Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface

Size: px
Start display at page:

Download "Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface"

Transcription

1 PAGE 1/13 Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission Time Submission Place Introductory Physics Office Report Box # Students should write down Student s Mentioned Items at the cover page of Experiment Reports, and then complete Experiment Reports by adding contents to the attached papers (if needed) in terms of the following sections. Contents of the reports should be written by hand, not by a word processor. Instead, it is allowed that figures and tables are copied and attached to papers. Completed Experiment Reports should be submitted to the place due to the time specified by Experiment Lecturers. The Experiment Report score per each Experiment Class is evaluated by max. 50 points (basically 15 points). Solutions of Problems in Experiment Reports are not announced to the public according to the General Physics Laboratory - Administration Rule. If a student permits other students to pirate one s Experiment Reports or a student pirates Experiment Reports of other students regardless of permission of original creators, the corresponding Experiment Report score and Active Participation score will be zero in case of exposure of such situation. Unless Experiment Reports are submitted to the place due to the time specified by Experiment Lecturers, the corresponding Experiment Report score will be zero. If the submission rate of Experiment Reports is less than or equal to two thirds, the grade of General Physics Laboratory will be F level. In order to decide grades of General Physics Laboratory at the end of current semester, the detailed scores of General Physics Laboratory will be announced at Introductory Physics Office homepage. Based on the announcement, students can raise opposition of score error. Since the public evidence is needed for the confirmation of opposition, students should keep one s Experiment Reports completed evaluation by Experiment Lecturers until the Experiment Report score decision If a student is absent from the Experiment Class because of proper causes, the corresponding student should submit documents related to absence causes to Introductory Physics Office regardless of cause occurrence time until the grade decision of General Physics Laboratory. If a student moves the Experiment Class arbitrarily without permission of Introductory Physics Office, it is noted that the total Experiment Scores will be zero. Lecturer's Mentioned Items Submission Time/Place Check Experiment Report Score Evaluation Completion Sign 50

2 PAGE 2/13 1. Objective Student ID Name The centripetal force can be measured from the mass, the rotation radius, and the rotation period of an object under the uniform circular motion. By using the properties of the elastic force acting as the centripetal force, the validity of the formula describing the centripetal force will be investigated. 2. Theory (1) Centripetal force In addition, there are relations between the magnitude of the velocity, the angular speed, and the rotation period as follows: The relations between the unit vectors and in the rectangular coordinates and the unit vectors and in the cylindrical coordinates (or the polar coordinates) as shown in Fig. 1 are as follows:, (Eq. 6) (Eq. 7) Therefore, the magnitude of the acceleration of the object under the uniform circular motion is given as follows: (Eq. 8) From (Eq. 5), the direction of the acceleration of the object under the uniform circular motion is, that is, toward the center of the circular orbit. For this reason, the acceleration of the object under the uniform circular motion is called the centripetal acceleration, and the force applied to the object under the uniform circular motion is called the centripetal force. If the mass of the object is, the magnitude of the centripetal force is given as follows: (Eq. 9) Answer the following questions. cossin, (Eq. 1) sincos (Eq. 2) 1. Investigate other procedures deriving the formula about the centripetal force. Fig. 1. The relations between the unit vectors in the rectangular coordinates and the unit vectors in the cylindrical coordinates. (2) Elastic force By differentiating the unit vectors and in the cylindrical coordinates with respect to time, the following relations can be obtained. sincos, (Eq. 3) cossin (Eq. 4) Here, is called the angular speed of the object. Assume that an object is under the uniform circular motion on the plane with the rotation radius and the -axis as the rotation axis. Since the velocity of the object is ( is constant), the acceleration of the object is given as follows: (Eq. 5) When the spring is no longer under a load, the end position of the spring can be treated as the equilibrium point. When the external force applied to the spring causes the spring to change from its original length to new length, the magnitude of the force restoring the spring to its original length is equal to that of the external force applied to the spring. The force restoring the spring to its original length is called the elastic force or the restoring force. If the magnitude of the external force or the displacement of the spring is sufficiently small, the magnitude of the elastic force is proportional to the displacement of the spring ( ). This is referred to as Hooke's law, which can be expressed by introducing the proportionality constant as follows:

3 PAGE 3/13 Fig. 2. Elastic force in the spring. Fig. 4. The limit of Hooke's law and the elastic limit in the actual spring. (Eq. 10) Fig. 3. The graph showing the relation between the magnitude of the external force and the displacement of the spring. Here, is called the elastic constant of the spring or the spring constant briefly with the SI unit Nm. The sign in (Eq. 10) expresses the fact that the stretched spring ( ) tends to decrease its length ( ) while the compressed spring ( ) tends to increase its length ( ) due to the elastic force of the spring. That is, the direction of the elastic force is toward the equilibrium point of the spring. Note that the slope in Fig. 3 corresponds to the spring constant. A large spring constant means that much force is needed to stretch or compress the spring. The reciprocal of the spring constant is called the compliance. A large compliance means that the length of the spring changes easily. If the original length of the spring is long, the length of the spring is easily changed so that the spring constant is inversely proportional to the original length as follows: (Eq. 11) If the magnitude of the external force continues to increase, the magnitude of the elastic force is no longer proportional to the displacement of the actual spring as shown in Fig. 4. In the case of a large external force, the actual spring does not restore to its original length when the external force is no longer applied. That is, a large external force will exceed the elastic limit of the actual spring. In this case, the actual spring will experience permanent deformation and break eventually.

4 PAGE 4/13 3. Experimental Instruments Items Quantity Usage Clean up method Computer 1 set It is used to acquire and analyze data. Computer interface 1 set It is used to convert analog signals to digital signals. It should be placed at the center of the experiment table. It should be placed inside the basket of the experiment table. Computer interface -to-power adaptor & connection cable Photogate -to-computer interface connection cable 1 ea. It is used to connect the computer interface to the wall power. 1 ea. It is used to connect the photogate to the computer interface. It should be placed inside the basket of the experiment table. It should be placed inside the basket of the experiment table. USB cable 1 ea. It is used to connect the computer interface to the computer. It should be placed inside the basket of the experiment table. Spring balance 1 set It is used to measure the spring constant from the gravitational force. It should be placed inside the basket of the experiment table. Additional masses for spring balance 2 ea. They are used to measure the spring constant from the gravitational force. They should be mounted on the spring balance. Power supply -to-power connection cable Centripetal force measurement instrument-to-power supply connection cable 1 ea. It is used to connect the power supply to the wall power. 2 ea. They are used to connect the centripetal force measurement instrument to the power supply. It should be placed inside the basket of the experiment table. They should be placed inside the basket of the experiment table. Power supply 1 set It supplies the power to the centripetal force measurement instrument. It should be placed at the center of the experiment table.

5 PAGE 5/13 Items Quantity Usage Clean up method Centripetal force measurement instrument 1 set It is used to rotate two objects mounted on the bar which is attached in the centripetal force measurement instrument. It should be placed at the center of the experiment table. Measuring scale 1 ea. It is used to measure the rotation radius of two rotating objects and the displacement of the spring. It should be attached to the centripetal force measurement instrument. Rotating object 2 ea. As two objects rotate, two springs are compressed until the elastic force acts as the centripetal force. Spring 2 ea. They provide the elastic force to two rotating objects. They are used to fix two rotating object and two springs mounted Spring fix screw 2 ea. on the bar which is attached to the centripetal force measurement instrument. Photogate 1 ea. It is used to measure the rotation period of two rotating objects. They should be mounted on the bar which is attached to the centripetal force measurement instrument. They should be mounted on the bar which is attached to the centripetal force measurement instrument. They should be mounted on the bar which is attached to the centripetal force measurement instrument. It should be attached to the centripetal force measurement instrument. Electric balance 1 set It is used to measure the mass of two rotating objects and additional masses for the spring balance. It should be placed at the center of the common experiment table.

6 PAGE 6/13 < How to Use the Power Supply > [7] In order to prevent an electricity accident, note that one's body must not be in contact with connection parts of the experimental instrument-to-power supply connection cables during the measurement. If the electric circuit becomes open during the measurement, the current will suddenly become zero and the current control indication lamp will turn off. In this case, after rotating all voltage and current adjust knobs to the minimum, turn off the power supply and correct the electric circuit in the same manner of [3]. [1] After confirming that the power supply is off, use the power supply-to-power connection cable to connect the power supply to the wall power and keep the power supply off. Use the experimental instrument-to-power supply connection cables to connect the experimental instrument to and terminals of the power supply. Without special condition, do not connect the ground terminal (GND or COM) of the power supply. [8] After the experiment is finished, turn off the power supply in the way opposite to turning on the power supply. That is, after rotating the current adjust knob to the minimum, rotate the voltage adjust knob to the minimum and turn off the power supply. Note that you must turn off the power supply when all voltage and current adjust knobs are at the minimum, or else a severe electricity accident may be happened. After turning off the power supply, clean up the experimental instruments according to the suggested method. [2] After confirming that all voltage and current adjust knobs of the power supply are at the minimum, turn on the power supply. In some models of the power supply, the power lamp or the voltage control indication lamp (CV) will turn on when turning the power supply on. [3] Rotate the voltage adjust knob (VOLTAGE - COARSE) slowly to increase the voltage. When approaching to a sufficiently high voltage for a normal electric circuit, the current control indication lamp (CC) will turn on. But for an open circuit, no matter how high voltage is, the current will remain zero and the current control indication lamp will be off. In this case, after rotating all voltage and current adjust knobs to the minimum, turn off the power supply and correct the electric circuit. The inspection of the electric circuit must be done only after the power supply is off. [4] In specific experiments that need a current supply, rotate the current adjust knob (CURRENT) slowly to set the desired current while checking if the current control indication lamp is on. [5] Even in properly functional electric circuits, when rotating the current adjust knob to increase the current, it can be observed that the current control indication lamp will suddenly turn off and the nonzero current does not increase any longer. This is caused by an insufficient voltage, which can be solved by rotating the voltage adjust knob more to increase the voltage. After the current control indication lamp turns back on, the current can be increased by rotating the current adjust knob. [6] Note that all voltage and current adjust knobs should be rotated slowly, or else the abrupt change of the voltage or the current may cause an electricity accident. Do not rotate the voltage fine adjust knob (VOLTAGE FINE) unless it is absolutely needed, and keep it at the minimum.

7 PAGE 7/13 < How to Use the Computer Interface) > [8] Save the data in the computer by selecting File Export Data ******.txt in the menu of the Capstone program and copy the text files to a USB memory prepared beforehand. [9] After the experiment is finished, close the Capstone program and turn off the computer interface and the computer. Clean up the experimental instruments according to the suggested method. [1] After confirming that the computer interface is off, use the computer interface-to-power adaptor & connection cable to connect the computer interface to the wall power and keep the computer interface off. [2] Connect the sensors to the proper analog channels or digital channels and use the USB cable to connect the computer interface to the computer. Note that the connection among all experimental instruments should be completed before the computer interface is turned on. Note that the computer interface must not be damaged by connecting the computer interface to the computer while the computer interface is on. [3] After turning on the computer and the computer interface, open the Capstone program. If the Capstone window appears, select Tools Hardware Setup Choose Interface PASPORT or ScienceWorkshop 750. [4] Select the sensors at the positions in the screen that are equivalent to the positions of the computer interface in the actual experiment by clicking. [5] After selecting Displays Graph or Table by double-clicking, show graphs or tables on the screen. [6] Click the Record button of the Capstone program to start the measurement and check if the acquired data is displayed in the screen. After checking if the zero status is displayed in the data, click the Stop button of the Capstone program to stop the measurement. [7] After completing the check of the zero status, click the Record button of the Capstone program again to start the measurement. If the data is acquired, click the Stop button of the Capstone program to stop the measurement. Repeat this procedure to acquire the correct data.

8 PAGE 8/13 4. Experimental Procedures (1) Measurement of the spring constant from the centripetal force 1) After confirming that the computer interface is off, use the computer interface-to-power adaptor & connection cable to connect the computer interface to the wall power and keep the computer interface off. 2) Use the photogate-to-computer interface connection cable to connect the photogate to the digital channel 1 of the computer interface. Use the USB cable to connect the computer interface to the computer. 3) After turning on the computer and the computer interface, open the Capstone program. If the Capstone window appears, select Tools Hardware Setup Choose Interface PASPORT or ScienceWorkshop ) Select Pendulum Timer at the position in the screen that is equivalent to the position connected to the computer interface in the actual experiment by clicking. 5) After selecting Displays Digits by double-clicking, show the Period digits on the screen. 6) After measuring masses and of two rotating objects by using an electric balance, mount two rotating objects on the bar which is attached to the centripetal force measurement instrument. Since undesirable vibration of the centripetal force measurement instrument can be caused by two rotating objects with a large mass difference, two rotating objects with similar masses should be used. 7) After mounting two springs and two spring fix screws in the bar which is attached to the centripetal force measurement instrument, tighten two spring fix screws firmly to fix two springs. Since undesirable vibration of the centripetal force measurement instrument can be caused by two springs with a large spring constant difference, two springs with similar spring constants should be used. 8) After confirming that the power supply is off, use the power supply-to-power connection cable to connect the power supply to the wall power and keep the power supply off. Use two centripetal force measurement instrument-to-power supply connection cables to connect the centripetal force measurement instrument to the power supply. 9) After confirming that all voltage and current adjust knobs of the power supply are at the minimum, turn on the power supply. After rotating the current adjust knob slightly, rotate the voltage adjust knob slowly to increase the voltage and make the objects rotate under the uniform circular motion. (Note that the usage of the power supply in this experiment is somewhat different from the general usage of the power supply.) Do not use extremely large voltage making the objects rotate too fast. Otherwise, it may cause an accident where the spring fix screws become loose and the rotating objects fly out. 10) As the voltage applied by the power supply increases, the rotation radii of the rotating objects increase until the elastic force acts as the centripetal force. By observing the centripetal force measurement instrument from above, the continuous rings formed by the motion of the rotating objects can be observed and the rotation radii of the rotating objects can be measured from the radii of the rings by using a measuring scale which is attached to the centripetal force measurement instrument. In the case of extremely fast rotation, the springs will be in their maximum compression state and the positions of the rotating objects will not be changed. Therefore, control the voltage applied by the power supply to set the rotation radius as cm. Note that the sufficiently long stabilization time is needed after the change of the rotation radius and the lack of the stabilization time may cause a measurement error so that the rotation period increases despite the increase of rotation radius. 11) Click the Record button of the Capstone program to start the measurement. Measure the rotation period and calculate the magnitude of the centripetal force. Use the average mass of the two rotating objects as the value of. In the case of similar masses and similar spring constants, measure the radius of one ring formed by one of the rotating objects and regard it as the rotation radius. In the other case, measure the radii and of the two rings formed by the rotating objects and regard the average of two values as the rotation radius. Click the Stop button of the Capstone program to stop the measurement.

9 PAGE 9/13 12) Calculate the displacement of the spring from the rotation radius and the original position of the rotating objects. Draw the magnitude of the centripetal force vs. the displacement of the spring graph using a proper program and evaluate the spring constant from the slope of the graph. 4) Measure the value of additional masses by using an electric balance and calculate the gravitational force. Here, is given by the sum of additional masses excluding the reference mass. It is possible to set the original length of the spring without the reference mass. In this case, is given by the sum of all masses including the reference mass. 13) After the measurement is finished, rotate all voltage and current adjust knobs to the minimum and turn off the power supply. Answer the following questions. (2) Measurement of the spring constant from the gravitational force 1) Release two spring fix screws mounted on the bar which is attached to the centripetal force measurement instrument and take out two springs and two rotating objects from the bar. 2) Place the spring #1 removed from the centripetal force measurement instrument on the pole of the spring balance. Place the reference mass on the pole of the spring balance and measure the original length of the spring from the scale which is pointed by the pin attached to the reference mass. Note that the pin attached to the reference mass should be handled carefully in order to prevent poking one's body. 3) When additional masses are added on the reference mass, the length of the spring decreases until the gravitational force and the elastic force of the spring are at the equilibrium. Change the value of additional masses and measure the changed length of the spring. 2. Explain why the value of additional masses is given by the sum of all masses including the reference mass in the case of the original length of the spring set without the reference mass 5) Calculate the displacement of the spring from the original length and the changed length of the spring. Draw the magnitude of the gravitational force vs. the displacement of the spring graph by using a proper program and evaluate the spring constant from the slope of the graph. 6) Repeat the experimental procedures for the spring #2. If the spring constants of two springs are and respectively, regard the average of two values as the spring constant measured from the gravitational force. 7) If the measurement is finished, turn off the computer interface and the computer. Clean up the experimental instruments according to the suggested method. (3) Comparison of the spring constant between two measurements Regard the spring constant measured from the gravitational force as the reference value and compare it with the spring constant measured from the centripetal force. Investigate the validity of the formula describing the centripetal force by comparing the spring constant between the two measurements.

10 PAGE 10/13 5. Experimental Values (1) Measurement of the spring constant from the centripetal force Masses of rotating objects (g) Original position of rotating objects (cm) # of measurement Rotation radii of rotating objects (cm) Rotation period (s) Displacement of the spring (m ) Centripetal force (N ) #1 ( cm) #2 ( cm) #3 ( cm) #4 ( cm) #5 ( cm) Slope Nm -intercept -intercept m N

11 PAGE 11/13 (2) Measurement of the spring constant from the gravitational force 1) Spring #1 2) Spring #2 Original length of the spring (cm) Original length of the spring (cm) Gravitational acceleration (ms ) Gravitational acceleration (ms ) Mass of the additional masses (g) Gravitational force (N ) Changed length of the spring (cm) Displacement of the spring (m ) Mass of the additional masses (g) Gravitational force (N ) Changed length of the spring (cm) Displacement of the spring (m ) Slope Nm Slope Nm -intercept m -intercept m -intercept N -intercept N (3) Comparison of the spring constant between two measurements Spring constant Spring constant measured from the centripetal force (Nm ) Spring constant measured from the gravitational force (Nm ) [Reference value] Error (%)

12 PAGE 12/13 6. Results and Discussions (This page should be used as the first page of the corresponding section. If the contents exceed this page, additional contents should be written by attaching papers. Contents should be written by hand, and not by a word processor. Attaching copied figures and tables to the report is allowed.) Write down contents in terms of the following key points. 1. Discuss the validity of the formula describing the centripetal force by using the error between the spring constant measured from the centripetal force and the spring constant measured from the gravitational force. 2. Discuss the case that the masses of two rotating objects are equal and the spring constants of two springs are different. 3. Discuss the case that the masses of two rotating objects are different and the spring constants of two springs are equal.

13 PAGE 13/13 7. Solution of Problems (This page should be used as the first page of the corresponding section. If the contents exceed this page, additional contents should be written by attaching papers. Contents should be written by hand, and not by a word processor. Attaching copied figures and tables to the report is allowed.) 8. Reference

Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface

Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface PAGE 1/17 Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment

More information

General Physics Laboratory Experiment Report 1st Semester, Year 2018

General Physics Laboratory Experiment Report 1st Semester, Year 2018 PAGE 1/20 Exp. #1-2 : Measurement of the Motion of Objects by Using a Computer Interface and Understanding of Newton s Law of Motion Measurement of the Characteristics of the Frictional Force by Using

More information

Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates

Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates PAGE 1/11 Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates Student ID Major Name Team # Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission Time Submission

More information

General Physics Laboratory Experiment Report 2nd Semester, Year 2018

General Physics Laboratory Experiment Report 2nd Semester, Year 2018 PAGE 1/11 Exp. #2-1 : Measurement of the Electrostatic Constant and the Electric Permittivity in Vacuum by Using a Torsion Balance and Understanding of Coulomb's Law Student ID Major Name Team # Experiment

More information

Exp. #1-6 : Measurement of the Motion of Objects on an Inclined Plane and Understanding of the Conservation Law of Mechanical Energy

Exp. #1-6 : Measurement of the Motion of Objects on an Inclined Plane and Understanding of the Conservation Law of Mechanical Energy PAGE 1/14 Exp. #1-6 : Measurement Motion of Objects on an Inclined Plane and Understanding Conservation Law of Mechanical Energy Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items

More information

Exp. #2-9 : Measurement of Planck Constant through the Photoelectric Effect

Exp. #2-9 : Measurement of Planck Constant through the Photoelectric Effect PAGE 1/13 Exp. #2-9 : Measurement of Planck Constant through the Photoelectric Effect Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission Time

More information

Circular Motion and Centripetal Force

Circular Motion and Centripetal Force [For International Campus Lab ONLY] Objective Measure the centripetal force with the radius, mass, and speed of a particle in uniform circular motion. Theory ----------------------------- Reference --------------------------

More information

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate)

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Name Class Date Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P20 Mechanical Energy.DS P23 Cons. Mechanical

More information

Physical Pendulum, Torsion Pendulum

Physical Pendulum, Torsion Pendulum [International Campus Lab] Physical Pendulum, Torsion Pendulum Objective Investigate the motions of physical pendulums and torsion pendulums. Theory ----------------------------- Reference --------------------------

More information

Experiment 5. Simple Harmonic Motion

Experiment 5. Simple Harmonic Motion Reading and Problems: Chapters 7,8 Problems 7., 8. Experiment 5 Simple Harmonic Motion Goals. To understand the properties of an oscillating system governed by Hooke s Law.. To study the effects of friction

More information

Driven Harmonic Oscillator

Driven Harmonic Oscillator Driven Harmonic Oscillator Physics 6B Lab Experiment 1 APPARATUS Computer and interface Mechanical vibrator and spring holder Stands, etc. to hold vibrator Motion sensor C-209 spring Weight holder and

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate)

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P15 Oscillation.DS P21 Harmonic Oscillation P21_HARM.SWS

More information

Physics Spring 2006 Experiment 4. Centripetal Force. For a mass M in uniform circular motion with tangential speed v at radius R, the required

Physics Spring 2006 Experiment 4. Centripetal Force. For a mass M in uniform circular motion with tangential speed v at radius R, the required Centripetal Force I. Introduction. In this experiment you will study the centripetal force required for a mass in uniform circular motion. You will determine the centripetal forces required for different

More information

Lab 10 Circular Motion and Centripetal Acceleration

Lab 10 Circular Motion and Centripetal Acceleration Lab 10 Circular Motion and Centripetal Equipment Calculator, Computer, PASCO 850 Universal Interface Partially-assembled Centripetal Force Apparatus Photogate Cable Pair of Banana Wires Objective Verify

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A Activity P14: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P14 SHM.DS P19 SHM Mass on a Spring

More information

Physics 2310 Lab #3 Driven Harmonic Oscillator

Physics 2310 Lab #3 Driven Harmonic Oscillator Physics 2310 Lab #3 Driven Harmonic Oscillator M. Pierce (adapted from a lab by the UCLA Physics & Astronomy Department) Objective: The objective of this experiment is to characterize the behavior of a

More information

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA PRELAB: Before coming to the lab, you must write the Object and Theory sections of your lab report

More information

Elastic pendulum. Observing changes in the elastic force exerted by a spring acting as a pendulum

Elastic pendulum. Observing changes in the elastic force exerted by a spring acting as a pendulum Objective The objective of this activity is to observe and analyze variations in periodicity in the elastic force of a spring over a suspended mass, while maintaining a harmonic movement. From a qualitative

More information

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using Work and Energy OBJECTIVES Use a Motion Detector and a Force Sensor to measure the position and force on a hanging mass, a spring, and a dynamics cart. Determine the work done on an object using a force

More information

Hooke s Law. Equipment. Introduction and Theory

Hooke s Law. Equipment. Introduction and Theory Hooke s Law Objective to test Hooke s Law by measuring the spring constants of different springs and spring systems to test whether all elastic objects obey Hooke s Law Equipment two nearly identical springs,

More information

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong Background Introduction Laboratory Manual Experiment Department of Physics The University of Hong Kong Circular Motion is one of the simplest forms of 2-dimensional motion in which the locus of the object

More information

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,

More information

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM PHYSICS 83 - LAB Experiment 9 Fall 004 THE TORSION PENDULUM In this experiment we will study the torsion constants of three different rods, a brass rod, a thin steel rod and a thick steel rod. We will

More information

Physics 4C Simple Harmonic Motion PhET Lab

Physics 4C Simple Harmonic Motion PhET Lab Physics 4C Simple Harmonic Motion PhET Lab Scott Hildreth Chabot College Goal: Explore principles of Simple Harmonic Motion through both hanging masses and pendula. Then, verify your understanding of how

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a Mass Hanging from a Spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a mass hanging from a spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Uniform circular motion is the motion of an object in a circular path with a velocity that has a constant magnitude and a direction that is constantly changing. This is due to a

More information

Free Fall and Projectile Motion

Free Fall and Projectile Motion [International Campus] Free Fall and Projectile Motion Objective Investigate the motions of a freely falling body and a projectile under the influence of gravity. Find the acceleration due to gravity.

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Hands-on Lab 3. System Identification with Experimentally Acquired Data

Hands-on Lab 3. System Identification with Experimentally Acquired Data Hands-on Lab 3 System Identification with Experimentally Acquired Data Recall that the course objective is to control the angle, rise time and overshoot of a suspended motor-prop. Towards this, the two

More information

EXPERIMENT 11 The Spring Hooke s Law and Oscillations

EXPERIMENT 11 The Spring Hooke s Law and Oscillations Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

HB Coupled Pendulums Lab Coupled Pendulums

HB Coupled Pendulums Lab Coupled Pendulums HB 04-19-00 Coupled Pendulums Lab 1 1 Coupled Pendulums Equipment Rotary Motion sensors mounted on a horizontal rod, vertical rods to hold horizontal rod, bench clamps to hold the vertical rods, rod clamps

More information

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

More information

Physical Pendulum Torsion Pendulum

Physical Pendulum Torsion Pendulum General Physics Lab Department of PHYSICS YONSEI University Lab Manual (Lite) Physical Pendulum / Torsion Pendulum Ver.20180424 NOTICE This LITE version of manual includes only experimental procedures

More information

The Damped Pendulum. Physics 211 Lab 3 3/18/2016

The Damped Pendulum. Physics 211 Lab 3 3/18/2016 PHYS11 Lab 3 Physics 11 Lab 3 3/18/16 Objective The objective of this lab is to record the angular position of the pendulum vs. time with and without damping. The data is then analyzed and compared to

More information

Simple Harmonic Motion

Simple Harmonic Motion Introduction Simple Harmonic Motion The simple harmonic oscillator (a mass oscillating on a spring) is the most important system in physics. There are several reasons behind this remarkable claim: Any

More information

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

More information

_CH01_p qxd 1/20/10 8:35 PM Page 1 PURPOSE

_CH01_p qxd 1/20/10 8:35 PM Page 1 PURPOSE 9460218_CH01_p001-010.qxd 1/20/10 8:35 PM Page 1 1 GRAPHING AND ANALYSIS PURPOSE The purpose of this lab is to investigate the relationship between displacement and force in springs and to practice acquiring

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Torsional Pendulum and Moment of Inertia Introduction A torsional pendulum, or torsional oscillator, consists of a disk-like mass suspended from a thin rod or wire. When the mass is twisted

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor General Physics Lab Department of PHYSICS YONSEI University Lab Manual (Lite) Magnetic Fields Ver.20181029 NOTICE This LITE version of manual includes only experimental procedures for easier reading on

More information

Inverted Pendulum System

Inverted Pendulum System Introduction Inverted Pendulum System This lab experiment consists of two experimental procedures, each with sub parts. Experiment 1 is used to determine the system parameters needed to implement a controller.

More information

Simple Harmonic Motion - MBL

Simple Harmonic Motion - MBL Simple Harmonic Motion - MBL In this experiment you will use a pendulum to investigate different aspects of simple harmonic motion. You will first examine qualitatively the period of a pendulum, as well

More information

Kinematics. Become comfortable with the data aquisition hardware and software used in the physics lab.

Kinematics. Become comfortable with the data aquisition hardware and software used in the physics lab. Kinematics Objective Upon completing this experiment you should Become comfortable with the data aquisition hardware and software used in the physics lab. Have a better understanding of the graphical analysis

More information

Centripetal and centrifugal force

Centripetal and centrifugal force Introduction In the everyday language use, the centrifugal force is often referred to as the cause of the occurring force during a uniform non-linear motion. Situated in a moving object that changes its

More information

PHY 123 Lab 10-Simple Harmonic Motion

PHY 123 Lab 10-Simple Harmonic Motion 1 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 123 Lab 10-Simple Harmonic Motion The purpose of this lab is to study simple harmonic

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Energy Name: Lab Partner: Section: 7.1 Purpose In this experiment, energy and work will be explored. The relationship between total energy, kinetic energy and potential energy will be observed.

More information

Developing a Scientific Theory

Developing a Scientific Theory Name Date Developing a Scientific Theory Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1 Universal Table Clamp (ME-9376B)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01T Fall Term 2004 Experiment 06: Work, Energy and the Harmonic Oscillator Purpose of the Experiment: In this experiment you allow a cart

More information

Lab 3. Newton s Second Law

Lab 3. Newton s Second Law Lab 3. Newton s Second Law Goals To determine the acceleration of a mass when acted on by a net force using data acquired using a pulley and a photogate. Two cases are of interest: (a) the mass of the

More information

Ballistic Pendulum. Equipment. Introduction. Setup

Ballistic Pendulum. Equipment. Introduction. Setup 35 Ballistic Pendulum 35 - Page 1 of 5 Equipment Ballistic Pendulum 1 Rotary Motion Sensor PS-2120A 2 Photogate Head ME-9498A 1 Mounting Bracket ME-6821A 1 Large Table Clamp ME-9472 1 90 cm rod ME-8738

More information

E X P E R I M E N T 11

E X P E R I M E N T 11 E X P E R I M E N T 11 Conservation of Angular Momentum Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 11: Conservation

More information

Collisions Impulse and Momentum

Collisions Impulse and Momentum rev 06/2017 Collisions Impulse and Momentum Equipment Qty Items Part Number 1 Collision Cart ME-9454 1 Dynamics Track ME-9493 1 Force Sensor CI-6746 1 Motion Sensor II CI-6742A 1 Accessory Bracket CI-6545

More information

SHM Simple Harmonic Motion revised May 23, 2017

SHM Simple Harmonic Motion revised May 23, 2017 SHM Simple Harmonic Motion revised May 3, 017 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Grade: EXPERIMENT 4

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Grade: EXPERIMENT 4 Laboratory Section: Last Revised on June 18, 2018 Partners Names: Grade: EXPERIMENT 4 Moment of Inertia & Oscillations 0 Pre-Laboratory Work [20 pts] 1 a) In Section 31, describe briefly the steps you

More information

Name: Lab Partner: Section: Simple harmonic motion will be examined in this experiment.

Name: Lab Partner: Section: Simple harmonic motion will be examined in this experiment. Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

More information

PHY 123 Lab 9 Simple Harmonic Motion

PHY 123 Lab 9 Simple Harmonic Motion PHY 123 Lab 9 Simple Harmonic Motion (updated 11/17/16) The purpose of this lab is to study simple harmonic motion of a system consisting of a mass attached to a spring. You will establish the relationship

More information

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate) PASCO scientific Physics Lab Manual: P30-1 Experiment P30: (Force Sensor, Photogate) Concept Time SW Interface Macintosh File Windows File centripetal force 30 m 500 or 700 P30 Centripetal Force P30_CENT.SWS

More information

PHYSICS LAB Experiment 7 Fall 2004 CONSERVATION OF MOMENTUM & COLLISIONS

PHYSICS LAB Experiment 7 Fall 2004 CONSERVATION OF MOMENTUM & COLLISIONS PHYSICS 83 - LAB Experiment 7 Fall 004 CONSERVATION OF MOMENTUM & COLLISIONS In this experiment we will study how the total vector momentum of an isolated system is conserved (remains constant) in collisions.

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight

Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight Elastic properties of solids Page 1 of 8 Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight This is a rare experiment where you will get points for breaking

More information

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P08 Constant Force.DS P11 Constant Force P11_CONF.SWS

More information

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Fall 2009

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Fall 2009 Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 93 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES OVERVIEW Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

Equipotentials and Electric Fields

Equipotentials and Electric Fields Equipotentials and Electric Fields PURPOSE In this lab, we will investigate the relationship between the equipotential surfaces and electric field lines in the region around several different electrode

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Experiment 7 Simple Harmonic Motion Reading: Bauer&Westfall Chapter 13 as needed (e.g. definitions of oscillation variables)

Experiment 7 Simple Harmonic Motion Reading: Bauer&Westfall Chapter 13 as needed (e.g. definitions of oscillation variables) PHY191 Experiment 7: Simple Harmonic Motion 7/3/9 Page 1 Experiment 7 Simple Harmonic Motion Reading: Bauer&Westfall Chapter 13 as needed (e.g. definitions of oscillation variables) Homework 8: turn in

More information

EXAM 3 MECHANICS 40% of the final grade

EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

More information

Physical Properties of the Spring

Physical Properties of the Spring Physical Properties of the Spring Please treat all springs gently. Introduction Force made by a spring is different. Most of the previous labs involve the gravitational force, which gets weaker as the

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Experiment P-9 An Inclined Plane

Experiment P-9 An Inclined Plane 1 Experiment P-9 An Inclined Plane Objectives To understand the principles of forces on an inclined plane. To measure the parallel component of the gravitational force and compare it to the calculated

More information

LAB 3: WORK AND ENERGY

LAB 3: WORK AND ENERGY 1 Name Date Lab Day/Time Partner(s) Lab TA (CORRECTED /4/05) OBJECTIVES LAB 3: WORK AND ENERGY To understand the concept of work in physics as an extension of the intuitive understanding of effort. To

More information

Simple Harmonic Motion

Simple Harmonic Motion 1. Object Simple Harmonic Motion To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2. Apparatus Assorted weights

More information

GENERAL PHYSICS (3) LABORATORY PHYS 203 LAB STUDENT MANUAL

GENERAL PHYSICS (3) LABORATORY PHYS 203 LAB STUDENT MANUAL Haifaa altoumah& Rabab Alfaraj By Haifaa altoumah& Rabab Alfaraj GENERAL PHYSICS (3) LABORATORY PHYS 203 LAB STUDENT MANUAL Name:-. ID# KING ABDULAZIZ UNIVERSITY PHYSICS DEPARMENT 1st semester 1430H Contents

More information

Experiment P26: Rotational Inertia (Smart Pulley)

Experiment P26: Rotational Inertia (Smart Pulley) PASCO scientific Physics Lab Manual P26-1 Experiment P26: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file rotational motion 45 m 500 or 700 P26 P26_ROTA.SWS EQUIPMENT NEEDED Interface

More information

Possible Prelab Questions.

Possible Prelab Questions. Possible Prelab Questions. Read Lab 2. Study the Analysis section to make sure you have a firm grasp of what is required for this lab. 1) A car is travelling with constant acceleration along a straight

More information

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM EXPERIMENT Spring-Mass System and a Torsional Pendulum OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM Structure.1 Introduction Objectives. Determination of Spring Constant Static Method

More information

17-Nov-2015 PHYS MAXWELL WHEEL. To test the conservation of energy in a system with gravitational, translational and rotational energies.

17-Nov-2015 PHYS MAXWELL WHEEL. To test the conservation of energy in a system with gravitational, translational and rotational energies. Objective MAXWELL WHEEL To test the conservation of energy in a system with gravitational, translational and rotational energies. Introduction A wheel is suspended by two cords wrapped on its axis. After

More information

AP Physics Curriculum Guide Scranton School District Scranton, PA

AP Physics Curriculum Guide Scranton School District Scranton, PA AP Physics Scranton School District Scranton, PA AP Physics Prerequisite: Algebra II/Trig Be in compliance with the SSD Honors and AP Criteria Policy AP Physics 1 is a full year, algebra-based physics

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 9 The Spring: Hooke s Law and Oscillations 9.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Experiment A11 Chaotic Double Pendulum Procedure

Experiment A11 Chaotic Double Pendulum Procedure AME 21216: Lab I Fall 2017 Experiment A11 Chaotic Double Pendulum Procedure Deliverables: Checked lab notebook, plots with captions Background Measuring and controlling the angular position and velocity

More information

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Newton's Law Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 NEWTON S SECOND LAW Purpose: 1. To become familiar

More information

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009 Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

Experiment 11: Rotational Inertia of Disk and Ring

Experiment 11: Rotational Inertia of Disk and Ring Experiment 11: Rotational Inertia of Disk and Ring Equipment Required ScienceWorkshop 750 Interface (CI- 6450 or CI-7599) Mini-Rotational Accessory (CI-6691) Base and Support Rod (ME-9355) Paper clips

More information

Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition RC Circuits Experiment PH06_Todd OBJECTIVE To investigate how the voltage across a capacitor varies as it charges. To find the capacitive time constant. EQUIPMENT NEEDED Computer: Personal Computer with

More information

Parts II-V Sabbatical Leave Report

Parts II-V Sabbatical Leave Report Parts II-V Sabbatical Leave Report II. III. Re-statement of Sabbatical Leave Application I propose to spend my sabbatical updating all of the lab manuals for the five physics courses. The lab manuals are

More information

Introduction to Simple Harmonic Motion

Introduction to Simple Harmonic Motion Introduction to Prelab Prelab 1: Write the objective of your experiment. Prelab 2: Write the relevant theory of this experiment. Prelab 3: List your apparatus and sketch your setup.! Have these ready to

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its

More information

Simple Harmonic Motion

Simple Harmonic Motion Physics Topics Simple Harmonic Motion If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Hooke s Law (Serway, Sec.

More information

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law MECH-2: Newton's Second Law Page 1 of 5 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law 1 250 g Stackable Masses (set of 2) ME-6757A 1 Smart Cart Blue ME-1241 1 Mass

More information

Chaotic Motion (One or two weights)

Chaotic Motion (One or two weights) Page 1 of 8 Chaotic Motion (One or two weights) Exercises I through IV form the one-weight experiment. Exercises V through VII, completed after Exercises I-IV, add one weight more. This challenging experiment

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton's Laws P10 Atwood s.ds P13 Atwood's Machine P13_ATWD.SWS Equipment

More information