Some Problems from Enzyme Families

Size: px
Start display at page:

Download "Some Problems from Enzyme Families"

Transcription

1 Some Problems from Enzyme Families Greg Butler Department of Computer Science Concordia University, Montreal Abstract I will discuss some problems from bioinformatics and related areas that we encounter in applying knowledge of families of enzymes during our search of fungal genomes (actually ESTs) for more effective enzymes. These include multiple sequence alignments, scoping the boundaries between families and subfamilies, constructing classifiers for family membership, and predicting enzymatic activity of new sequences/enzymes.

2 Aims of Talk introduce some problems in bioinformatics All are open research problems! give some pointers to solutions Outline Enzymes and Enzyme Families Problem: Determine Properties of a New Enzyme SubProblem: Multiple Sequence Algnment SubProblem: Splitting Families and Subfamilies SubProblem: Building Classifiers SubProblem: Predicting Enzymatic Activity Some Literature References

3 What is an Enzyme? Enzyme is a protein that catalyses a reaction.

4 Enzymes are very specific. What is an Enzyme? Enzymes are very efficient catalysts.

5 Enzyme Families Aim: To classify and organize enzymes. Some Example Classification Schemes EC (Enzyme Commission) numbers To consider the classification and nomenclature of enzymes and coenzymes, their units of activity and standard methods of assay, together with the symbols used in the description of enzyme kinetics. GO (Gene Ontology) three classifications of gene products molecular function biological process cellular component CATH: Class, Architecture, Topology, Homology There is no objective definition. a family is clearly related by sequence similarity, a superfamily is composed of families whose sequence relationship isn t clear, but which are believed on structural and functional grounds to be homologous, and a fold is a group of superfamilies that share a common structural topology but are not necessarily homologous. InterPro combination of many classification schemes

6 Gene Ontology Entry

7 InterPro

8 The Fungal Genomics Project

9 Multiple Sequence Alignment (MSA) Problem: Given a set of protein sequences, and an objective function, determine the optimal alignment of the sequences. Why? Amino acid sequence determines protein structure determines enzyme function

10 MSA Issues Multiple sequence alignment is a complicated task choice of the sequences choice of an objective function the optimization of the objective function Issues math vs biology (optimal MSA not necessarily good MSA for biologist) outliers affect results divergence can affect choice of parameters/algorithms multi-domain sequences are problems many sequences, long sequences costly Ideal align closely related sequences trim so only one domain present feed in lots of constraints eg, structural information...

11 Progressive Approaches to MSA sequences are added one by one to the multiple alignment according to a precomputed order Iterative iteratively modify a sub-optimal solution Stochastic iterative randomly modify result is either kept or discarded dependent on an acceptance function convergence via more stringent acceptance function Consistency-based given a set of independent observations, the most consistent are often closer to the truth optimal MSA is one that agrees the most with all the possible optimal pair-wise alignments Constraint-based use prior information as constraints on the alignment

12

13 Splitting Families into Subfamilies Problem: Given the sequences for a family of enzymes, determine how to delineate cohesive subfamilies. Why?: more homologous means easier to study easier to build better alignments easier to build better classifiers Subproblem: remove outliers from the set of sequences

14 Building Classifiers for Enzyme Families Problem: Given the sequences for a family of enzymes, determine how to decide membership in the family. In some cases the sequence of an unknown protein is too distantly related to any protein of known structure to detect its resemblance by overall sequence alignment, but it can be identified by the occurrence in its sequence of a particular cluster of residue types which is variously known as a pattern, motif, signature, or fingerprint. A profile or weight matrix is a table of position-specific amino acid weights and gap costs. A domain is a conserved protein region. independently folding structural unit A fingerprint is a group of conserved motifs used to characterise a protein family.

15 Predicting Enzyme Activity Problem: Given the sequences for a family of enzymes, with (quantitative) information about their enzymatic activity, and given a new sequence in the family, predict the (quantitative) enzymatic activity of the new protein. Why?: quantitative aspect of enzyme function Subproblem: understand known enzymes in (sub)family

16 Measuring Enzyme Kinetic Activity

17 Panther System from Celera The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the Gen- Bank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster.

18 Panther System from Celera

19 Panther System from Celera

20 PipeAlign System from Strasbourg

21 Some Solutions Multiple Sequence Alignment many ClustalW most widely used POA seems best compromise of speed vs quality Splitting a Family into Subfamilies Panther PipeAlign Classifiers of an Enzyme Family many, but HMMer is most widely used Predicting Kinetic Activity???

22 Acknowledgements

23 References L. Duret and S. Abdeddaim, Multiple alignments for structural, functional, or phylogenetic analyses of homologous sequences. In Bioinformatics: Sequence, Structure and Databanks, editted by D. Higgins and W. Taylor, Oxford University Press, C. Notredame, Recent progresses in multiple sequence alignment: a survey, Pharmacogenomics 3(1) (2002) J.D. Thompson, F. Plewniak, O. Poch, A comprehensive comparison of multiple sequence alignment programs, Nucleic Acids Research, 27, 13 (1999) Timo Lassmann and Erik L.L. Sonnhammer, Quality assessment of multiple alignment programs, FEBS Letters 529: (2002). Paul D. Thomas et al, PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucl. Acids. Res., 31 (2003) F. Plewniak et al, PipeAlign : a new toolkit for protein family analysis. Nucleic Acids Research, 2003, Vol.31, 13: N. Wicker, G.R. Perrin, J.C. Thierry and O. Poch. Secator: a program for inferring protein subfamilies from phylogenetic trees. Mol.Biol.Evol., 2001, 8:

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

EBI web resources II: Ensembl and InterPro

EBI web resources II: Ensembl and InterPro EBI web resources II: Ensembl and InterPro Yanbin Yin http://www.ebi.ac.uk/training/online/course/ 1 Homework 3 Go to http://www.ebi.ac.uk/interpro/training.htmland finish the second online training course

More information

Multiple Sequence Alignment, Gunnar Klau, December 9, 2005, 17:

Multiple Sequence Alignment, Gunnar Klau, December 9, 2005, 17: Multiple Sequence Alignment, Gunnar Klau, December 9, 2005, 17:50 5001 5 Multiple Sequence Alignment The first part of this exposition is based on the following sources, which are recommended reading:

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC

Motifs, Profiles and Domains. Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Motifs, Profiles and Domains Michael Tress Protein Design Group Centro Nacional de Biotecnología, CSIC Comparing Two Proteins Sequence Alignment Determining the pattern of evolution and identifying conserved

More information

A profile-based protein sequence alignment algorithm for a domain clustering database

A profile-based protein sequence alignment algorithm for a domain clustering database A profile-based protein sequence alignment algorithm for a domain clustering database Lin Xu,2 Fa Zhang and Zhiyong Liu 3, Key Laboratory of Computer System and architecture, the Institute of Computing

More information

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013

EBI web resources II: Ensembl and InterPro. Yanbin Yin Spring 2013 EBI web resources II: Ensembl and InterPro Yanbin Yin Spring 2013 1 Outline Intro to genome annotation Protein family/domain databases InterPro, Pfam, Superfamily etc. Genome browser Ensembl Hands on Practice

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Structure to Function. Molecular Bioinformatics, X3, 2006

Structure to Function. Molecular Bioinformatics, X3, 2006 Structure to Function Molecular Bioinformatics, X3, 2006 Structural GeNOMICS Structural Genomics project aims at determination of 3D structures of all proteins: - organize known proteins into families

More information

Objectives. Comparison and Analysis of Heat Shock Proteins in Organisms of the Kingdom Viridiplantae. Emily Germain 1,2 Mentor Dr.

Objectives. Comparison and Analysis of Heat Shock Proteins in Organisms of the Kingdom Viridiplantae. Emily Germain 1,2 Mentor Dr. Comparison and Analysis of Heat Shock Proteins in Organisms of the Kingdom Viridiplantae Emily Germain 1,2 Mentor Dr. Hugh Nicholas 3 1 Bioengineering & Bioinformatics Summer Institute, Department of Computational

More information

Research Proposal. Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family.

Research Proposal. Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family. Research Proposal Title: Multiple Sequence Alignment used to investigate the co-evolving positions in OxyR Protein family. Name: Minjal Pancholi Howard University Washington, DC. June 19, 2009 Research

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega

08/21/2017 BLAST. Multiple Sequence Alignments: Clustal Omega BLAST Multiple Sequence Alignments: Clustal Omega What does basic BLAST do (e.g. what is input sequence and how does BLAST look for matches?) Susan Parrish McDaniel College Multiple Sequence Alignments

More information

Multiple sequence alignment

Multiple sequence alignment Multiple sequence alignment Multiple sequence alignment: today s goals to define what a multiple sequence alignment is and how it is generated; to describe profile HMMs to introduce databases of multiple

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification

PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification 334 341 Nucleic Acids Research, 2003, Vol. 31, No. 1 # 2003 Oxford University Press DOI: 10.1093/nar/gkg115 PANTHER: a browsable database of gene products organized by biological function, using curated

More information

Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations

Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations Sequence Analysis and Structure Prediction Service Centro Nacional de Biotecnología CSIC 8-10 May, 2013 Introductory course on Multiple Sequence Alignment Part I: Theoretical foundations Course Notes Instructor:

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

Computational Analysis of the Fungal and Metazoan Groups of Heat Shock Proteins

Computational Analysis of the Fungal and Metazoan Groups of Heat Shock Proteins Computational Analysis of the Fungal and Metazoan Groups of Heat Shock Proteins Introduction: Benjamin Cooper, The Pennsylvania State University Advisor: Dr. Hugh Nicolas, Biomedical Initiative, Carnegie

More information

Subfamily HMMS in Functional Genomics. D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander

Subfamily HMMS in Functional Genomics. D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander Subfamily HMMS in Functional Genomics D. Brown, N. Krishnamurthy, J.M. Dale, W. Christopher, and K. Sjölander Pacific Symposium on Biocomputing 10:322-333(2005) SUBFAMILY HMMS IN FUNCTIONAL GENOMICS DUNCAN

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

Prediction of protein function from sequence analysis

Prediction of protein function from sequence analysis Prediction of protein function from sequence analysis Rita Casadio BIOCOMPUTING GROUP University of Bologna, Italy The omic era Genome Sequencing Projects: Archaea: 74 species In Progress:52 Bacteria:

More information

Information content of sets of biological sequences revisited

Information content of sets of biological sequences revisited Information content of sets of biological sequences revisited Alessandra Carbone and Stefan Engelen Génomique Analytique, Université Pierre et Marie Curie, INSERM UMRS511, 91, Bd de l Hôpital, 75013 Paris,

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models A selection of slides taken from the following: Chris Bystroff Protein Folding Initiation Site Motifs Iosif Vaisman Bioinformatics and Gene Discovery Colin Cherry Hidden Markov Models

More information

Jeremy Chang Identifying protein protein interactions with statistical coupling analysis

Jeremy Chang Identifying protein protein interactions with statistical coupling analysis Jeremy Chang Identifying protein protein interactions with statistical coupling analysis Abstract: We used an algorithm known as statistical coupling analysis (SCA) 1 to create a set of features for building

More information

Introduction to Evolutionary Concepts

Introduction to Evolutionary Concepts Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics NIH Workshop 2009 VMD/MultiSeq

More information

Sequence Analysis '17- lecture 8. Multiple sequence alignment

Sequence Analysis '17- lecture 8. Multiple sequence alignment Sequence Analysis '17- lecture 8 Multiple sequence alignment Ex5 explanation How many random database search scores have e-values 10? (Answer: 10!) Why? e-value of x = m*p(s x), where m is the database

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2011 1 HMM Lecture Notes Dannie Durand and Rose Hoberman October 11th 1 Hidden Markov Models In the last few lectures, we have focussed on three problems

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

Christian Sigrist. November 14 Protein Bioinformatics: Sequence-Structure-Function 2018 Basel

Christian Sigrist. November 14 Protein Bioinformatics: Sequence-Structure-Function 2018 Basel Christian Sigrist General Definition on Conserved Regions Conserved regions in proteins can be classified into 5 different groups: Domains: specific combination of secondary structures organized into a

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

O 3 O 4 O 5. q 3. q 4. Transition

O 3 O 4 O 5. q 3. q 4. Transition Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

More information

Update on human genome completion and annotations: Protein information resource

Update on human genome completion and annotations: Protein information resource UPDATE ON GENOME COMPLETION AND ANNOTATIONS Update on human genome completion and annotations: Protein information resource Cathy Wu 1 and Daniel W. Nebert 2 * 1 Director of PIR, Department of Biochemistry

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Protein Structure: Data Bases and Classification Ingo Ruczinski

Protein Structure: Data Bases and Classification Ingo Ruczinski Protein Structure: Data Bases and Classification Ingo Ruczinski Department of Biostatistics, Johns Hopkins University Reference Bourne and Weissig Structural Bioinformatics Wiley, 2003 More References

More information

Gene function annotation

Gene function annotation Gene function annotation Paul D. Thomas, Ph.D. University of Southern California What is function annotation? The formal answer to the question: what does this gene do? The association between: a description

More information

Heteropolymer. Mostly in regular secondary structure

Heteropolymer. Mostly in regular secondary structure Heteropolymer - + + - Mostly in regular secondary structure 1 2 3 4 C >N trace how you go around the helix C >N C2 >N6 C1 >N5 What s the pattern? Ci>Ni+? 5 6 move around not quite 120 "#$%&'!()*(+2!3/'!4#5'!1/,#64!#6!,6!

More information

Copyright 2000 N. AYDIN. All rights reserved. 1

Copyright 2000 N. AYDIN. All rights reserved. 1 Introduction to Bioinformatics Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Multiple Sequence Alignment Outline Multiple sequence alignment introduction to msa methods of msa progressive global alignment

More information

Protein Families. João C. Setubal University of São Paulo Agosto /23/2012 J. C. Setubal

Protein Families. João C. Setubal University of São Paulo Agosto /23/2012 J. C. Setubal Protein Families João C. Setubal University of São Paulo Agosto 2012 8/23/2012 J. C. Setubal 1 Motivation Phytophthora Science paper [Tyler et al., 2006] Comparison of the [P. sojae and P. ramorum] genomes

More information

A Protein Ontology from Large-scale Textmining?

A Protein Ontology from Large-scale Textmining? A Protein Ontology from Large-scale Textmining? Protege-Workshop Manchester, 07-07-2003 Kai Kumpf, Juliane Fluck and Martin Hofmann Instructive mistakes: a narrative Aim: Protein ontology that supports

More information

Pairwise & Multiple sequence alignments

Pairwise & Multiple sequence alignments Pairwise & Multiple sequence alignments Urmila Kulkarni-Kale Bioinformatics Centre 411 007 urmila@bioinfo.ernet.in Basis for Sequence comparison Theory of evolution: gene sequences have evolved/derived

More information

Outline. Terminologies and Ontologies. Communication and Computation. Communication. Outline. Terminologies and Vocabularies.

Outline. Terminologies and Ontologies. Communication and Computation. Communication. Outline. Terminologies and Vocabularies. Page 1 Outline 1. Why do we need terminologies and ontologies? Terminologies and Ontologies Iwei Yeh yeh@smi.stanford.edu 04/16/2002 2. Controlled Terminologies Enzyme Classification Gene Ontology 3. Ontologies

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Mining and classification of repeat protein structures

Mining and classification of repeat protein structures Mining and classification of repeat protein structures Ian Walsh Ph.D. BioComputing UP, Department of Biology, University of Padova, Italy URL: http://protein.bio.unipd.it/ Repeat proteins Why are they

More information

Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs

Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs Multiple Sequence Alignment: A Critical Comparison of Four Popular Programs Shirley Sutton, Biochemistry 218 Final Project, March 14, 2008 Introduction For both the computational biologist and the research

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

The PRALINE online server: optimising progressive multiple alignment on the web

The PRALINE online server: optimising progressive multiple alignment on the web Computational Biology and Chemistry 27 (2003) 511 519 Software Note The PRALINE online server: optimising progressive multiple alignment on the web V.A. Simossis a,b, J. Heringa a, a Bioinformatics Unit,

More information

Hidden Markov Models (HMMs) and Profiles

Hidden Markov Models (HMMs) and Profiles Hidden Markov Models (HMMs) and Profiles Swiss Institute of Bioinformatics (SIB) 26-30 November 2001 Markov Chain Models A Markov Chain Model is a succession of states S i (i = 0, 1,...) connected by transitions.

More information

Simultaneous Sequence Alignment and Tree Construction Using Hidden Markov Models. R.C. Edgar, K. Sjölander

Simultaneous Sequence Alignment and Tree Construction Using Hidden Markov Models. R.C. Edgar, K. Sjölander Simultaneous Sequence Alignment and Tree Construction Using Hidden Markov Models R.C. Edgar, K. Sjölander Pacific Symposium on Biocomputing 8:180-191(2003) SIMULTANEOUS SEQUENCE ALIGNMENT AND TREE CONSTRUCTION

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

K-means-based Feature Learning for Protein Sequence Classification

K-means-based Feature Learning for Protein Sequence Classification K-means-based Feature Learning for Protein Sequence Classification Paul Melman and Usman W. Roshan Department of Computer Science, NJIT Newark, NJ, 07102, USA pm462@njit.edu, usman.w.roshan@njit.edu Abstract

More information

An Efficient Algorithm for Protein-Protein Interaction Network Analysis to Discover Overlapping Functional Modules

An Efficient Algorithm for Protein-Protein Interaction Network Analysis to Discover Overlapping Functional Modules An Efficient Algorithm for Protein-Protein Interaction Network Analysis to Discover Overlapping Functional Modules Ying Liu 1 Department of Computer Science, Mathematics and Science, College of Professional

More information

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES Eser Aygün 1, Caner Kömürlü 2, Zafer Aydin 3 and Zehra Çataltepe 1 1 Computer Engineering Department and 2

More information

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University

COMP 598 Advanced Computational Biology Methods & Research. Introduction. Jérôme Waldispühl School of Computer Science McGill University COMP 598 Advanced Computational Biology Methods & Research Introduction Jérôme Waldispühl School of Computer Science McGill University General informations (1) Office hours: by appointment Office: TR3018

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions?

Supplementary text for the section Interactions conserved across species: can one select the conserved interactions? 1 Supporting Information: What Evidence is There for the Homology of Protein-Protein Interactions? Anna C. F. Lewis, Nick S. Jones, Mason A. Porter, Charlotte M. Deane Supplementary text for the section

More information

A bioinformatics approach to the structural and functional analysis of the glycogen phosphorylase protein family

A bioinformatics approach to the structural and functional analysis of the glycogen phosphorylase protein family A bioinformatics approach to the structural and functional analysis of the glycogen phosphorylase protein family Jieming Shen 1,2 and Hugh B. Nicholas, Jr. 3 1 Bioengineering and Bioinformatics Summer

More information

Similarity searching summary (2)

Similarity searching summary (2) Similarity searching / sequence alignment summary Biol4230 Thurs, February 22, 2016 Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057 What have we covered? Homology excess similiarity but no excess similarity

More information

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre Bioinformatics Scoring Matrices David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Learning Objectives To explain the requirement

More information

Homology. and. Information Gathering and Domain Annotation for Proteins

Homology. and. Information Gathering and Domain Annotation for Proteins Homology and Information Gathering and Domain Annotation for Proteins Outline WHAT IS HOMOLOGY? HOW TO GATHER KNOWN PROTEIN INFORMATION? HOW TO ANNOTATE PROTEIN DOMAINS? EXAMPLES AND EXERCISES Homology

More information

-max_target_seqs: maximum number of targets to report

-max_target_seqs: maximum number of targets to report Review of exercise 1 tblastn -num_threads 2 -db contig -query DH10B.fasta -out blastout.xls -evalue 1e-10 -outfmt "6 qseqid sseqid qstart qend sstart send length nident pident evalue" Other options: -max_target_seqs:

More information

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1

Amino Acid Structures from Klug & Cummings. 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 1 Amino Acid Structures from Klug & Cummings 10/7/2003 CAP/CGS 5991: Lecture 7 2 Amino Acid Structures from Klug & Cummings

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Functional Annotation

Functional Annotation Functional Annotation Outline Introduction Strategy Pipeline Databases Now, what s next? Functional Annotation Adding the layers of analysis and interpretation necessary to extract its biological significance

More information

NetAffx GPCR annotation database summary December 12, 2001

NetAffx GPCR annotation database summary December 12, 2001 NetAffx GPCR annotation database summary December 12, 2001 Introduction Only approximately 51% of the human proteome can be annotated by the standard motif-based recognition systems [1]. These systems,

More information

Effects of Gap Open and Gap Extension Penalties

Effects of Gap Open and Gap Extension Penalties Brigham Young University BYU ScholarsArchive All Faculty Publications 200-10-01 Effects of Gap Open and Gap Extension Penalties Hyrum Carroll hyrumcarroll@gmail.com Mark J. Clement clement@cs.byu.edu See

More information

MSAT a Multiple Sequence Alignment tool based on TOPS

MSAT a Multiple Sequence Alignment tool based on TOPS MSAT a Multiple Sequence Alignment tool based on TOPS Te Ren, Mallika Veeramalai, Aik Choon Tan and David Gilbert Bioinformatics Research Centre Department of Computer Science University of Glasgow Glasgow,

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9 Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir Sequence Bioinformatics Multiple Sequence Alignment Waqas Nasir 2010-11-12 Multiple Sequence Alignment One amino acid plays coy; a pair of homologous sequences whisper; many aligned sequences shout out

More information

Chemical Data Retrieval and Management

Chemical Data Retrieval and Management Chemical Data Retrieval and Management ChEMBL, ChEBI, and the Chemistry Development Kit Stephan A. Beisken What is EMBL-EBI? Part of the European Molecular Biology Laboratory International, non-profit

More information

Probalign: Multiple sequence alignment using partition function posterior probabilities

Probalign: Multiple sequence alignment using partition function posterior probabilities Sequence Analysis Probalign: Multiple sequence alignment using partition function posterior probabilities Usman Roshan 1* and Dennis R. Livesay 2 1 Department of Computer Science, New Jersey Institute

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2015 Week-4 BLAST Algorithm Continued Multiple Sequence Alignment Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and

More information

Practical considerations of working with sequencing data

Practical considerations of working with sequencing data Practical considerations of working with sequencing data File Types Fastq ->aligner -> reference(genome) coordinates Coordinate files SAM/BAM most complete, contains all of the info in fastq and more!

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007 Molecular Modeling Prediction of Protein 3D Structure from Sequence Vimalkumar Velayudhan Jain Institute of Vocational and Advanced Studies May 21, 2007 Vimalkumar Velayudhan Molecular Modeling 1/23 Outline

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB) Protein structure databases; visualization; and classifications 1. Introduction to Protein Data Bank (PDB) 2. Free graphic software for 3D structure visualization 3. Hierarchical classification of protein

More information