Interpolation & Polynomial Approximation. Hermite Interpolation I

Size: px
Start display at page:

Download "Interpolation & Polynomial Approximation. Hermite Interpolation I"

Transcription

1 Interpolation & Polynomial Approximation Hermite Interpolation I Numerical Analysis (th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning

2 Outline 1 Osculating & Hermite Polynomials 2 The Precise Form of the Hermite Polynomials 3 Example: Constructing the Hermite Polynomial using Lagrange Polynomials Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 2 / 23

3 Outline 1 Osculating & Hermite Polynomials 2 The Precise Form of the Hermite Polynomials 3 Example: Constructing the Hermite Polynomial using Lagrange Polynomials Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 3 / 23

4 Hermite Interpolation: Osculating Polynomials Osculating Polynomials Osculating polynomials generalize both the Taylor polynomials and the Lagrange polynomials. Suppose that we are given n + 1 distinct numbers x 0, x 1,...,x n in [a, b] and nonnegative integers m 0, m 1,...,m n, and m = max{m 0, m 1,...,m n }. The osculating polynomial approximating a function f C m [a, b] at x i, for each i = 0,...,n, is the polynomial of least degree that has the same values as the function f and all its derivatives of order less than or equal to m i at each x i. Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 4 / 23

5 Hermite Interpolation: Osculating Polynomials Osculating Polynomials (Cont d) The degree of this osculating polynomial is at most M = n m i + n i=0 because the number of conditions to be satisfied is n i=0 m i + (n + 1), and a polynomial of degree M has M + 1 coefficients that can be used to satisfy these conditions. Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 5 / 23

6 Hermite Interpolation: Osculating Polynomials Definition: Osculating Polynomial Let x 0, x 1,...,x n be n + 1 distinct numbers in [a, b] and let m i be a nonnegative integer for i = 0, 1,...,n. Suppose that f C m [a, b], where m = max 0 i n m i. The osculating polynomial approximating f is the polynomial P(x) of least degree such that d k P(x i ) dx k = dk f(x i ) dx k for each i = 0, 1,...,n and k = 0, 1,...,m i. The osculating polynomial approximating f is the m 0 th Taylor polynomial for f at x 0 when n = 0 and the nth Lagrange polynomial interpolating f on x 0, x 1,...,x n when m i = 0 for each i. Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 6 / 23

7 Hermite Polynomials Osculating Polynomials d k P(x i ) dx k = dk f(x i ) dx k for each i = 0, 1,...,n and k = 0, 1,...,m i. Hermite Polynomials The case when m i = 1, for each i = 0, 1,...,n, gives the Hermite polynomials. For a given function f, these polynomials agree with f at x 0, x 1,...,x n. In addition, since their first derivatives agree with those of f, they have the same shape as the function at (x i, f(x i )) in the sense that the tangent lines to the polynomial and the function agree. Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 7 / 23

8 Outline 1 Osculating & Hermite Polynomials 2 The Precise Form of the Hermite Polynomials 3 Example: Constructing the Hermite Polynomial using Lagrange Polynomials Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 8 / 23

9 Precise Form of the Hermite Polynomials Theorem If f C 1 [a, b] and x 0,...,x n [a, b] are distinct, the unique polynomial of least degree agreeing with f and f at x 0,...,x n is the Hermite polynomial of degree at most 2n + 1 given by H 2n+1 (x) = n n f(x j )H n,j (x) + f (x j )Ĥn,j(x) j=0 j=0 where, for L n,j (x) denoting the jth Lagrange coefficient polynomial of degree n, we have H n,j (x) = [1 2(x x j )L n,j (x j)]l 2 n,j (x) and Ĥ n,j (x) = (x x j )L 2 n,j (x) Continued on the next slide... Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires / 23

10 Precise Form of the Hermite Polynomials H 2n+1 (x) = n n f(x j )H n,j (x) + f (x j )Ĥn,j(x) j=0 j=0 Theorem (Cont d) Moreover, if f C 2n+2 [a, b], then f(x) = H 2n+1 (x) + (x x 0) 2...(x x n ) 2 f (2n+2) (ξ(x)) (2n + 2)! for some (generally unknown) ξ(x) in the interval (a, b). Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 10 / 23

11 Precise Form of the Hermite Polynomials Proof (1/4) First recall that L n,j (x i ) = { 0, if i j 1, if i = j Hence when i j, H n,j (x i ) = 0 and Ĥ n,j (x i ) = 0 whereas, for each i, H n,i (x i ) = [1 2(x i x i )L n,i (x i)] 1 = 1 and Ĥ n,i (x i ) = (x i x i ) 1 2 = 0 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 11 / 23

12 Precise Form of the Hermite Polynomials Proof (2/4) As a consequence H 2n+1 (x i ) = n f(x j ) 0 + f(x i ) 1 + j=0 j i so H 2n+1 agrees with f at x 0, x 1,...,x n. n f (x j ) 0 = f(x i ) To show the agreement of H 2n+1 with f at the nodes, first note that L n,j (x) is a factor of H n,j (x), so H n,j (x i) = 0 when i j. j=0 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 12 / 23

13 Precise Form of the Hermite Polynomials Proof (3/4) In addition, when i = j we have L n,i (x i ) = 1, so H n,i (x i) = 2L n,i (x i) L 2 n,i (x i) + [1 2(x i x i )L n,i (x i)]2l n,i (x i )L n,i (x i) = 2L n,i (x i) + 2L n,i (x i) = 0 Hence, H n,j (x i) = 0 for all i and j. Finally, Ĥ n,j (x i) = L 2 n,j (x i) + (x i x j )2L n,j (x i )L n,j (x i) so Ĥ n,j (x i) = 0 if i j and Ĥ n,i (x i) = 1. = L n,j (x i )[L n,j (x i ) + 2(x i x j )L n,j (x i)] Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 13 / 23

14 Precise Form of the Hermite Polynomials Proof (4/4) Combining these facts, we have H 2n+1 (x i) = n f(x j ) 0 + j=0 n f (x j ) 0 + f (x i ) 1 = f (x i ) j=0 j i Therefore, H 2n+1 agrees with f and H 2n+1 with f at x 0, x 1,...,x n. Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 14 / 23

15 Outline 1 Osculating & Hermite Polynomials 2 The Precise Form of the Hermite Polynomials 3 Example: Constructing the Hermite Polynomial using Lagrange Polynomials Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 15 / 23

16 Constructing the Hermite Polynomial Example: Constructing H 5 (x) Use the Hermite polynomial that agrees with the data listed in the following table to find an approximation to f(1.5). k x k f(x k ) f (x k ) Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 16 / 23

17 Constructing the Hermite Polynomial H 5 (x) Solution (1/5) We first compute the Lagrange polynomials and their derivatives. This gives L 2,0 (x) = (x x 1)(x x 2 ) (x 0 x 1 )(x 0 x 2 ) = 50 x2 175 x L 100 2,0 (x) = x 175 L 2,1 (x) = (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) = 100 x x 247 L 2,1 (x) = 200 x Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 17 / 23

18 Constructing the Hermite Polynomial H 5 (x) Solution (2/5) and, finally L 2,2 = (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) = 50 x2 145 x L 100 2,2 (x) = x 145 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 18 / 23

19 Constructing the Hermite Polynomial H 5 (x) Solution (3/5) The polynomials H 2,j (x) and Ĥ2,j(x) are then ( 50 H 2,0 (x) = [1 2(x 1.3)( 5)] ( 50 = (10x 12) x2 175 x x2 175 x ) 2 ( 100 H 2,1 (x) = 1 x x 247 ( 50 H 2,2 (x) = 10(2 x) x2 145 x ) 2 ) 2 ) 2 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 1 / 23

20 Constructing the Hermite Polynomial H 5 (x) Solution (4/5) ( 50 Ĥ 2,0 (x) = (x 1.3) ( 100 Ĥ 2,1 (x) = (x 1.6) x2 175 x ) 2 x x 247 ( 50 Ĥ 2,2 (x) = (x 1.) x2 145 x ) 2 ) 2 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 20 / 23

21 Constructing the Hermite Polynomial H 5 (x) Solution (5/5): and finally... H 5 (x) = H 2,0 (x) H 2,1 (x) H 2,2 (x) Ĥ2,0(x) Ĥ2,1(x) Ĥ2,2(x) so that ( ) ( ) 4 64 H 5 (1.5) = ( ) ( ) = a result that is accurate to the places listed. ( ) ( Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 21 / 23 )

22 Constructing the Hermite Polynomial Observation Although the theorem provides a complete description of the Hermite polynomials, it is clear from this example that the need to determine and evaluate the Lagrange polynomials and their derivatives makes the procedure tedious even for small values of n. Remedy We will turn to an alternative method for generating Hermite approximations that has as its basis the Newton interpolatory divided-difference formula at x 0, x 1,...,x n, that is, P n (x) = f[x 0 ] + n f[x 0, x 1,...,x k ](x x 0 ) (x x k 1 ) k=1 Numerical Analysis (Chapter 3) Hermite Interpolation I R L Burden & J D Faires 22 / 23

23 Questions?

Numerical Differentiation & Integration. Numerical Differentiation II

Numerical Differentiation & Integration. Numerical Differentiation II Numerical Differentiation & Integration Numerical Differentiation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Chapter 3 Interpolation and Polynomial Approximation

Chapter 3 Interpolation and Polynomial Approximation Chapter 3 Interpolation and Polynomial Approximation Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128A Numerical Analysis Polynomial Interpolation

More information

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods Initial-Value Problems for ODEs Introduction to Linear Multistep Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Polynomial Interpolation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Polynomial Interpolation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 24, 2013 1.1 Introduction We first look at some examples. Lookup table for f(x) = 2 π x 0 e x2

More information

Solutions of Equations in One Variable. Newton s Method

Solutions of Equations in One Variable. Newton s Method Solutions of Equations in One Variable Newton s Method Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole,

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Numerical Differentiation & Integration. Numerical Differentiation III

Numerical Differentiation & Integration. Numerical Differentiation III Numerical Differentiation & Integration Numerical Differentiation III Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Hermite Interpolation

Hermite Interpolation Jim Lambers MAT 77 Fall Semester 010-11 Lecture Notes These notes correspond to Sections 4 and 5 in the text Hermite Interpolation Suppose that the interpolation points are perturbed so that two neighboring

More information

Interpolating Accuracy without underlying f (x)

Interpolating Accuracy without underlying f (x) Example: Tabulated Data The following table x 1.0 1.3 1.6 1.9 2.2 f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623 lists values of a function f at various points. The approximations to f (1.5) obtained

More information

Interpolation and Approximation

Interpolation and Approximation Interpolation and Approximation The Basic Problem: Approximate a continuous function f(x), by a polynomial p(x), over [a, b]. f(x) may only be known in tabular form. f(x) may be expensive to compute. Definition:

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

11.11 Applications of Taylor Polynomials. Copyright Cengage Learning. All rights reserved.

11.11 Applications of Taylor Polynomials. Copyright Cengage Learning. All rights reserved. 11.11 Applications of Taylor Polynomials Copyright Cengage Learning. All rights reserved. Approximating Functions by Polynomials 2 Approximating Functions by Polynomials Suppose that f(x) is equal to the

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. Objectives Find a Taylor or Maclaurin series for a function.

More information

MAT137 Calculus! Lecture 45

MAT137 Calculus! Lecture 45 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 45 Today: Taylor Polynomials Taylor Series Next: Taylor Series Power Series Definition (Power Series) A power series is a series of the form

More information

Numerical Analysis: Interpolation Part 1

Numerical Analysis: Interpolation Part 1 Numerical Analysis: Interpolation Part 1 Computer Science, Ben-Gurion University (slides based mostly on Prof. Ben-Shahar s notes) 2018/2019, Fall Semester BGU CS Interpolation (ver. 1.00) AY 2018/2019,

More information

Lecture 10 Polynomial interpolation

Lecture 10 Polynomial interpolation Lecture 10 Polynomial interpolation Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

4 Integration. Copyright Cengage Learning. All rights reserved.

4 Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 4.1 Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. Objectives! Write the general solution of

More information

Simpson s Rule. f(x)dx = h 3 [f(x 0) + 4f(x 1 ) + f(x 2 )] h2 90 f (4) (ɛ)

Simpson s Rule. f(x)dx = h 3 [f(x 0) + 4f(x 1 ) + f(x 2 )] h2 90 f (4) (ɛ) Simpson s Rule Simpson s rule is another closed Newton-Cotes formula for approximating integrals over an interval with equally spaced nodes. Unlike the trapezoidal rule, which employs straight lines to

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Romberg Integration and Gaussian Quadrature

Romberg Integration and Gaussian Quadrature Romberg Integration and Gaussian Quadrature P. Sam Johnson October 17, 014 P. Sam Johnson (NITK) Romberg Integration and Gaussian Quadrature October 17, 014 1 / 19 Overview We discuss two methods for integration.

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Polynomial Interpolation with n + 1 nodes

Polynomial Interpolation with n + 1 nodes Polynomial Interpolation with n + 1 nodes Given n + 1 distinct points (x 0, f (x 0 )), (x 1, f (x 1 )),, (x n, f (x n )), Interpolating polynomial of degree n P(x) = f (x 0 )L 0 (x) + f (x 1 )L 1 (x) +

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

Lecture 04: Secret Sharing Schemes (2) Secret Sharing

Lecture 04: Secret Sharing Schemes (2) Secret Sharing Lecture 04: Schemes (2) Recall: Goal We want to Share a secret s Z p to n parties, such that {1,..., n} Z p, Any two parties can reconstruct the secret s, and No party alone can predict the secret s Recall:

More information

Improving analytic function approximation by minimizing square error of Taylor polynomial

Improving analytic function approximation by minimizing square error of Taylor polynomial International Journal of Mathematical Analysis and Applications 2014; 1(4): 63-67 Published online October 30, 2014 (http://www.aascit.org/journal/ijmaa) Improving analytic function approximation by minimizing

More information

Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ).

(0, 0), (1, ), (2, ), (3, ), (4, ), (5, ), (6, ). 1 Interpolation: The method of constructing new data points within the range of a finite set of known data points That is if (x i, y i ), i = 1, N are known, with y i the dependent variable and x i [x

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

ROOT FINDING REVIEW MICHELLE FENG

ROOT FINDING REVIEW MICHELLE FENG ROOT FINDING REVIEW MICHELLE FENG 1.1. Bisection Method. 1. Root Finding Methods (1) Very naive approach based on the Intermediate Value Theorem (2) You need to be looking in an interval with only one

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Polynomial Interpolation Part II

Polynomial Interpolation Part II Polynomial Interpolation Part II Prof. Dr. Florian Rupp German University of Technology in Oman (GUtech) Introduction to Numerical Methods for ENG & CS (Mathematics IV) Spring Term 2016 Exercise Session

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation

Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation Numerical Mathematics & Computing, 7 Ed. 4.1 Interpolation Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole www.engage.com www.ma.utexas.edu/cna/nmc6 November 7, 2011 2011 1 /

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.3 Real Zeros of Polynomial Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Use long

More information

1 Lecture 8: Interpolating polynomials.

1 Lecture 8: Interpolating polynomials. 1 Lecture 8: Interpolating polynomials. 1.1 Horner s method Before turning to the main idea of this part of the course, we consider how to evaluate a polynomial. Recall that a polynomial is an expression

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #2 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Numerical Analysis and Computing

Numerical Analysis and Computing Numerical Analysis and Computing Lecture Notes #13 Rational Function Approximation Joe Mahaffy, mahaffy@math.sdsu.edu Department of Mathematics Dynamical Systems Group Computational Sciences Research Center

More information

Note on Newton Interpolation Formula

Note on Newton Interpolation Formula Int. Journal of Math. Analysis, Vol. 6, 2012, no. 50, 2459-2465 Note on Newton Interpolation Formula Ramesh Kumar Muthumalai Department of Mathematics D.G. Vaishnav College, Arumbaam Chennai-600106, Tamilnadu,

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

7. Piecewise Polynomial (Spline) Interpolation

7. Piecewise Polynomial (Spline) Interpolation - 64-7 Piecewise Polynomial (Spline Interpolation Single polynomial interpolation has two major disadvantages First, it is not computationally efficient when the number of data points is large When the

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

Computational Physics

Computational Physics Interpolation, Extrapolation & Polynomial Approximation Lectures based on course notes by Pablo Laguna and Kostas Kokkotas revamped by Deirdre Shoemaker Spring 2014 Introduction In many cases, a function

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Numerical Methods I: Polynomial Interpolation

Numerical Methods I: Polynomial Interpolation 1/31 Numerical Methods I: Polynomial Interpolation Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 16, 2017 lassical polynomial interpolation Given f i := f(t i ), i =0,...,n, we would

More information

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) =

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) = Bell Ringer 1. Make a table and sketch the graph of the piecewise function f(x) = Power and Radical Functions Learning Target: 1. I can graph and analyze power functions. 2. I can graph and analyze radical

More information

Determining the Rolle function in Lagrange interpolatory approximation

Determining the Rolle function in Lagrange interpolatory approximation Determining the Rolle function in Lagrange interpolatory approimation arxiv:181.961v1 [math.na] Oct 18 J. S. C. Prentice Department of Pure and Applied Mathematics University of Johannesburg South Africa

More information

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved.

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved. 3.3 Dividing Polynomials Copyright Cengage Learning. All rights reserved. Objectives Long Division of Polynomials Synthetic Division The Remainder and Factor Theorems 2 Dividing Polynomials In this section

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved.

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved. 2.3 Differentiation Formulas Copyright Cengage Learning. All rights reserved. Differentiation Formulas Let s start with the simplest of all functions, the constant function f (x) = c. The graph of this

More information

Module 5 : Linear and Quadratic Approximations, Error Estimates, Taylor's Theorem, Newton and Picard Methods

Module 5 : Linear and Quadratic Approximations, Error Estimates, Taylor's Theorem, Newton and Picard Methods Module 5 : Linear and Quadratic Approximations, Error Estimates, Taylor's Theorem, Newton and Picard Methods Lecture 14 : Taylor's Theorem [Section 141] Objectives In this section you will learn the following

More information

Section VI.33. Finite Fields

Section VI.33. Finite Fields VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

8.3 Numerical Quadrature, Continued

8.3 Numerical Quadrature, Continued 8.3 Numerical Quadrature, Continued Ulrich Hoensch Friday, October 31, 008 Newton-Cotes Quadrature General Idea: to approximate the integral I (f ) of a function f : [a, b] R, use equally spaced nodes

More information

Interpolation. P. Sam Johnson. January 30, P. Sam Johnson (NITK) Interpolation January 30, / 75

Interpolation. P. Sam Johnson. January 30, P. Sam Johnson (NITK) Interpolation January 30, / 75 Interpolation P. Sam Johnson January 30, 2015 P. Sam Johnson (NITK) Interpolation January 30, 2015 1 / 75 Overview One of the basic ideas in Mathematics is that of a function and most useful tool of numerical

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Interpolation and the Lagrange Polynomial

Interpolation and the Lagrange Polynomial Interpolation and the Lagrange Polynomial MATH 375 J. Robert Buchanan Department of Mathematics Fall 2013 Introduction We often choose polynomials to approximate other classes of functions. Theorem (Weierstrass

More information

Curve Fitting and Interpolation

Curve Fitting and Interpolation Chapter 5 Curve Fitting and Interpolation 5.1 Basic Concepts Consider a set of (x, y) data pairs (points) collected during an experiment, Curve fitting: is a procedure to develop or evaluate mathematical

More information

Solutions 2. January 23, x x

Solutions 2. January 23, x x Solutions 2 January 23, 2016 1 Exercise 3.1.1 (a), p. 149 Let us compute Lagrange polynomials first for our case x 1 = 0, x 2 = 2, x 3 = 3: In [14]: from sympy import * init_printing(use_latex=true) x=symbols(

More information

2.29 Numerical Fluid Mechanics Fall 2009 Lecture 13

2.29 Numerical Fluid Mechanics Fall 2009 Lecture 13 2.29 Numerical Fluid Mechanics Fall 2009 Lecture 13 REVIEW Lecture 12: Classification of Partial Differential Equations (PDEs) and eamples with finite difference discretizations Parabolic PDEs Elliptic

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

UNIT-II INTERPOLATION & APPROXIMATION

UNIT-II INTERPOLATION & APPROXIMATION UNIT-II INTERPOLATION & APPROXIMATION LAGRANGE POLYNAMIAL 1. Find the polynomial by using Lagrange s formula and hence find for : 0 1 2 5 : 2 3 12 147 : 0 1 2 5 : 0 3 12 147 Lagrange s interpolation formula,

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ... Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form... where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64 Chapter 7 Polynomial Functions Factoring Review We will talk about 3 Types: 1. 2. 3. ALWAYS FACTOR OUT FIRST! Ex 1: Factor x 2 + 5x + 6 Ex 2: Factor x 2 + 16x + 64 Ex 3: Factor 4x 2 + 6x 18 Ex 4: Factor

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

1 Review of Interpolation using Cubic Splines

1 Review of Interpolation using Cubic Splines cs412: introduction to numerical analysis 10/10/06 Lecture 12: Instructor: Professor Amos Ron Cubic Hermite Spline Interpolation Scribes: Yunpeng Li, Mark Cowlishaw 1 Review of Interpolation using Cubic

More information

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 12: Differentiation SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 12: Differentiation Lecture 12.1: The Derivative Lecture

More information

Convergence Rates on Root Finding

Convergence Rates on Root Finding Convergence Rates on Root Finding Com S 477/577 Oct 5, 004 A sequence x i R converges to ξ if for each ǫ > 0, there exists an integer Nǫ) such that x l ξ > ǫ for all l Nǫ). The Cauchy convergence criterion

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method Neville s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Motivation We have learned how to approximate a function using Lagrange polynomials and how to estimate

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Floating Point Number Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview Real number system Examples Absolute and relative errors Floating point numbers Roundoff

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

5 Numerical Integration & Dierentiation

5 Numerical Integration & Dierentiation 5 Numerical Integration & Dierentiation Department of Mathematics & Statistics ASU Outline of Chapter 5 1 The Trapezoidal and Simpson Rules 2 Error Formulas 3 Gaussian Numerical Integration 4 Numerical

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

BSM510 Numerical Analysis

BSM510 Numerical Analysis BSM510 Numerical Analysis Polynomial Interpolation Prof. Manar Mohaisen Department of EEC Engineering Review of Precedent Lecture Polynomial Regression Multiple Linear Regression Nonlinear Regression Lecture

More information