Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre

Size: px
Start display at page:

Download "Analyzing Molecular Conformations Using the Cambridge Structural Database. Jason Cole Cambridge Crystallographic Data Centre"

Transcription

1 Analyzing Molecular Conformations Using the Cambridge Structural Database Jason Cole Cambridge Crystallographic Data Centre 1

2 The Cambridge Structural Database (CSD) 905,284* USOPEZ a natural product intermediate, crystallised as a cyclohexane solvate CSD Growth Adding ~60,000 entries per year; *As of 17-Aug

3 The Cambridge Crystallographic Data Centre About us A not-for-profit, charitable institution, est Self-financing and self-administering since 1989 No investors, no shareholders No national, EU or international grant support Funded entirely by contributions A University of Cambridge Partner Institute, recognized for postgraduate degrees of the University of Cambridge 3

4 Cambridge Structural Database System Molecular geometry The world s repository of small molecule crystal structures Molecular interactions 4

5 Mogul A Knowledge Base of Molecular Geometries keys describe the chemical environment Bruno, I. J.; Cole, J. C.; Kessler, M.; Luo, J.; Motherwell, W. D. S.; Purkis, L. H.; Smith, B. R.; Taylor, R.; Cooper, R. I.; Harris, S. E.; Orpen, A. G. J. Chem. Inf. Com. Sci. 2004, 44, rotamer distributions torsion angles bond lengths bond angles ring geometries 5

6 Classical Use Cases Distribution of the observed relative fractions of the CCC O torsion angle for various R1-substituted benzamides in the CSD. Regression analysis against affinity was used to predict the optimal torsion angle Published in: Pei-Pei Kung et al J. Med. Chem. 2016, 59, DOI: /acs.jmedchem.6b00515 Copyright 2016 American Chemical Society 6

7 Classical Use Cases Selectivity & Potency Published in: Brian S. Safina et al;; ACS Med. Chem. Lett. 2017, 8, DOI: /acsmedchemlett.7b00170 Copyright 2017 American Chemical Society 7

8 Energy and frequency No. of crystal structures DE 6-31G* Crystallographic Torsional Distributions and Calculated Energy Profiles Allen, et al., J. Comp.-Aided Mol. Design, 10, ,1996 8

9 Symmetric molecules Z = 1 Z = 1/2 BARNUE CAGYOY 9

10 Thermal motion & Unresolved Disorder ITUZEE R-factor:

11 Thermal motion: opportunity 11

12 Thermal motion: opportunity Sampling across the full torsional range 12

13 Thermal motion: opportunity 13

14 Thermal motion: opportunity Possible to interpret motion of CF3 groups potential for correlated distributions 14

15 Application Example: The CSD Conformer Generator Mogul molecule (minimise) get rotamer and ring distributions sample and score conformers select diverse subset An input molecule optionally minimized to adjust bond lengths and angles CSD rotamer and ring distributions are incrementally applied Generated conformers are assigned scores based r.freq. (a.prob.) Conformers are monitored to avoid clashes Diverse subset of conformations clustering *Taylor, R.; Cole, J.; Korb, O.; McCabe, P. J. Chem. Inf. Model. 2014, 54 (9),

16 Rotamers R A R D R B X Y R E R C R F Geometry around central bond X-Y could be defined by any of up to 9 torsions Simplify by defining 1 reference torsion Each central bond contributes to 1 rotamer distribution 180 < τ 180 capture asymmetric distributions 16

17 Structural Data Assigned 2nd 1st 3rd Torsion angles selected in probability order Unusual to reduce conformational space 17

18 Score conformers p 2 p 1 Torsional frequencies probability Ring frequencies probability Overall conformer probability (score) p = p 1 p 2 p n In reality work with ln p = ln p ln(p n ) 18

19 First Version Critique Very effective on published test sets But some issues due to Data coverage Ring coverage 19

20 More Relevant Selecting Distributions Geometric CSD Distributions Fine Enough Data? Use distribution No More Data Medium Enough Data? Use distribution No Coarse Enough Data? Use distribution 20

21 Rotamers Existing Version Enough Data means at least 50 observations Robust, but at the expense of coverage For 11,700 structures randomly selected from the ZINC clean drug like set Molecules affected 738(6.3%) Rotamers affected 790(1.2%) 21

22 Improvements: For sparse distributions, use Kernel Density Estimation to fit distribution KDE smoothing accounts for more uncertainty in sparse distributions 15 observations becomes sufficient 22

23 Rotamers New Version Enough Data means at least 15 observations Still Robust, better coverage For 11,700 structures randomly selected from the ZINC clean drug like set Before After Molecules affected 738(6.3%) 0 Rotamers affected 790(1.2%) 30 X C C X Average RMSD of best generated conformer reduces from 0.45 to 0.34Å 23

24 Handling Rings Existing Version For isolated rings Template conformations from CSD-derived template library* Exclude aromatic/delocalized rings which are likely to be planar Includes ring size, ring atom types, ring atom coordination, ring bond types, substituent size and substituent orientation For fused rings (exactly 1 bond in common) Use templates for component rings Superimpose common atoms Set position of common atoms to average If RMSD of common atoms > 0.3 Å, reject template *Taylor, R.; Cole, J.; Korb, O.; McCabe, P. J. Chem. Inf. Model. 2014, 54 (9),

25 Handling Rings New Version Now handle bridged rings (more than 1 bond in common) Add keys for shortest bridge formed by each atom Bridged rings groups based on bridge lengths (number of bonds) 7/8/9, 10+, (1-6 not grouped) Start with templates for each component Assemble fused/bridged rings by combining components (up to 6) All combinations of templates created Common atom positions set to midpoints of template rings Reject if common atom RMSD > 0.3 Å Assembly optimized to account for unusual bond lengths/angles 25

26 Rings What if we don t have a template? We can build one using CSD derived rotamer data/libraries What if we can t construct a reasonable template? We can use the input structure as is. However In subset of 11,700 ZINC clean, drug-like molecules 278 had rings without templates Template generation successful for all

27 Validation Done against the Platinum set* - Diverse Subset Filtered to remove geometrical errors due to: Low resolution data Misinterpretation in electron density Protein-bound ligands, similar properties to DrugBank Approved Drugs 2859 structures Input structures obtained from Platinum set authors CSD Conformer generator considers flexible torsions and rings only Any errors in bond angles/lengths would propagate to poor RMSDs Run via the CSD Python API *Friedrich, N.-O.; et al. J. Chem. Inf. Model. 2017, 57 (3),

28 Ensemble Sizes CSD Conformer Generator can set maximum ensemble size 50: Compare with Platinum set results 200: Default value 10,000: Exhaustive search Max ensemble of 50 conformations Max ensemble of 200 conformations 28

29 Ensembles of 10,000 Conformations Number of Rotatable Bonds Percent at Maximum Ensemble Size n = 50 n = 200 n = % 0% 0% 2 9% 2% 0% 3 46% 11% 0% 4 80% 43% 0% 5 97% 84% 2% 6 99% 96% 6% 7 100% 98% 25% 8 100% 97% 29% 9 100% 100% 32% % 97% 30% % 100% 29% % 97% 23% % 100% 12% % 100% 11% % 100% 22% % 100% 20% 29

30 Successes Successfully generated reference conformation at x Å RMSD Ensemble size = 50 Success with ensemble size of % 99.9% 94.1% 99.1% 83.9% 96.6% 57.2% 75.0% 30

31 Compared to other methods Diverse Set Results Ensemble = 50 Taken from Platinum Set Paper* *Friedrich, N.-O.; et al. J. Chem. Inf. Model. 2017, 57 (3),

32 Compared to other methods Diverse Set Results Ensemble = 250 Ensemble = 200 Taken from Platinum Set Paper* *Friedrich, N.-O.; et al. J. Chem. Inf. Model. 2017, 57 (3),

33 Some interesting failures PDB 3f7z, Ligand 34O Best RMSD at ensemble = 50: 2.37 Å Observed Best RMSD But, at ensemble = 200: 0.43 Å (rank = 171) 33

34 PDB 3ahg, ligand HTD Best RMSD: 1.45 Å (rank 22) Observed Best RMSD Overlay (on SN ring) Twisted ring Planar ring This is an unusual geometry CSD search for ring 402 hits All planar (max RMSD between atoms and plane = 0.12 A) Observed structure RMSD = 0.28 (18 std deviations from mean) Transition state structure - strained 34

35 PDB 4ax9, ligand N5N Best RMSD: 2.65 Å (rank 27) (ensemble = 200 best 1.65 Å, rank 65) Observed Best RMSD Intramolecular Hbond No generated conformer has this Hbond (even at 10000) There is no intramolecular hydrogen bonding term 35

36 Future Work Addition of intramolecular hydrogen bonding term Addition of nitrogen templates (switching between pyramidal and planar Ns) Improvement of intramolecular clash term Implementation of best-first tree search Paper: In preparation Better data libraries 36

37 Acknowledgements Jason Cole Murry Read Oliver Korb Patrick McCabe Robin Taylor John Liebeschuetz Paul Sanschagrin CCDC Colleagues Thank you! We are hiring! CSD Authors/Depositors (440,000+) 37

38

39 Run times Previous Version Ensemble = 50 Ensemble = Single process, single thread on Xeon E5-2643v2 (3.5 GHz) Time is for reading input, generating conformers (not saving output) 39

40 Timing differences Ens Size Mean(orig) Mean(new) Orig - New Ens = 50 Ens = 200 Ens =

41 Mean RMSD (of best conformer) Ensemble size = 50 Outliers 1.5 x Upper Quartile Range 75 th percentile Mean Median 25 th percentile 1.5 x Lower Quartile Range (Numbers indicate number of structures with n rotatable bonds) 42

42 Mean RMSD (of best conformer) Ensemble size = 50 Ensemble size =

43 Mean RMSD (of best conformer) Difference in mean RMSD if only 50 or 200 conformations generated instead of 10,000 44

44 Cumulative Successes Ensemble size = 50 45

45 Run times New Version Ensemble = 50 Ensemble = Single process, single thread on Xeon E5-2643v2 (3.5 GHz) Time is for reading input, generating conformers (not saving output) 46

Generating Small Molecule Conformations from Structural Data

Generating Small Molecule Conformations from Structural Data Generating Small Molecule Conformations from Structural Data Jason Cole cole@ccdc.cam.ac.uk Cambridge Crystallographic Data Centre 1 The Cambridge Crystallographic Data Centre About us A not-for-profit,

More information

CSD Conformer Generator User Guide

CSD Conformer Generator User Guide CSD Conformer Generator User Guide 2018 CSD Release Copyright 2017 Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The CSD Conformer Generator is copyright work belonging

More information

CSD Conformer Generator User Guide

CSD Conformer Generator User Guide CSD Conformer Generator User Guide 2017 CSD Release Copyright 2016 Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The CSD Conformer Generator is copyright work belonging

More information

Validation of Experimental Crystal Structures

Validation of Experimental Crystal Structures Validation of Experimental Crystal Structures Aim This use case focuses on the subject of validating crystal structures using tools to analyse both molecular geometry and intermolecular packing. Introduction

More information

Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner

Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner Table of Contents Creating a Pharmacophore Query from a Reference Molecule & Scaffold Hopping in CSD-CrossMiner Introduction... 2 CSD-CrossMiner Terminology... 2 Overview of CSD-CrossMiner... 3 Features

More information

Performing a Pharmacophore Search using CSD-CrossMiner

Performing a Pharmacophore Search using CSD-CrossMiner Table of Contents Introduction... 2 CSD-CrossMiner Terminology... 2 Overview of CSD-CrossMiner... 3 Searching with a Pharmacophore... 4 Performing a Pharmacophore Search using CSD-CrossMiner Version 2.0

More information

User Guide for LeDock

User Guide for LeDock User Guide for LeDock Hongtao Zhao, PhD Email: htzhao@lephar.com Website: www.lephar.com Copyright 2017 Hongtao Zhao. All rights reserved. Introduction LeDock is flexible small-molecule docking software,

More information

Conformational Searching using MacroModel and ConfGen. John Shelley Schrödinger Fellow

Conformational Searching using MacroModel and ConfGen. John Shelley Schrödinger Fellow Conformational Searching using MacroModel and ConfGen John Shelley Schrödinger Fellow Overview Types of conformational searching applications MacroModel s conformation generation procedure General features

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK

The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK The Cambridge Structural Database (CSD) a Vital Resource for Structural Chemistry and Biology Stephen Maginn, CCDC, Cambridge, UK 1 The Cambridge Crystallographic Data Centre The advancement and promotion

More information

Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon?

Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon? Exploring symmetry related bias in conformational data from the Cambridge Structural Database: A rare phenomenon? Aim To explore some well known cases where symmetry effects bias the distribution of conformational

More information

Generation of crystal structures using known crystal structures as analogues

Generation of crystal structures using known crystal structures as analogues Supporting information Volume 72 (2016) Supporting information for article: Generation of crystal structures using known crystal structures as analogues Jason C. Cole, Colin R. Groom, Murray G. Read, Ilenia

More information

Schrodinger ebootcamp #3, Summer EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist

Schrodinger ebootcamp #3, Summer EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist Schrodinger ebootcamp #3, Summer 2016 EXPLORING METHODS FOR CONFORMER SEARCHING Jas Bhachoo, Senior Applications Scientist Numerous applications Generating conformations MM Agenda http://www.schrodinger.com/macromodel

More information

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?!

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! 1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! Visual analysis: Identification of ligand density from

More information

CSD. Unlock value from crystal structure information in the CSD

CSD. Unlock value from crystal structure information in the CSD CSD CSD-System Unlock value from crystal structure information in the CSD The Cambridge Structural Database (CSD) is the world s most comprehensive and up-todate knowledge base of crystal structure data,

More information

CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES

CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES CAMBRIDGE STRUCTURAL DATABASE SYSTEM 2010 RELEASE WORKED EXAMPLES Copyright 2009 The Cambridge Crystallographic Data Centre Registered Charity No 800579 Table of Contents 1 Introduction.................................................................

More information

Pose and affinity prediction by ICM in D3R GC3. Max Totrov Molsoft

Pose and affinity prediction by ICM in D3R GC3. Max Totrov Molsoft Pose and affinity prediction by ICM in D3R GC3 Max Totrov Molsoft Pose prediction method: ICM-dock ICM-dock: - pre-sampling of ligand conformers - multiple trajectory Monte-Carlo with gradient minimization

More information

Flexibility and Constraints in GOLD

Flexibility and Constraints in GOLD Flexibility and Constraints in GOLD Version 2.1 August 2018 GOLD v5.6.3 Table of Contents Purpose of Docking... 3 GOLD s Evolutionary Algorithm... 4 GOLD and Hermes... 4 Handling Flexibility and Constraints

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

Garib N Murshudov MRC-LMB, Cambridge

Garib N Murshudov MRC-LMB, Cambridge Garib N Murshudov MRC-LMB, Cambridge Contents Introduction AceDRG: two functions Validation of entries in the DB and derived data Generation of new ligand description Jligand for link description Conclusions

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

The Conformation Search Problem

The Conformation Search Problem Jon Sutter Senior Manager Life Sciences R&D jms@accelrys.com Jiabo Li Senior Scientist Life Sciences R&D jli@accelrys.com CAESAR: Conformer Algorithm based on Energy Screening and Recursive Buildup The

More information

Applications of the CSD to Structure Determination from Powder Data

Applications of the CSD to Structure Determination from Powder Data Applications of the CSD to Structure Determination from Powder Data Prof. Alastair J. Florence Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, UK ACS, Salt Lake City, March 2009 Overview

More information

Scientific Integrity: A crystallographic perspective

Scientific Integrity: A crystallographic perspective Scientific Integrity: A crystallographic perspective Ian Bruno - Director, Strategic Partnerships The Cambridge Crystallographic Data Centre @ijbruno @ccdc_cambridge Scientific Integrity: Can We Rely on

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Version 1.2 October 2017 CSD v5.39

Version 1.2 October 2017 CSD v5.39 Mogul Geometry Check Table of Contents Introduction... 2 Example 1. Using Mogul to assess intramolecular geometry... 3 Example 2. Using Mogul to explain activity data... 5 Conclusions... 8 Further Exercises...

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Manipulating Ligands Using Coot. Paul Emsley May 2013

Manipulating Ligands Using Coot. Paul Emsley May 2013 Manipulating Ligands Using Coot Paul Emsley May 2013 Ligand and Density... Ligand and Density... Ligand and Density... Protein-ligand complex models are often a result of subjective interpretation Scoring

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Scoring functions for of protein-ligand docking: New routes towards old goals

Scoring functions for of protein-ligand docking: New routes towards old goals 3nd Strasbourg Summer School on Chemoinformatics Strasbourg, June 25-29, 2012 Scoring functions for of protein-ligand docking: New routes towards old goals Christoph Sotriffer Institute of Pharmacy and

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 13, 2018 04:03 pm GMT PDB ID : 5NMJ Title : Chicken GRIFIN (crystallisation ph: 6.5) Authors : Ruiz, F.M.; Romero, A. Deposited on : 2017-04-06 Resolution

More information

Design and Synthesis of the Comprehensive Fragment Library

Design and Synthesis of the Comprehensive Fragment Library YOUR INNOVATIVE CHEMISTRY PARTNER IN DRUG DISCOVERY Design and Synthesis of the Comprehensive Fragment Library A 3D Enabled Library for Medicinal Chemistry Discovery Warren S Wade 1, Kuei-Lin Chang 1,

More information

A Journey from Data to Knowledge

A Journey from Data to Knowledge A Journey from Data to Knowledge Ian Bruno Cambridge Crystallographic Data Centre @ijbruno @ccdc_cambridge Experimental Data C 10 H 16 N +,Cl - Radspunk, CC-BY-SA CC-BY-SA Jeff Dahl, CC-BY-SA Experimentally

More information

G L. Achieving high quality protein-ligand X-ray structures for drug design. Oliver Smart Global Phasing Ltd

G L. Achieving high quality protein-ligand X-ray structures for drug design. Oliver Smart Global Phasing Ltd Achieving high quality protein-ligand X-ray structures for drug design Oliver Smart Global Phasing Ltd G L Structural Basis of Pharmacology: Deeper Understanding of Drug Discovery through Crystallography

More information

Packing_Similarity_Dendrogram.py

Packing_Similarity_Dendrogram.py Packing_Similarity_Dendrogram.py Summary: This command-line script is designed to compare the packing of a set of input structures of a molecule (polymorphs, co-crystals, solvates, and hydrates). An all-to-all

More information

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software CSD CSD-Enterprise Access the CSD and ALL CCDC application software CSD-Enterprise brings it all: access to the Cambridge Structural Database (CSD), the world s comprehensive and up-to-date database of

More information

wwpdb X-ray Structure Validation Summary Report

wwpdb X-ray Structure Validation Summary Report wwpdb X-ray Structure Validation Summary Report io Jan 31, 2016 06:45 PM GMT PDB ID : 1CBS Title : CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC

More information

Organometallics & InChI. August 2017

Organometallics & InChI. August 2017 Organometallics & InChI August 2017 The Cambridge Structural Database 900,000+ small-molecule crystal structures Over 60,000 datasets deposited annually Enriched and annotated by experts Structures available

More information

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009

ICM-Chemist-Pro How-To Guide. Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro How-To Guide Version 3.6-1h Last Updated 12/29/2009 ICM-Chemist-Pro ICM 3D LIGAND EDITOR: SETUP 1. Read in a ligand molecule or PDB file. How to setup the ligand in the ICM 3D Ligand Editor.

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target. HOMOLOGY MODELING Homology modeling, also known as comparative modeling of protein refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental

More information

GC and CELPP: Workflows and Insights

GC and CELPP: Workflows and Insights GC and CELPP: Workflows and Insights Xianjin Xu, Zhiwei Ma, Rui Duan, Xiaoqin Zou Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, & Informatics Institute

More information

Self-Organizing Superimposition Algorithm for Conformational Sampling

Self-Organizing Superimposition Algorithm for Conformational Sampling Self-Organizing Superimposition Algorithm for Conformational Sampling FANGQIANG ZHU, DIMITRIS K. AGRAFIOTIS Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania

More information

Using AutoDock 4 with ADT: A Tutorial

Using AutoDock 4 with ADT: A Tutorial Using AutoDock 4 with ADT: A Tutorial Ruth Huey Sargis Dallakyan Alex Perryman David S. Goodsell (Garrett Morris) 9/2/08 Using AutoDock 4 with ADT 1 What is Docking? Predicting the best ways two molecules

More information

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification

Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Fragment Hotspot Maps: A CSD-derived Method for Hotspot identification Chris Radoux www.ccdc.cam.ac.uk radoux@ccdc.cam.ac.uk 1 Introduction Hotspots Strongly attractive to organic molecules Organic molecules

More information

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today

est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today est Drive K20 GPUs! Experience The Acceleration Run Computational Chemistry Codes on Tesla K20 GPU today Sign up for FREE GPU Test Drive on remotely hosted clusters www.nvidia.com/gputestd rive Shape Searching

More information

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017

Using Phase for Pharmacophore Modelling. 5th European Life Science Bootcamp March, 2017 Using Phase for Pharmacophore Modelling 5th European Life Science Bootcamp March, 2017 Phase: Our Pharmacohore generation tool Significant improvements to Phase methods in 2016 New highly interactive interface

More information

Full wwpdb/emdatabank EM Map/Model Validation Report i

Full wwpdb/emdatabank EM Map/Model Validation Report i Full wwpdb/emdatabank EM Map/Model Validation Report i Sep 25, 2018 07:01 PM EDT PDB ID : 6C0V EMDB ID: : EMD-7325 Title : Molecular structure of human P-glycoprotein in the ATP-bound, outwardfacing conformation

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information

Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network. Supplementary Information Nitrile Groups as Hydrogen-Bond Acceptors in a Donor-Rich Hydrogen-Bonding Network David R. Turner,* a Alison J. Edwards b and Ross O. Piltz b Supplementary Information Section 1 Structural Parameters

More information

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments

BioSolveIT. A Combinatorial Approach for Handling of Protonation and Tautomer Ambiguities in Docking Experiments BioSolveIT Biology Problems Solved using Information Technology A Combinatorial Approach for andling of Protonation and Tautomer Ambiguities in Docking Experiments Ingo Dramburg BioSolve IT Gmb An der

More information

Dictionary of ligands

Dictionary of ligands Dictionary of ligands Some of the web and other resources Small molecules DrugBank: http://www.drugbank.ca/ ZINC: http://zinc.docking.org/index.shtml PRODRUG: http://www.compbio.dundee.ac.uk/web_servers/prodrg_down.html

More information

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions BUDE A General Purpose Molecular Docking Program Using OpenCL Richard B Sessions 1 The molecular docking problem receptor ligand Proteins typically O(1000) atoms Ligands typically O(100) atoms predicted

More information

Ultra High Throughput Screening using THINK on the Internet

Ultra High Throughput Screening using THINK on the Internet Ultra High Throughput Screening using THINK on the Internet Keith Davies Central Chemistry Laboratory, Oxford University Cathy Davies Treweren Consultants, UK Blue Sky Objectives Reduce Development Failures

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Pipelining Ligands in PHENIX: elbow and REEL

Pipelining Ligands in PHENIX: elbow and REEL Pipelining Ligands in PHENIX: elbow and REEL Nigel W. Moriarty Lawrence Berkeley National Laboratory Physical Biosciences Division Ligands in Crystallography Drug design Biological function studies Generate

More information

Conformational sampling of macrocycles in solution and in the solid state

Conformational sampling of macrocycles in solution and in the solid state Conformational sampling of macrocycles in solution and in the solid state Paul Hawkins, Ph.D. Head of Scientific Solutions Stanislaw Wlodek, Ph.D. Senior Scientific Developer 6/6/2018 https://berkonomics.com/?p=2437

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer

LigandScout. Automated Structure-Based Pharmacophore Model Generation. Gerhard Wolber* and Thierry Langer LigandScout Automated Structure-Based Pharmacophore Model Generation Gerhard Wolber* and Thierry Langer * E-Mail: wolber@inteligand.com Pharmacophores from LigandScout Pharmacophores & the Protein Data

More information

Protein-Ligand Docking

Protein-Ligand Docking Protein-Ligand Docking Matthias Rarey GMD - German National Research Center for Information Technology Institute for Algorithms and Scientific Computing (SCAI) 53754Sankt Augustin, Germany rarey@gmd.de

More information

Pose Prediction with GOLD

Pose Prediction with GOLD Pose Prediction with GOLD Version 3.0 November 2018 GOLD v5.7.0 Table of Contents The Purpose of Docking... 2 GOLD s Evolutionary Algorithm... 3 A Checklist for Docking... 3 GOLD and Hermes... 3 Redocking

More information

The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score. Protein Structures: The Starting Point for New Drugs 2

The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score. Protein Structures: The Starting Point for New Drugs 2 The Long and Rocky Road from a PDB File to a Protein Ligand Docking Score Protein Structures: The Starting Point for New Drugs 2 Matthias Rarey Stefan Bietz Nadine Schneider Sascha Urbaczek University

More information

Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals

Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals Investigating crystal engineering principles using a data set of 50 pharmaceutical cocrystals Peter A. Wood, Cambridge Crystallographic Data Centre 24 th March 2009 ACS Spring Meeting, Salt Lake City,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

Ensemble Docking with GOLD

Ensemble Docking with GOLD Ensemble Docking with GOLD Version 2.0 November 2017 GOLD v5.6 Table of Contents Ensemble Docking... 2 Case Study... 3 Introduction... 3 Provided Input Files... 5 Superimposing Protein Structures... 6

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Analysis of a Large Structure/Biological Activity. Data Set Using Recursive Partitioning and. Simulated Annealing

Analysis of a Large Structure/Biological Activity. Data Set Using Recursive Partitioning and. Simulated Annealing Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning and Simulated Annealing Student: Ke Zhang MBMA Committee: Dr. Charles E. Smith (Chair) Dr. Jacqueline M. Hughes-Oliver

More information

Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design

Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Computer Aided Drug Design - Introduction Development

More information

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME

Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Virtual Libraries and Virtual Screening in Drug Discovery Processes using KNIME Iván Solt Solutions for Cheminformatics Drug Discovery Strategies for known targets High-Throughput Screening (HTS) Cells

More information

Conformational Sampling of Druglike Molecules with MOE and Catalyst: Implications for Pharmacophore Modeling and Virtual Screening

Conformational Sampling of Druglike Molecules with MOE and Catalyst: Implications for Pharmacophore Modeling and Virtual Screening J. Chem. Inf. Model. 2008, 48, 1773 1791 1773 Conformational Sampling of Druglike Molecules with MOE and Catalyst: Implications for Pharmacophore Modeling and Virtual Screening I-Jen Chen* and Nicolas

More information

Extended Structures, Crystallography and Polymers - Challenges

Extended Structures, Crystallography and Polymers - Challenges Extended Structures, Crystallography and Polymers - Challenges Clare Tovee, Matthew Lightfoot, Suzanna Ward, Ian Bruno Cambridge Crystallographic Data Centre October 2014 1 The Cambridge Crystallographic

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Build_model v User Guide

Build_model v User Guide Build_model v.2.0.1 User Guide MolTech Build_model User Guide 2008-2011 Molecular Technologies Ltd. www.moltech.ru Please send your comments and suggestions to contact@moltech.ru. Table of Contents Input

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules Software News and Updates tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules DANIEL SEELIGER, BERT L. DE GROOT Computational Biomolecular Dynamics Group, Max-Planck-Institute

More information

Docking with Water in the Binding Site using GOLD

Docking with Water in the Binding Site using GOLD Docking with Water in the Binding Site using GOLD Version 2.0 November 2017 GOLD v5.6 Table of Contents Docking with Water in the Binding Site... 2 Case Study... 3 Introduction... 3 Provided Input Files...

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

What is Protein-Ligand Docking?

What is Protein-Ligand Docking? MOLECULAR DOCKING Definition: What is Protein-Ligand Docking? Computationally predict the structures of protein-ligand complexes from their conformations and orientations. The orientation that maximizes

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Modelling Macromolecules with Coot

Modelling Macromolecules with Coot Modelling Macromolecules with Coot Overview Real Space Refinement A Sample of Tools Tools for Cryo-EM Tools for Ligands [Carbohydrates] Paul Emsley MRC Laboratory of Molecular Biology Acknowldegments,

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Introduction to Structure Preparation and Visualization

Introduction to Structure Preparation and Visualization Introduction to Structure Preparation and Visualization Created with: Release 2018-4 Prerequisites: Release 2018-2 or higher Access to the internet Categories: Molecular Visualization, Structure-Based

More information

Solvent & geometric effects on non-covalent interactions

Solvent & geometric effects on non-covalent interactions Solvent & geometric effects on non-covalent interactions Scott L. Cockroft PhysChem Forum 10, Syngenta, Jealott s Hill, 23 rd March 11 QSAR & Physical Organic Chemistry Quantifiable Physicochemical Properties

More information

ForceGen 3D structure and conformer generation: from small lead like molecules to macrocyclic drugs

ForceGen 3D structure and conformer generation: from small lead like molecules to macrocyclic drugs DOI 10.1007/s10822-017-0015-8 ForceGen 3D structure and conformer generation: from small lead like molecules to macrocyclic drugs Ann E. Cleves 1 Ajay N. Jain 2 Received: 9 February 2017 / Accepted: 27

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation

Supplementary Information for Evaluating the. energetic driving force for co-crystal formation Supplementary Information for Evaluating the energetic driving force for co-crystal formation Christopher R. Taylor and Graeme M. Day School of Chemistry, University of Southampton, Highfield, Southampton,

More information

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth Organic Chemistry Chapter 5 Stereoisomers. D. Roth 11. Chirality of conformationally mobile systems ring compounds Monosubstituted cycloalkanes cannot have an asymmetric carbon in the ring, because there

More information

Biologically Relevant Molecular Comparisons. Mark Mackey

Biologically Relevant Molecular Comparisons. Mark Mackey Biologically Relevant Molecular Comparisons Mark Mackey Agenda > Cresset Technology > Cresset Products > FieldStere > FieldScreen > FieldAlign > FieldTemplater > Cresset and Knime About Cresset > Specialist

More information

Tutorial: Molecular docking

Tutorial: Molecular docking Drug Design Tutorial: Molecular docking RNDr. Karel Berka, PhD RNDr. Jindřich Fanfrlík, PhD RNDr. Martin Lepšík, PhD Dpt. Physical Chemistry, RCPTM, Faculty of Science, Palacky University in Olomouc Tutorial

More information