Planar Motion with Constant Acceleration

Size: px
Start display at page:

Download "Planar Motion with Constant Acceleration"

Transcription

1 Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction is changing. (c) Both the speed and the direction are changing. (d) The direction is not changing. 2. Taking up as positive at the highest point, the acceleration of a projectile is (a) always g. (b) always 0. (c) always +g. (d) +g on the way up and g on the way down. 3. A cannon ball is fired horizontally off a high cliff over a great distance. If air resistance can be ignored the path it follows is (a) part of a parabola. (b) part of a circle. (c) a hyperbola. (d) part of an ellipse. 4. Suppose that several projectiles are fired from level ground. Which one of the following will travel for longest time interval? (a) The one with the farthest range, R. (b) The one with the highest maximum elevation, h. (c) The one with the greatest initial velocity, v i. (d) The one with the smallest mass number, m. 1

2 5. Which of the following does not affect the range of a projectile? (a) v i, the magnitude of the initial velocity. (b) α, the launch angle. (c) y i, the initial height. (d) x i, the initial horizontal position. (e) All of the above affect the range of a projectile. 6. Which of the following must be zero for a projectile to achieve its maximum range? (a) ẋ f, the final x-velocity. (b) ẏ f, the final y-velocity. (c) x f, the final x-position. (d) y f, the final y-position. 7. Which of the following must be zero for a projectile to be at its maximum height? (a) ẋ, the x-velocity. (b) ẏ, the y-velocity. (c) x, the x-position. (d) y, the y-position. 8. A ball thrown from the ground happens to land on top of a roof at the instant the direction of its velocity vector is horizontal. If the magnitude of the ball s initial velocity was v i at an angle α above the horizontal, then the magnitude of the velocity when it lands on the roof is (a) zero. (b) v i sin α. (c) v i cos α. (d) v i tan α. (e) 2 v i. (f) none of the above. 2

3 9. You throw a pebble upward as shown in the figure below, with a velocity v 0 at an angle θ, from a roof (at point J) h m above the ground. If the pebble rises upward to h m above the roof (to point K), then falls to the ground below (to point L), the magnitude of its velocity when it hits the ground is (a) v 0. (b) between v 0 and 2 v 0. (c) 2 v 0. (d) greater than 2 v 0. The following sentence pertains to problems A projectile is launched from ground level with velocity v i at an angle α above the horizontal. 10. If v i were increased slightly, the range of the projectile would 11. If α were increased slightly, the time the projectile spends in the air before hitting the ground would 3

4 12. If v i were increased slightly, the maximum height attained by the projectile would 13. If α were decreased slightly, the range of the projectile would 14. A ball is thrown horizontally with a velocity v i. (a) What is its position relative to its launching point (its displacement and direction in terms of v i and g) as a function of time? (b) What is its velocity as a function of time? 15. A ball is thrown from ground-level with an initial velocity v i at an angle α above the ground. (a) What are the x- and y-components of the initial velocity? (b) What is the position (magnitude and direction) of the ball as a function of time? (c) What is the velocity (magnitude and direction) of the ball as a function of time? (d) What is the ball s highest altitude? How much time did it take to reach this position? What is the ball s velocity (magnitude and direction) at this point? (e) What is the ball s range R (assuming the ground is horizontal, what is the x-position when the ball hits the ground)? What is it s velocity (magnitude and direction) as it strikes the ground? 16. A tool slides a distance d down a smooth house roof slanted at angle α above the horizontal. The tool slides off the roof and lands on the ground a distance h below. How far (along the ground) from the house did the tool land? 4

5 17. An airplane flying horizontally at velocity v i must drop relief supplies onto a tiny, isolated island from altitude h above the surface of the island. The person in the plane charged with releasing the cargo must determine the correct instant to release it. This is done by determining the angle from vertical the target makes with the observer. What is this angle? [Hint: Draw the picture.] 5

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

Bell Ringer: What is constant acceleration? What is projectile motion?

Bell Ringer: What is constant acceleration? What is projectile motion? Bell Ringer: What is constant acceleration? What is projectile motion? Can we analyze the motion of an object on the y-axis independently of the object s motion on the x-axis? NOTES 3.2: 2D Motion: Projectile

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Projectile Motion Exercises

Projectile Motion Exercises Projectile Motion 11.7 Exercises 1 A ball is thrown horizontally from a cliff with a speed of 10ms-I, at the same time as an identical ball is dropped from the cliff. Neglecting the effect of air resistance

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction What is a projectile? Projectile Motion I A projectile is an object upon which the only force acting is gravity. There are a variety of examples of projectiles. An object dropped from rest is a projectile

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Projectile Motion. v = v 2 + ( v 1 )

Projectile Motion. v = v 2 + ( v 1 ) What do the following situations have in common? Projectile Motion A monkey jumps from the branch of one tree to the branch of an adjacent tree. A snowboarder glides at top speed off the end of a ramp

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

10.2

10.2 10.1 10.2 10.3 10.4 10.5 10.6 d = ½ g t 2 d = 5 m g = 10 m/s 2 t = sqrt (2d/g) t = sqrt (1) t = 1 second Time to hit ground = 1 second In that 1 second, horizontal distance travelled = 20m Horizontal speed

More information

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180 Chapter Four MOTION IN A PLANE MCQ I 4.1 The angle between A = ˆi + ˆj and B = ˆi ˆj is (a) 45 (b) 90 (c) 45 (d) 180 4.2 Which one of the following statements is true? (a) A scalar quantity is the one

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Bill s ball goes up and comes back down to Bill s level. At that point, it is

Bill s ball goes up and comes back down to Bill s level. At that point, it is ConcepTest 2.1 Up in the Air Alice and Bill are at the top of a cliff of height H.. Both throw a ball with initial speed v 0, Alice straight down and Bill straight up. The speeds of the balls when they

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Full file at

Full file at Section 3-1 Constructing Complex Motions from Simple Motion *1. In Figure 3-1, the motion of a spinning wheel (W) that itself revolves in a circle is shown. Which of the following would not be represented

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Kinematics in Two Dimensions. Problem Solving Physics 11 Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

Physics Mechanics. Lecture 8 2D Motion Basics

Physics Mechanics. Lecture 8 2D Motion Basics Physics 170 - Mechanics Lecture 8 2D Motion Basics Two-Dimensional Kinematics Motion in Two Dimensions Motion in the x- and y-directions should be solved separately: Constant Velocity If velocity is constant,

More information

30º 20º 60º 38º 78º 16º 45º 83º. Chapter 3 Vectors Worksheets. 1. DRAW and CALCULATE the X and Y components of the following: A. E. B. F. C. G. D. H.

30º 20º 60º 38º 78º 16º 45º 83º. Chapter 3 Vectors Worksheets. 1. DRAW and CALCULATE the X and Y components of the following: A. E. B. F. C. G. D. H. Chapter 3 Vectors Worksheets 1. DRAW and CALCULATE the X and Y components of the following: A. E. 10 10 20º 30º B. F. 60º 38º 10 10 C. G. 78º 10 16º 10 D. H. 10 10 83º 45º What s true about all the RED

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Phys , Fall04,Term 1 Exercise Problems

Phys , Fall04,Term 1 Exercise Problems Page 1 1. The number of significant figures in the number 0.00593 is a. 5 b. 2 c. 3 d.6 2. The product of 10-4 and 105 is a. 1 b. 10 c. 0.1 d.100 3. The length of a car is given as 4.57 m. The percent

More information

Kinematics in Two-Dimensions

Kinematics in Two-Dimensions Slide 1 / 92 Slide 2 / 92 Kinematics in Two-Dimensions www.njctl.org Slide 3 / 92 How to Use this File Each topic is composed of brief direct instruction There are formative assessment questions after

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Chapter 1. Kinematics

Chapter 1. Kinematics Chapter 1 Kinematics 3 4 AP Physics Multiple Choice Practice Kinematics 1. A car travels 30 miles at an average speed of 60 miles per hour and then 30 miles at an average speed of 30 miles per hour. The

More information

Two Dimensional Kinematics Challenge Problems

Two Dimensional Kinematics Challenge Problems Two Dimensional Kinematics Challenge Problems Problem 1: Suppose a MIT student wants to row across the Charles River. Suppose the water is moving downstream at a constant rate of 1.0 m/s. A second boat

More information

Graphing Motion Part 2

Graphing Motion Part 2 Kinematics 2: Motion Graphs & Free Fall Sep 5 10:34 AM Sep 5 1:25 PM Graphing Motion Part 2 How do you calculate the slope of a line? What would the slope of a distance vs time graph represent? What would

More information

Q3.1. A. 100 m B. 200 m C. 600 m D m E. zero. 500 m. 400 m. 300 m Pearson Education, Inc.

Q3.1. A. 100 m B. 200 m C. 600 m D m E. zero. 500 m. 400 m. 300 m Pearson Education, Inc. Q3.1 P 400 m Q A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to point P. What is the magnitude of her net displacement for the

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

PHYS 111 HOMEWORK #5

PHYS 111 HOMEWORK #5 PHYS 111 HOMEWORK #5 Due : 9 Sept. 016 This is a homework set about projectile motion, so we will be using the equations of motion throughout. Therefore, I will collect all those equations here at the

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 2

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 2 Department of Natural Sciences Physics 1111 Quiz September 11, 006 Name SOLUTION A ball is thrown straight up and reaches its maximum height after.00 s. a. What is the acceleration of the ball after it

More information

~ RockA '\ RockB coordinate system is the point the rocks were released from. RockB v (horizontal) time. time

~ RockA '\ RockB coordinate system is the point the rocks were released from. RockB v (horizontal) time. time 82-WWT08: FALLING ROCK AN THROWN ROCK-VELOCITY- TIME GRAPHS Rock A is dropped from the top of a cliff at the same instant that Rock is thrown horizontally away from the cliff. The rocks are identical.

More information

ISSUED BY K V - DOWNLOADED FROM KINEMATICS

ISSUED BY K V - DOWNLOADED FROM   KINEMATICS KINEMATICS *rest and Motion are relative terms, nobody can exist in a state of absolute rest or of absolute motion. *One dimensional motion:- The motion of an object is said to be one dimensional motion

More information

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position

Bell Ringer. x- direction: Ball and car start with same position and velocity, a=0, so always have same position Objectives Students should be able to add, subtract, and resolve displacement and velocity vectors so they can: Determine the components of a vector along two specified, mutually perpendicular axes. Determine

More information

MOTION OF A PROJECTILE

MOTION OF A PROJECTILE MOTION OF A PROJECTILE Today s Objectives: Students will be able to: 1. Analyze the free-flight motion of a projectile. In-Class Activities: Check Homework Reading Quiz Applications Kinematic Equations

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1

Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1 Version PREVIEW Vectors & 2D Chap. 3 sizemore (13756) 1 This print-out should have 73 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Rectangular

More information

Projectile Motion. C) 15 m. D) depends on horizontal speed

Projectile Motion. C) 15 m. D) depends on horizontal speed Pre-Test - Post-Test 1. A stone is thrown horizontally from the top of a cliff. One second after it has left your hand its vertical distance bellow the cliff is. A) 5 m. B) 10 m. C) 15 m. D) depends on

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Motion in Two Dimensions Reading Notes

Motion in Two Dimensions Reading Notes Motion in Two Dimensions Reading Notes Name: Section 3-1: Vectors and Scalars What typeface do we use to indicate a vector? Test Your Understanding: Circle the quantities that are vectors. Acceleration

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Concepts to explore Scalars vs. vectors Projectiles Parabolic trajectory As you learned in Lab 4, a quantity that conveys information about magnitude only is called a scalar. However, when a quantity,

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Chapter 3 Vectors Worksheets. 1. Find the X and Y components of the following: A. 35 m/s at 57 from the x-axis. [X: 19.1 m/s Y: 29.

Chapter 3 Vectors Worksheets. 1. Find the X and Y components of the following: A. 35 m/s at 57 from the x-axis. [X: 19.1 m/s Y: 29. Chapter 3 Vectors Worksheets 1. Find the X and Y components of the following: A. 35 m/s at 57 from the x-axis. B. 12 m/s at 34 S of W [X: 19.1 m/s Y: 29.4 m/s] C. 8 m/s South [X: -10 m/s Y: -6.7 m/s] D.

More information

Phys 2425: University Physics I Summer 2016 Practice Exam 1

Phys 2425: University Physics I Summer 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula.

Ms. Peralta s IM3 HW 5.4. HW 5.4 Solving Quadratic Equations. Solve the following exercises. Use factoring and/or the quadratic formula. HW 5.4 HW 5.4 Solving Quadratic Equations Name: Solve the following exercises. Use factoring and/or the quadratic formula. 1. 2. 3. 4. HW 5.4 5. 6. 4x 2 20x + 25 = 36 7. 8. HW 5.4 9. 10. 11. 75x 2 30x

More information

*************************************************************************

************************************************************************* Your Name: TEST #1 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1 Physics 125: Classical Physics A 1 Practice Problems for Midterm Exam 1 Problem 1 The Figure 1 depicts velocity as a function of time for a short run. Find: a) The acceleration at t = 5 seconds. b) The

More information

Unit 2 Projectile Motion

Unit 2 Projectile Motion Name: Hr: Unit 2 Projectile Motion Vocabulary Projectile: a moving object that is acted upon only by the earth s gravity A projectile may start at a given height and move toward the ground in an arc. For

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity

More information

INTRODUCTION. 3. Two-Dimensional Kinematics

INTRODUCTION. 3. Two-Dimensional Kinematics INTRODUCTION We now extend our study of kinematics to motion in two dimensions (x and y axes) This will help in the study of such phenomena as projectile motion Projectile motion is the study of objects

More information

AP1 Kinematics (C) (D) t t t t

AP1 Kinematics (C) (D) t t t t 1. A ball is thrown vertically upward from the ground. Which pair of graphs best describes the motion of the ball as a function of time while it is in the air? Neglect air resistance. y a v a (A) t t t

More information

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook Projectile motion is an extension to two dimensions of free fall motion. Section 3.6 A projectile is an object that moves in two dimensions under the influence of gravity and nothing else. As long as we

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information