocurrent is proportional to the hot electron temperature, as expected. b) Time derivative of the modeled photocurrent dip d/dti PC (solid lines) together with the heat dynamics that served as input into the model (dashed lines). The black (red) lines correspond to a heating time of 5 (25) fs and a cooling time of 1.3 ps. IV. ENERGY-RESOLVED PHOTOCURRENT SCANNING MICROSCOPY SETUP The energy-resolved photovoltage microscopy setup uses a pulsed laser (NKT Photonics SuperK Extreme) and an acousto-optic tunable filter (NKT Photonics SpectraK Dual) to select the desired wavelength between 5 and 15 nm. The laser has a repetition rate of 4 MHz, and the pulses have a duration of 4 ps, as determined using time-correlated photon counting (using a PicoHarp) of the reflected signal. The light is focused onto the device using a broadband long working distance objective with a numerical aperture of.65 (Olympus LCPLN-5X-IR). The device is mounted in a closed cycle Helium cryostat (Janis) with x,y,z-manipulation using piezo-controllers (Attocube). The current generated in the device passes through a current pre-amplifier (Femto DLPCA-2) and an AD-card. NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

6 DOI: 1.138/NNANO V. ANALYSIS OF WAVELENGTH-RESOLVED PHOTOVOLTAGE SIGNALS As we discuss in the main text, in the case of efficient electron heating the wavelength (λ) dependence of the responsivity is solely determined by the wavelength-dependent absorption coefficient A(λ). We compare the responsivity for all three devices with the (scaled) absorption, which is numerically calculated taking into account the full layered system (using Lumerical FDTD Solutions software). We also show what the responsivity would look like in the case of photovoltaic current generation or (equivalently) PTE current generation with low electron heating efficiency. In those cases the responsivity would depend on absorbed photon density R PC A(λ) N ph, rather than on absorbed power R PC A(λ) N ph hf (see Fig. 3a-c). Clearly, the agreement between data and model is best when assuming that the responsivity scales with absorbed power. This indicates that the current generation mechanism is the photo-thermoelectric effect and that electron heating is efficient. To further illustrate efficient heating we show the absorbed photon densitynormalized photovoltage vs. photon energy hf in Fig. 3d-f for the dual-gated device, the transparent substrate device and the suspended device, respectively. Linear scaling through the origin shows that a higher photon energy gives a proportional increase in photovoltage, which is the result of efficient electron heating through carrier-carrier scattering [S5]. 6 NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

7 DOI: 1.138/NNANO SUPPLEMENTARY INFORMATION a 1.5 d b RPC(1 A/W) -4 (1 A/W) -4 RPC Photocurrent ratio 5 15 Wavelength (nm) SLG-BLG transparent PN junction 285 nm SiO 2 e IQE (a.u.) IQE (a.u.) c f.6 (1 A/W) -4 RPC.4.2 PN junction suspended IQE (a.u.) Wavelength (nm) Initial energy (ev) Supplementary Fig. 3: a-c) Wavelength dependent responsivity for the transparent substrate device (a), the dual-gated device (b), and the suspended graphene device (c), together with the numerical model where the photovoltage scales with the calculated graphene absorption coefficient (solid red line) and the model where the photovoltage scales with the calculated absorbed photon density (dashed red line). The former model corresponds to photovoltage generation through the PTE and efficient electron heating, whereas the latter corresponds to photovoltic photovoltage generation or PTE current generation with low heating efficiency. The inset of panel b shows the photocurrent ratio, where the photocurrent with the laser at the graphene-metal interface is divided by the photocurrent with the laser at the pn-junction. The flat ratio above 6 nm, together with the PTE origin of the photocurrent at the pn-junction, shows that the origin of the photocurrent at the graphene-metal interface is likely also photo-thermoelectric. d-f) The photovoltage normalized by the absorbed photon density as a function of initial electron energy E i = hf/2 for Device B (d), Device A (e), and Device C (f). 7 NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

8 DOI: 1.138/NNANO Supplementary References [S1] Gabor N.M. et al. Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science 334, (211) [S2] Accanto, N., Nieder, J.B., Piatkowski, L., Castro-Lopez, M., Pastorelli, F., Brinks, D. and van Hulst, N.F., Light: Science & Applications 3, e143 (214) [S3] Graham, M.W., Shi, S.-F., Ralph, D.C., Park, J. & McEuen, P.L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, (213). [S4] Jensen, S. et al. graphene. Nano Lett. 14, (214) Competing ultrafast energy relaxation pathways in photoexcited [S5] Tielrooij, K.J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, (213) 8 NATURE NANOTECHNOLOGY Macmillan Publishers Limited. All rights reserved

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB

Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB stacked bilayer graphene (b), (c), (d), (e), and (f) are twisted bilayer graphene with twist angle

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1211384/dc1 Supporting Online Material for Hot Carrier Assisted Intrinsic Photoresponse in Graphene Nathaniel M. Gabor, Justin C. W. Song, Qiong Ma, Nityan L.

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Heating and cooling pathways of hot carriers in graphene. a) Schematics illustrating the cooling pathway of photoexcited carriers. Detailed descriptions are

More information

Ultrafast hot-carrier-dominated photocurrent in graphene

Ultrafast hot-carrier-dominated photocurrent in graphene SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.243 Ultrafast hot-carrier-dominated photocurrent in graphene Table of Contents: Dong Sun 1, Grant Aivazian 1, Aaron M. Jones 1, Jason S. Ross 2,Wang Yao

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information: Photocurrent generation in semiconducting and metallic carbon nanotubes Maria Barkelid 1*, Val Zwiller 1 1 Kavli Institute of Nanoscience, Delft University of Technology, Delft,

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

Hot-carrier photocurrent effects at graphene metal interfaces

Hot-carrier photocurrent effects at graphene metal interfaces Journal of Physics: Condensed Matter J. Phys.: Condens. Matter 27 (215) 16427 (1pp) doi:1.188/953-8984/27/16/16427 Hot-carrier photocurrent effects at graphene metal interfaces K J Tielrooij 1,4, M Massicotte

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication

UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication Citation for published version (APA): Jensen, S. A. (2014). Charge carrier dynamics

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods Supporting Information Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods G. Sagarzazu a, K. Inoue b, M. Saruyama b, M. Sakamoto b, T. Teranishi b, S. Masuo a and N. Tamai a a Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron Supplementary Figure 1 Supplementary Figure 1 Characterization of another locally gated PN junction based on boron nitride and few-layer black phosphorus (device S1). (a) Optical micrograph of device S1.

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1400173/dc1 Supplementary Materials for Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Final Report for AOARD grant FA2386-12-1-4095 Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Principal investigator: A/Prof. Tang Dingyuan Division of Microelectronics

More information

Extrinsic Origin of Persistent Photoconductivity in

Extrinsic Origin of Persistent Photoconductivity in Supporting Information Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors Yueh-Chun Wu 1, Cheng-Hua Liu 1,2, Shao-Yu Chen 1, Fu-Yu Shih 1,2, Po-Hsun Ho 3, Chun-Wei

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hihly efficient ate-tunable photocurrent eneration in vertical heterostructures of layered materials Woo Jon Yu, Yuan Liu, Hailon Zhou, Anxian Yin, Zhen Li, Yu Huan, and Xianfen Duan. Schematic illustration

More information

S.1: Fabrication & characterization of twisted bilayer graphene 6.8

S.1: Fabrication & characterization of twisted bilayer graphene 6.8 Supplementary Materials: Tunable optical excitations in twisted bilayer graphene form strongly bound excitons Hiral Patel1, Robin W. Havener2,3, Lola Brown2,3, Yufeng Liang4, Li Yang4, Jiwoong Park2,3,and

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via Supporting information Unidirectional Doubly Enhanced MoS 2 Emission via Photonic Fano Resonances Xingwang Zhang, Shinhyuk Choi, Dake Wang, Carl H. Naylor, A. T. Charlie Johnson, and Ertugrul Cubukcu,,*

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Hot Carrier-Assisted Intrinsic Photoresponse in Graphene

Hot Carrier-Assisted Intrinsic Photoresponse in Graphene Hot Carrier-Assisted Intrinsic Photoresponse in Graphene Nathaniel M. Gabor 1, Justin C. W. Song 1,2, Qiong Ma 1, Nityan L. Nair 1, Thiti Taychatanapat 1,3, Kenji Watanabe 4, Takashi Taniguchi 4, Leonid

More information

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm) 1/ (rad -1 ) Normalized extinction a Clean 0.8 Water l* = 109 nm 0.6 Glycerol b 2.0 1.5 500 600 700 800 900 Clean Water 0.5 Glycerol l = 108 nm 630 660 690 720 750 Supplementary Figure 1. Refractive index

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Polymorphism and microcrystal shape

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

PROCEEDINGS OF SPIE. Imaging carrier dynamics on the surface of the N-type silicon

PROCEEDINGS OF SPIE. Imaging carrier dynamics on the surface of the N-type silicon PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Imaging carrier dynamics on the surface of the N-type silicon Ebrahim Najafi Ebrahim Najafi, "Imaging carrier dynamics on the surface

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

nano-ftir: Material Characterization with Nanoscale Spatial Resolution

nano-ftir: Material Characterization with Nanoscale Spatial Resolution neaspec presents: neasnom microscope nano-ftir: Material Characterization with Nanoscale Spatial Resolution AMC Workshop 2017 6th of June Dr. 2017 Tobias Gokus Company neaspec GmbH leading experts of nanoscale

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.215.33 Epitaxial graphene quantum dots for high-performance terahertz bolometers Abdel El Fatimy *, Rachael L. Myers-Ward, Anthony K. Boyd, Kevin M. Daniels, D. Kurt Gaskill, and Paola

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Nano fabrication and optical characterization of nanostructures

Nano fabrication and optical characterization of nanostructures Introduction to nanooptics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch Nano fabrication and optical characterization of nanostructures Lecture 12 1 Optical characterization

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NPHOTON.212.314 Supplementary Information: Photoconductivity of biased graphene Marcus Freitag, Tony Low, Fengnian Xia, and Phaedon Avouris IBM T.J. Watson Research Center, Yorktown Heights,

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a.

Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a. Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a. Schematic of experimental set-up including an amplified spontaneous emission

More information

Graphene Based Saturable Absorber Modelockers at 2µm

Graphene Based Saturable Absorber Modelockers at 2µm ISLA Workshop Munich Integrated disruptive components for 2µm fibre Lasers ISLA Graphene Based Saturable Absorber Modelockers at 2µm Prof. Werner Blau - Trinity College Dublin Friday, 26th of June 2015

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Unique ultrafast energy transfer in a series of phenylenebridged

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead Mixed-Halide Perovskites

Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead Mixed-Halide Perovskites Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead MixedHalide Perovskites Casey L. Kennedy, Andrew H. Hill, Eric S. Massaro, Erik M. Grumstrup *,,. Department

More information

Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films Xuesong Shi, 1 Xin Li, 1 Lan Jiang, 1,* Liangti Qu, 2 Yang Zhao, 2 Peng Ran, 1 Qingsong

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light)

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light) Luminescence Properties of Graphene A. Beltaos 1,2,3, A. Bergren 1, K. Bosnick 1, N. Pekas 1, A. Matković 4, A. Meldrum 2 1 National Institute for Nanotechnology (NINT), 11421 Saskatchewan Drive, Edmonton,

More information

FMM, 15 th Feb Simon Zihlmann

FMM, 15 th Feb Simon Zihlmann FMM, 15 th Feb. 2013 Simon Zihlmann Outline Motivation Basics about graphene lattice and edges Introduction to Raman spectroscopy Scattering at the edge Polarization dependence Thermal rearrangement of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Electroluminescence from a single nanotube-molecule-nanotube junction Christoph W. Marquardt, Sergio Grunder, Alfred Błaszczyk, Simone Dehm, Frank Hennrich, Hilbert v. Löhneysen,

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Supplemental Materials for Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Jason S. Ross 1, Pasqual Rivera 2, John Schaibley 2, Eric Lee-Wong 2, Hongyi Yu 3, Takashi Taniguchi 4,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Supporting Information for

Supporting Information for Supporting Information for Molecular Rectification in Conjugated Block Copolymer Photovoltaics Christopher Grieco 1, Melissa P. Aplan 2, Adam Rimshaw 1, Youngmin Lee 2, Thinh P. Le 2, Wenlin Zhang 2, Qing

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Tuning of 2-D Silicon Photonic Crystals

Tuning of 2-D Silicon Photonic Crystals Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Tuning of 2-D Silicon Photonic Crystals H. M. van Driel, S.W. Leonard, J. Schilling 1 and R.B. Wehrspohn 1 Department of Physics, University

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells CORRECTION NOTICE Continuous-wave bieciton lasing at room temperature using solution-processed quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco Di Stasio, Roman Krahne, Roberto Cingolani,

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

χ (3) Microscopic Techniques

χ (3) Microscopic Techniques χ (3) Microscopic Techniques Quan Wang Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 Microscopic techniques that utilize the third order non-linearality (χ (3) ) of the

More information

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly

Enhancement of Exciton Transport in Porphyrin. Aggregate Nanostructures by Controlling. Hierarchical Self-Assembly Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information for Enhancement of Exciton Transport in Porphyrin Aggregate Nanostructures

More information

Second-Harmonic Generation Studies of Silicon Interfaces

Second-Harmonic Generation Studies of Silicon Interfaces Second-Harmonic Generation Studies of Silicon Interfaces Z. Marka 1, Y. D. Glinka 1, Y. Shirokaya 1, M. Barry 1, S. N. Rashkeev 1, W. Wang 1, R. D. Schrimpf 2,D. M. Fleetwood 2 and N. H. Tolk 1 1 Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation APPLICATION NOTE Supercontinuum Generation in SCG-800 Photonic Crystal Fiber 28 Technology and Applications Center Newport Corporation 1. Introduction Since the discovery of supercontinuum generation (white

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry Greg Howland and Steven Bloch May 11, 009 Abstract We prepare a solution of nano-diamond particles on a glass microscope slide

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.128 Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity Yongzhuo

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.46 Position dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC Biddut K.

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE Journal of Nonlinear Optical Physics & Materials Vol. 19, No. 4 (2010) 767 771 c World Scientific Publishing Company DOI: 10.1142/S021886351000573X ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER

More information

Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films 1

Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films 1 International Journal of Thermophysics, Vol. 26, No. 1, January 2005 ( 2005) DOI: 10.1007/s10765-005-2358-y Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based

More information