Magnetic removal of electron contamination in radiotherapy x-ray beams

Size: px
Start display at page:

Download "Magnetic removal of electron contamination in radiotherapy x-ray beams"

Transcription

1 University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2006 Magnetic removal of electron contamination in radiotherapy x-ray beams Brad Oborn University of Wollongong, Recommended Citation Oborn, Bradley M, Magnetic removal of electron contamination in radiotherapy x-ray beams, MSc thesis, Department of Engineering Physics, University of Wollongong, Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:

2 NOTE This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library. UNIVERSITY OF WOLLONGONG COPYRIGHT WARNING You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

3 Magnetic Removal of Electron Contamination in Radiotherapy X-ray Beams Brad Oborn

4 Magnetic Removal of Electron Contamination in Radiotherapy X-ray Beams A thesis submitted in partial fulfilment of the requirements for the award of the degree Master of Science Medical Radiation Physics from University of Wollongong by Bradley Michael Oborn (B. Med Rad Phys) Department of Engineering Physics 2006

5 Certification I, Bradley Michael Oborn, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Master of Science, in the Department of Engineering Physics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Bradley Oborn 20 September 2006 i

6 Acknowledgements Firstly I would like to thank Professor Anatoly Rosenfeld for his continued assistance in my studies ever since I commenced my Honours degree in Medical Radiation Physics at the University of Wollongong in He has always been interested in my studies, and dedicates most of his time to his students. I feel privileged to have been taught by and associated with him. Secondly I must thank Associate Professor Martin Butson. Without him I would not have found this fascinating topic to study, and would not have developed the understanding I currently have of medical physics in radiotherapy. Martin has always been a great source of knowledge and I consider him as a mentor for more than just medical physics research. I also wish to thank the following Physics staff members at the University of Wollongong for their guidance and advice during this thesis; Dr Michael Lerch, Dr Dave Martin, and Dr George Takacs. Finally I wish to thank my wife Marisa for her patience with me during the last 2 years. ii

7 Abstract Removal of contamination electrons to lower patient skin dose from Linac produced radiotherapy x-ray beams is a serious issue in modern radiotherapy. Such removal can be achieved via the use of a magnetic field and is the subject of investigation in this thesis. The magnetic deflector consists of two separate and adjustable banks of permanent Neodymium-Iron-Boron magnets held in a simple Aluminium frame, which slots into the accessory mount of a conventional Varian Clinac 2100C Linear Accelerator. The deflector allows x-ray beams with field sizes of up to 30x30 cm 2 (source to surface distance of 100 cm) to pass through without interference, and weighs less than 20 kg. The deflector generates a maximum field of 0.21 T between the magnets along the central axis for a 10 cm magnet bank separation, and similarly 0.07 T for a 20 cm separation. Using the magnetic deflector, experimental measurements at the central beam axis show entry doses that approach that of the theoretical entry dose without electron contamination (Monte Carlo predictions) for 6 and 10MV x-ray beams. These range from 25% (6MV, 10x10 cm field size) to 55% (10MV, 20x20 cm field size with Perspex block trays) relative dose reduction at the phantom surface. Theoretical modelling has been performed which confirms the removal of the electron contamination for these typical clinical x-ray beam energies and field sizes. Pure electron beam path modelling has also been studied using this technique for determining the accuracy of the modelling technique. Results agree closely with experimentally observed values for 5 clinical electron beam energies between 6 and 20 MeV. The theoretical simulations are based around 3-dimensional modelling of the path of the contamination electrons as they travel through the magnetic field set up by the deflector (MATLAB). The magnetic field data used in modelling has been generated by a finite element package (Maxwell 3D). The experimental verification methods include the use of radiographic film and Attix parallel plate ion chambers with solid water phantoms for both qualitative and quantitative measurements. iii

8 List of Tables Table 1-1. Important published research on electron filters Table 1-2. Published research on magnetic deflectors Table 1-3. The Varian magnetic electron spreader Table 1-4. Important published research on helium air bag systems Table 1-5. Published research on electrostatic field deflectors Table 3-1. Properties of the materials modelled in Maxwell 3D Table 3-2. Simulation settings for pure electron beams Table 3-3. Comparisons between simulations and experimental measurements for pure electron beam deflection Table 3-4. Simulation settings for contamination electrons and positrons within the modelled x-ray beam List of Figures Figure 1.1. The common photon and beta particle interactions with atoms in matter... 5 Figure 1.2. Relative contributions of the Photoelectric interaction, Compton scattering, and Pair Production processes Figure 1.3. Typical Linac Bremsstrahlung x-ray spectrums for 8 and 18MV beams... 9 Figure 1.4. Typical Monte Carlo generated electron contamination energy spectrum produced by an 18MV Linac x-ray beam... 9 Figure 1.5. Simple separation of contamination electrons from the parent x-ray beam using a magnetic field Figure 1.6. Typical percentage depth-dose curve for a Linac generated x-ray beam Figure 1.7. Detailed diagram of the build-up region of a typical percentage depth-dose curve Figure 2.1. General coordinate system used in this project Figure 2.2. Measurement and simulation volumes Figure 2.3. Measurement and simulation planes Figure 2.4. Detailed diagrams of the magnetic deflector and it components Figure 2.5. Magnetic deflector in position for experimental measurements Figure 2.6. Geometric advantage of the magnetic deflector being located away from patient surface Figure 2.7. Relative contributions to electron contamination from each of the scattering components, and the magnetic field required to remove this Figure 2.8. Description of the electron contamination starting directions Figure 3.1. Magnetic field intensity and directions through a central slice of a permanent NdFe35 magnet (5x5x5 cm) as determined by Maxwell 3D Figure 3.2. Intensity plot of the magnetic field on the Central Endview Plane as determined by Maxwell 3D iv

9 Figure 3.3. Intensity plot of the magnetic field on the Central Sideview and Central Topview Plane as determined by Maxwell 3D Figure 3.4. Magnetic field directions in the Central Endview Plane Figure 3.5. Magnetic field directions around the magnets in the Central Endview Plane Figure 3.6. Consistent electron deflection directions for a 10 cm magnet bank separation in the Central Endview Plane (for an electron travelling down the page) Figure 3.7. Consistent electron deflection directions for a 10 cm magnet bank separation in the Central Topview Plane (for an electron travelling into the page) Figure D image of the consistent deflection direction volume in the region between the magnet banks (Magnet Bank Separation is 10 cm) Figure 3.9. A visual description of the mesh size (or number of elements) in the Simulated Volume Figure Simulated magnetic field magnitude values in the Central Endview Plane Figure Simulated magnetic field strength magnitude in the Central Topview Plane Figure Simulated y-direction components of the magnetic field strength values in the Central Endview Plane Figure Simulated y-direction components of the magnetic field strength values in the Central Topview Plane Figure Iso-field surface plots of the magnetic field strength extending from the magnetic deflector for a Magnet Bank Separation of 10 cm Figure Photograph of the Teslameter and schematic diagram of the probe Figure Experimental y-direction magnetic field measurements in the Central Measurement Plane for a Magnet Bank Separation of 10 cm Figure Comparison between Maxwell 3D and Experimental results in the Central Beam Axis and other nearby axes Figure Comparison between Maxwell 3D and experimental data in the Central Measurement Plane Figure Comparison between Maxwell 3D and experimental data in the x=+7.5 cm plane Figure Comparison between Maxwell 3D and experimental data in the x=-7.5 cm plane Figure Possible sources of error between the simulated measurements and experimental results Figure Contour plot of the magnetic field strengths in the Central Endview plane, and the corresponding lineplot along the Central Beam Axis Figure The experimental set-up used for taking radiographic film measurements Figure MeV electron beam deflection with a Magnet Bank Separation of 10 cm Figure MeV electron beam deflection with a Magnet Bank Separation of 10 cm Figure MeV electron beam deflection with a Magnet Bank Separation of 10 cm Figure MeV electron beam deflection with a Magnet Bank Separation of 10 cm Figure MeV electron beam deflection with a Magnet Bank Separation of 10 cm Figure MeV electron beam deflection in 3D to show the path taken with a Magnet Bank Separation of 10 cm Figure The 6 MeVelectron beam energy spectrum used for modelling v

10 Figure MeV electron beam deflection via the magnetic deflector Figure MeV electron beam deflection via the magnetic deflector Figure MeV electron beam deflection via the magnetic deflector Figure MeV electron beam deflection via the magnetic deflector Figure MeV electron beam deflection via the magnetic deflector on the base film Figure MeV electron beam deflection via the magnetic deflector on the -X film Figure The make-up of the dose delivered to a patient surface Figure Radiographic film image of a 6MV 10x10 cm x-ray field and qualitative plot profiles Figure Radiographic film image of a 10MV 20x20 x-ray field with 3 cm of extra Perspex and qualitative plot profiles Figure Comparison of a 6MV 10x10 cm x-ray beam with and without the magnetic deflector at 10 cm Magnet Bank Separation Figure Comparison of a 10MV 20x20 cm x-ray beam with and without the magnetic deflector at 20 cm Magnet Bank Separation and 3 cm of extra Perspex Figure D diagram of the deflection of electron contamination in the 10MV 20x20 cm case Figure The electron and positron contamination energy spectrums used for 10MV x-ray beam modelling Figure Theoretical film from electron contamination for a 10MV 20x20 cm x-ray beam without the magnetic deflector Figure MV electron contamination deflection via the magnetic deflector on the base film Figure MV electron contamination deflection via the magnetic deflector on the -X film Figure MV electron contamination deflection via the magnetic deflector on the +X film. These are primarily positrons Figure True (top) and theoretical (bottom) film comparison for the 10MV case Figure Central Beam Axis %Depth-Dose profile for a 10x10 cm field size, 6MV x-ray beam with a Magnet Bank Separation of 20 cm Figure Central Beam Axis %Depth-Dose profile for a 15x15 cm field size, 6MV photon beam with a Magnet Bank Separation of 20 cm Figure Central Beam Axis %Depth-Dose profile for a 20x20 cm field size, 6MV photon beam with a Magnet Bank Separation of 20 cm Figure Central Beam Axis %Depth-Dose profile for a 20x20 cm field size, 10MV x-ray beam with a Magnet Bank Separation of 20 cm and 3 cm of Perspex Figure Comparison between the overall reductions in entry dose for a 6 and 10MV beam with a Magnet Bank Separation of 20 cm vi

11 Contents Certification Acknowledgements Abstract List of Tables List of Figures i ii iii iv iv 1 INTRODUCTION Radiotherapy 1 a. Reason for radiotherapy 1 b. Ability of X-ray radiation to treat/destroy cells 2 c. Side effects of radiation therapy Photon, Electron, and Positron Interactions in Matter 3 a. Photon interactions in matter 3 b. Electron and Positron interactions in matter 4 c. Positron annihilation X-ray Production: the Linac 7 a. Bremsstrahlung Radiation Electron Contamination in Linac X-ray Beams 8 a. Mechanisms that generate electron contamination 8 b. Typical energy spectrum of contamination electrons 'Magnetic' Electron Contamination Removal 10 a. The Lorentz force 10 b. Electron motion in magnetic fields 10 c. Electron contamination removal Previous Research on Electron Contamination Removal 12 a. Introduction 12 b. Electron filters 12 c. Magnetic deflectors 13 d. Magnetic electron spreaders 15 e. Helium air bag systems 16 f. Electrostatic field deflectors 17 vii

12 1.7 Properties of Linac X-Ray Beams 18 a. Build-Up region properties and theory Thesis Aims 20 a. Overview 20 b. Experimental aims 20 c. Theoretical modelling aims 20 2 MATERIALS AND METHODS Definitions 21 a. General coordinate system 21 b. Measurement and simulation volumes, planes and axes The magnetic deflector 25 a. Deflector design 25 b. Device Magnets 28 c. Construction methods 28 d. Location on Linac Simple electron path modelling in a magnetic field 32 a. Overview Modelling of electron contamination removal in x-ray beams 33 a. Introduction 33 b. Electron contamination initial conditions: Starting positions 33 c. Electron contamination initial conditions: Starting energies 33 d. Electron contamination initial conditions: Starting directions 34 3 RESULTS Magnetic fields generated by the magnetic deflector 35 a. Introduction 35 b. Visualisation of the relative magnetic field intensity using Maxwell 3D 38 c. Visualisation the magnetic field directions around the magnetic deflector 40 d. Quantitative simulations of the magnetic field strengths 46 e. Manual measurements of the magnetic field strength 53 f. Comparison between Maxwell 3D and experimental results 55 g. Discussion Experimental pure electron beam deflection 63 a. Overview 63 viii

13 b. Results 63 c. Discussion Theoretical pure electron beam deflection using the magnetic deflector 72 a. Overview 72 b. Theoretical Results 73 c. Discussion Experimental electron contamination removal in x-ray beams using the magnetic deflector 81 a. Verification of electron contamination without the magnetic deflector 81 b. Results 81 c. Verification of electron contamination removal with the magnetic deflector 85 d. Discussion Theoretical electron contamination removal in x-ray beams using the magnetic deflector 90 a. Introduction 90 b. Positron contamination 90 c. Theoretical Results 92 d. Discussion Percentage depth-dose measurements 99 a. Percentage depth-dose profiles in the central axis 99 b. Discussion DISCUSSION AND CONCLUSION 106 a. The magnetic deflector 106 b. Reduction in skin dose with the magnetic deflector 106 c. Clinical use of a magnetic deflector 107 d. Future work REFERENCES 108 ix

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2009 Exploring novel radiotherapy techniques with Monte Carlo simulation

More information

A scintillation dual-detector system featuring active Compton suppression

A scintillation dual-detector system featuring active Compton suppression University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2007 A scintillation dual-detector system featuring active Compton

More information

Effects of a static magnetic field on biological samples

Effects of a static magnetic field on biological samples University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2009 Effects of a static magnetic field on biological samples Peter

More information

Charge collection in PET detectors

Charge collection in PET detectors University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2007 Charge collection in PET detectors Tony Young University of

More information

Radiation Therapy Study Guide

Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review 123 Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review Amy Heath, MS, RT(T) University

More information

A predictive GIS methodology for mapping potential mining induced rock falls

A predictive GIS methodology for mapping potential mining induced rock falls University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 006 A predictive GIS methodology for mapping potential mining induced rock falls Hani

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Estimation for state space models: quasi-likelihood and asymptotic quasi-likelihood approaches

Estimation for state space models: quasi-likelihood and asymptotic quasi-likelihood approaches University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2008 Estimation for state space models: quasi-likelihood and asymptotic

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH Lesson Objectives At the end of the lesson, student should able to: Define attenuation Explain interactions between x-rays and matter in

More information

Landau spectra of ZnH and neutral Zn in germanium

Landau spectra of ZnH and neutral Zn in germanium University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2004 Landau spectra of ZnH and neutral Zn in germanium Keiichi

More information

Battling Maxwell s Equations Physics Challenges and Solutions for Hybrid MRI Systems

Battling Maxwell s Equations Physics Challenges and Solutions for Hybrid MRI Systems Battling Maxwell s Equations Physics Challenges and Solutions for Hybrid MRI Systems SYDNEY MEDICAL SCHOOL PAUL KEALL, BRENDAN WHELAN and BRAD OBORN Representing The Australian MRI-Linac Program Team Patents:

More information

Carbon nanotubes and conducting polymer composites

Carbon nanotubes and conducting polymer composites University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 4 Carbon nanotubes and conducting polymer composites May Tahhan University of Wollongong

More information

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

Simulation Modeling in Dosimetry

Simulation Modeling in Dosimetry Simulation Modeling in Dosimetry Aleksei Zhdanov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation jjj1994@yandex.ru Leonid Dorosinskiy

More information

Radiation Dosimetry. Electron interactions with matter. Important processes in radiotherapy. Contents. Alun Beddoe

Radiation Dosimetry. Electron interactions with matter. Important processes in radiotherapy. Contents. Alun Beddoe Radiation Dosimetry Alun Beddoe Medical Physics University Hospital Birmingham NHS Trust Contents ABSOLUTE DOSIMETRY (CALIBRATION) Photon interactions (recap) Energy transfer and absorption Electron range

More information

BEAMnrc: a code to simulate radiotherapy external beam sources

BEAMnrc: a code to simulate radiotherapy external beam sources BEAMnrc: a code to simulate radiotherapy external beam sources D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers

More information

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device by Zachary T. Kitts Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

1 Introduction. A Monte Carlo study

1 Introduction. A Monte Carlo study Current Directions in Biomedical Engineering 2017; 3(2): 281 285 Sebastian Richter*, Stefan Pojtinger, David Mönnich, Oliver S. Dohm, and Daniela Thorwarth Influence of a transverse magnetic field on the

More information

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement

Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement Exploring novel radiotherapy techniques with Monte Carlo simulation and measurement Heidi Nettelbeck A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy

More information

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 A dual scintillator - dual silicon photodiode detector module for

More information

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame Radiation Safety PIXE PAN 2008 Ed Stech University of Notre Dame Outline Radiation Overview Radiation Safety in during PIXE PAN Other Safety Issues Ionizing Radiation 4 Types Alpha Beta Photon (Gamma and

More information

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials*

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* SLAC-PUB-70 Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, and S. Johnson ) Stanford Linear

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

EDUCATION University of Surrey, Guildford, Surrey, UK PhD in Physics/ Medical Physics 2009

EDUCATION University of Surrey, Guildford, Surrey, UK PhD in Physics/ Medical Physics 2009 ABDULRAHMAN ALFURAIH Department of Radiological Sciences College of Applied Medical Sciences King Saud University PO.Box 10219 Riyadh 11433 Saudi Arabia email: aalfuraih@ksu.edu.sa Tel: 0114693576/ 0114693566

More information

Absorption spectra variations of EBT radiochromic film from radiation exposure

Absorption spectra variations of EBT radiochromic film from radiation exposure INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 5 (25) N35 N4 PHYSICS IN MEDICINE AND BIOLOGY doi:.88/3-955/5/3/n2 NOTE Absorption spectra variations of EBT radiochromic film from radiation exposure M

More information

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 3, SUMMER 2003 Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators David S. Followill,*

More information

Updated Contact Dose Rate Conversion Factors for Encapsulated Gamma Sources Including Secondary Electron Emission

Updated Contact Dose Rate Conversion Factors for Encapsulated Gamma Sources Including Secondary Electron Emission Updated Contact Dose Rate Conversion Factors for Encapsulated Gamma Sources Including Secondary Electron Emission Eric Heritage Supervisor: Dr. Ed Waller Outline Background Objectives PHITS Simulations

More information

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT Proceedings of the Eleventh EGS4 Users' Meeting in Japan, KEK Proceedings 2003-15, p.107-113 ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT K. Noto and

More information

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy Journal of Magnetics 19(1), 15-19 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.1.015 A Study on Effective Source-Skin Distance using Phantom in Electron

More information

Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method

Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method Electronic Physician (ISSN: 2008-5842) April 2017, Volume: 9, Issue: 4, Pages: 4171-4179, DOI: http://dx.doi.org/10.19082/4171 Simulation of therapeutic electron beam tracking through a non-uniform magnetic

More information

Initial Certification

Initial Certification Initial Certification Medical Physics Part 1 Content Guide Part 1 Content Guides and Sample Questions PLEASE NOTE: List of Constants and Physical Values for Use on the Part 1 Physics Exam The ABR provides

More information

A comparison of methods for monitoring photon beam energy constancy

A comparison of methods for monitoring photon beam energy constancy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016 A comparison of methods for monitoring photon beam energy constancy Song Gao, 1a Peter A. Balter, 1 Mark Rose, 2 and William E. Simon

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

Two problems in finite elasticity

Two problems in finite elasticity University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2009 Two problems in finite elasticity Himanshuki Nilmini Padukka

More information

PHYS 5020 Computation and Image Processing

PHYS 5020 Computation and Image Processing PHYS 5020 and Image Processing : Monte Carlo Thursday 2 August 2012 Monte Carlo (MC) is a numerical method that uses random sampling of probability distributions to simulate stochastic processes in nature,

More information

Curvature measures for generalized linear models

Curvature measures for generalized linear models University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1999 Curvature measures for generalized linear models Bernard A.

More information

Quality-Assurance Check of Collimator and Phantom- Scatter Factors

Quality-Assurance Check of Collimator and Phantom- Scatter Factors Quality-Assurance Check of Collimator and Phantom- Scatter Factors Ramesh C. Tailor, David S. Followill, Nadia Hernandez, Timothy S. Zhu, and Geoffrey S. Ibbott. UT MD Anderson Cancer Center, Houston TX.

More information

Application of a Helmholtz resonator excited by grazing flow for manipulation of a turbulent boundary layer

Application of a Helmholtz resonator excited by grazing flow for manipulation of a turbulent boundary layer Application of a Helmholtz resonator excited by grazing flow for manipulation of a turbulent boundary layer Farzin Ghanadi School of Mechanical Engineering The University of Adelaide South Australia, 5005

More information

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1

The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 The EPOM shift of cylindrical ionization chambers - a status report Hui Khee Looe 1, Ndimofor Chofor 1, Dietrich Harder 2, Björn Poppe 1 1 Medical Radiation Physics Group, University of Oldenburg and Pius

More information

Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material

Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material Australas Phys Eng Sci Med (2012) 35:485 489 DOI 10.1007/s13246-012-0169-6 SCIENTIFIC NOTE Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material

More information

The performance of estimation methods for generalized linear mixed models

The performance of estimation methods for generalized linear mixed models University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2008 The performance of estimation methods for generalized linear

More information

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements Specific Accreditation Criteria Calibration ISO/IEC 17025 Annex Ionising radiation measurements January 2018 Copyright National Association of Testing Authorities, Australia 2014 This publication is protected

More information

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong

Heuijin Lim, Manwoo Lee, Jungyu Yi, Sang Koo Kang, Me Young Kim, Dong Hyeok Jeong Original Article PMP Progress in Medical Physics 28(2), June 2017 https://doi.org/10.14316/pmp.2017.28.2.49 pissn 2508-4445, eissn 2508-4453 Electron Energy Distribution for a Research Electron LINAC Heuijin

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

Manipulation on charged particle beam for RT benefit.

Manipulation on charged particle beam for RT benefit. High Electron Beam Dose Modification using Transverse Magnetic Fields Ion Chamber Response Modification under Strong Magnetic Field Conditions Sion Koren, Radiation Oncology Preface Manipulation on charged

More information

Separation of scintillation and Cerenkov radiation in fiber optic dosimeters

Separation of scintillation and Cerenkov radiation in fiber optic dosimeters University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Separation of scintillation and Cerenkov radiation in fiber optic

More information

Electron therapy Class 2: Review questions

Electron therapy Class 2: Review questions Electron therapy Class 2: Review questions 1 Raphex Question: T63, 2002 In what situation is electron backscatter likely to be a problem? A. Using 1cm of tissue equivalent bolus on the skin. B. Using a

More information

Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal Imaging Detector

Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal Imaging Detector IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 4, AUGUST 2001 1423 Monte Carlo Analyses of X-Ray Absorption, Noise, and Detective Quantum Efficiency Considering Therapeutic X-Ray Spectrum in Portal

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

X-ray Interaction with Matter

X-ray Interaction with Matter X-ray Interaction with Matter 10-526-197 Rhodes Module 2 Interaction with Matter kv & mas Peak kilovoltage (kvp) controls Quality, or penetrating power, Limited effects on quantity or number of photons

More information

Use of a radioactive check device for redundancy check of ionization chambers

Use of a radioactive check device for redundancy check of ionization chambers JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 1, NUMBER 4, FALL 2000 Use of a radioactive check device for redundancy check of ionization chambers N. P. S. Sidhu,* Alkis Rouvas, and Patrick Cadman

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator

Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator Christoph Trauernicht Groote Schuur Hospital & University of Cape Town Method is based on: Background A method of

More information

Physics Modern Physics Professor Jodi Cooley. Welcome back. to PHY Arthur Compton

Physics Modern Physics Professor Jodi Cooley. Welcome back. to PHY Arthur Compton Welcome back to PHY 3305 Today s Lecture: X-ray Production Compton Scattering Dual Nature of Light Arthur Compton 1892-1962 The Production of xrays X-rays were discovered in 1895 by German physicist Wihelm

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Hadron Therapy Medical Applications

Hadron Therapy Medical Applications Hadron Therapy Medical Applications G.A. Pablo Cirrone On behalf of the CATANA GEANT4 Collaboration Qualified Medical Physicist and PhD Student University of Catania and Laboratori Nazionali del Sud -

More information

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5)

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) Ionizing radiation: Particle or electromagnetic radiation that is capable of ionizing matter. IR interacts through different types of collision

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V.

In a particular investigation the atomic spacing of the crystal is m and the electrons are accelerated through 3000 V. 1 Crystal structure can be investigated using the diffraction of an electron beam. A typical diffraction pattern is shown. In a particular investigation the atomic spacing of the crystal is 2.3 10 11 m

More information

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV Nuclear Fuel Cycle 2013 Lecture 4: Interaction of Ionizing Radiation with Matter Ionizing radiation Radiation with energy > 100 ev Ionize an atom < 15eV Break a bond 1-5 ev Typical decay energies α: 4-9

More information

Chapter 8 Electron Beams: Physical and Clinical Aspects

Chapter 8 Electron Beams: Physical and Clinical Aspects 1 Chapter 8 Electron Beams: Physical and Clinical Aspects This set of 91 slides is based on Chapter 8 authored by W. Strydom, W. Parker, and M. Olivares of the IAEA publication (ISBN 92-0-107304-6): Radiation

More information

Mir Md. Maruf Morshed

Mir Md. Maruf Morshed Investigation of External Acoustic Loadings on a Launch Vehicle Fairing During Lift-off Supervisors: Professor Colin H. Hansen Associate Professor Anthony C. Zander School of Mechanical Engineering South

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

City University of Hong Kong

City University of Hong Kong City University of Hong Kong Information on a Course offered by the Department of Physics and Materials Science with effect from Semester A in 2013 / 2014 Part I Course Title: Radiological Physics and

More information

Commissioning of the Beta Secondary Standard (BSS2)

Commissioning of the Beta Secondary Standard (BSS2) Commissioning of the Beta Secondary Standard (BSS2) Speaker / Author: R.W. Thoka* Co-author: S. Jozela* * National Metrology Institute of South Africa (NMISA), Private Bag X 34, Lynnwood Ridge, Pretoria,

More information

Forms of Ionizing Radiation

Forms of Ionizing Radiation Beta Radiation 1 Forms of Ionizing Radiation Interaction of Radiation with Matter Ionizing radiation is categorized by the nature of the particles or electromagnetic waves that create the ionizing effect.

More information

7/21/2014. Preparing for Part I of the ABR Exam The First Step to Board Certification. Background. Outline

7/21/2014. Preparing for Part I of the ABR Exam The First Step to Board Certification. Background. Outline Preparing for Part I of the ABR Exam The First Step to Board Certification Paulina Galavis, PhD Radiation Oncology Physics Resident at NYU Langone Medical Center Background PhD, University of Wisconsin-Madison

More information

Programme Specification MSc in Cancer Chemistry

Programme Specification MSc in Cancer Chemistry Programme Specification MSc in Cancer Chemistry 1. COURSE AIMS AND STRUCTURE Background The MSc in Cancer Chemistry is based in the Department of Chemistry, University of Leicester. The MSc builds on the

More information

Energy Dependence of Biological Systems Under Radiation Exposure

Energy Dependence of Biological Systems Under Radiation Exposure Energy Dependence of Biological Systems Under Radiation Exposure Rachel Black Paper G29.00006 Energy Dependence of Cancer Cell Irradiation 09:24 AM 09:36 AM Ariano Munden Paper G29.00007 Calibration Of

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Poster No.: C-0403 Congress: ECR 2014 Type: Scientific Exhibit Authors:

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

A study on the cost of concrete shielding in a standard radiotherapy facility room

A study on the cost of concrete shielding in a standard radiotherapy facility room BJRS BRAZILIAN JOURNAL OF RADIATION SCIENCES 06-0 (018) 01-18 A study on the cost of concrete shielding in a standard radiotherapy facility room Eduardo de Paiva a a Instituto de Radioproteção e Dosimetria/Divisão

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan

More information

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit

More information

EVALUATION OF RADIATION DETECTOR SYSTEMS FOR MAMMOGRAPHY X-RAY UNITS. Risimati Dazmen Mavunda

EVALUATION OF RADIATION DETECTOR SYSTEMS FOR MAMMOGRAPHY X-RAY UNITS. Risimati Dazmen Mavunda EVALUATION OF RADIATION DETECTOR SYSTEMS FOR MAMMOGRAPHY X-RAY UNITS Risimati Dazmen Mavunda Submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa, in fulfillment

More information

AN ELECTRON/PHOTON TRANSPORT BIBLIOGRAPHIC DATABASE

AN ELECTRON/PHOTON TRANSPORT BIBLIOGRAPHIC DATABASE Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) AN ELECTRON/PHOTON

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications

Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Comparative Analysis of Nuclear Cross Sections in Monte Carlo Methods for Medical Physics Applications Christopher T. Myers 1 Georgia Institute of Technology Bernadette L. Kirk 2 Luiz C. Leal 2 Oak Ridge

More information

A NEW HIGH PERFORMANCE ALGORITHM FOR MODERN TREATMENT PLANNING SYSTEMS

A NEW HIGH PERFORMANCE ALGORITHM FOR MODERN TREATMENT PLANNING SYSTEMS ROADSHOW CANCER NOUVELLE-AQUITAINE A NEW HIGH PERFORMANCE ALGORITHM FOR MODERN TREATMENT PLANNING SYSTEMS G. BIRINDELLI (1), J. CARON (1,2), B. DUBROCA (1), J.-L. FEUGEAS (1), G. PH. NICOLAÏ (1), J. PAGE

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

Limitations and benchmarks of EGSnrc

Limitations and benchmarks of EGSnrc Limitations and benchmarks of EGSnrc D. W. O. Rogers, Carleton Laboratory for Radiotherapy Physics, Physics Dept, Carleton University, Ottawa http://www.physics.carleton.ca/~drogers AIFM Workshop, Rome,

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

Progress in Nuclear Science and Technology, Volume 6,

Progress in Nuclear Science and Technology, Volume 6, DOI: 1.15669/pnst.6 Progress in Nuclear Science and Technology Volume 6 (19) pp. 1-16 ARTICLE A study on calculation method of duct streaming from medical linac rooms Takuma Noto * Kazuaki Kosako and Takashi

More information

M [scale units/s] of the system

M [scale units/s] of the system APPENDIX TO IAEA CALIBRATION CERTIFICATE RADIATION PROTECTION IONIZATION CHAMBER CALIBRATION PROCEDURES AT THE IAEA DOSIMETRY LABORATORY 1. INTRODUCTION 1.1 General Ionization chambers and electrometers

More information

Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron

Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron P. Berkvens and D. Häusermann European Synchrotron Radiation Facility BP 0, Grenoble Cedex 0, France Australian Synchrotron

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators N. Golnik 1, P. Kamiński 1, M. Zielczyński 2 1 Institute of Precision and Biomedical Engineering,

More information

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.162 pissn 2508-4445, eissn 2508-4453 Secondary Neutron Dose Measurement for Proton Line Scanning

More information

ENV level elective. ENV 200 Intro to Environmental Science 4 credits ENV 330 Ecosystems and Ecological Design 4 credits

ENV level elective. ENV 200 Intro to Environmental Science 4 credits ENV 330 Ecosystems and Ecological Design 4 credits PHYSICS Andrew Dawes, Chair; James Butler, Stephen Hall The program in physics is designed to prepare students for a variety of career paths including (but not limited to) physics and engineering graduate

More information

The Dynamics of Potassium in some. Australian soils

The Dynamics of Potassium in some. Australian soils The Dynamics of Potassium in some Australian soils Serhiy Marchuk In fulfilment of the degree of DOCTOR OF PHILOSOPHY Soil Science Group School of Agriculture, Food and Wine The University of Adelaide

More information

Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance

Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 2, 2016 Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance Michael P. Barnes 1,2 a and Peter B. Greer 1,3

More information