Chapter 2 Solving Linear Equation

Size: px
Start display at page:

Download "Chapter 2 Solving Linear Equation"

Transcription

1 EE7 Computer odelg Techques Egeerg Chpter Solvg er Equto A ler equto represets the ler depedece of qutty φ o set of vrbles through d set of costt coeffcets α through α ; ts form s α α... α φ If we replce φ by sgly subscrpted qutty f d the coeffcets α j by doubly subscrpted qutty α j, we my wrte system of such equtos the form α α α α α α α α α j α j α j α j j j α j j α : : : : α : : : : α f f f f (.) The soluto of such systems for the quttes j, whe the coeffcets j d the vlues f re gve, pervdes egeerg pplctos d computtol methods. For emple, systems of ler lgebrc equtos re used drectly mthemtcl models for electrcl, structurl, d ppe etworks, d some computtol methods for fttg curves to dt. I other cses, such s fte dfferece d fte elemet solutos of prtl dfferetl equtos, they represet ppromtos of mthemtcl equtos, whch cot be solved by lytcl methods.. Fudmetls of ler lgebr.. Notto d Deftos A mtr s rectgulr rry of quttes. A emple of mtr s A [ j ] (.) Chpter Pge

2 EE7 Computer odelg Techques Egeerg I Eq. (.), the bold-fced A s the symbol for the mtr, the lterl represetto o the fr rght shows the rrgemet of the elemets, d the form [ j ] s shorter bstrcto of the lterl form. The mtr hs o prtculr meg utl we ssocte the elemets wth gve cocept. A mtr wth m rows d colums hs dmeso (m ) d s referred to s (m ) mtr. A colum vector c d row vector r re show Eq.(.) c ] c ; r [ rj ] [ r r r ] c [ c r c (.).. Opertos Addto d subtrcto for coformble mtrces A d B re summrzed by A ± B C [ c ] [ ± b ( m ) ( m ) ( m ) j j j ] (.) tr multplcto A B s defed oly f the umber of colums A s equl to the umber of rows B. A B P [ p ( m r) ( r ) r k ( m ) p j ( k bkj ) b j b j j ] r b rj (.5) (.5b) tr multplcto s both dstrbutve d ssoctve. If A,B, d C re mtrces wth pproprte dmesos to stsfy the ddto/ subtrcto codtos of Eq. (.) d the multplcto codtos of Eq.(.5), the dstrbutve d ssoctve propertes re epressed Eq.(.6) d Eq.(.7), respectvely, by A ( B C) A B A C; ( B C) A B A C A (.6) A B C A B C) ( A B) C ( (.7) ultplcto of mtr A by sclr q to form product mtr S equl to qa s lso defed operto. The product ths cse s gve by Chpter Pge

3 EE7 Computer odelg Techques Egeerg q A S [ s ] q[ ] [ q ( m ) ( m ) j j j ] (.).. Squre trces A squre mtr s oe tht hs the sme umber of rows s the umber of colums; for emple, mtr wth dmeso ( ). Specl types of squre mtrces re descrbed s follows. A dgol mtr D equl to [d j ] stsfes the codto d j for j (.9) We my replce [d j ] by [d ], mplctly t the correct cotet so tht t s ot cofused wth the vector otto of Eq. (.), d epress the dgol mtr D the form D [ d ] d d O d O d d (.) The detty mtr I s dgol mtr whch every dgol elemet hs ut vlue; t s the mtr of the sclr ut vlue. The zero mtr s oe whose elemets re ll zero; t my be ether squre mtr or geerl rectgulr mtr. ultplctos volvg the geerl dgol mtr D, the detty mtr I, d the zero mtr re summrzed s follows; ech of D, I d s ssumed to be ( ) mtr. c u [ u ] [ d c ] D ( ) ( ) ( ) r D v j ( ) ( ) ( ) D A P j ( ) ( ) ( ) A D Q j ( ) ( ) ( ) I c c ( ) ( ) ( ) [ v ] [ r d ] [ p ] [ d ] j j j [ q ] [ d ] j j (.) (.b) (.c) (.d) (.) Chpter Pge

4 EE7 Computer odelg Techques Egeerg r I r (.b) ( ) ( ) ( ) I A A A ( ) ( ) ( ) ( ) ( ) I (.c) c (.) ( ) ( ) ( ) r ( ) ( ) ( ) A A ( ) ( ) ( ) ( ) ( ) (.b) (.c) The verse of squre mtr A s deoted by A - d s tself squre mtr wth the sme dmeso s A such tht A A A A I (.) The logous sclr relto s ( αα α α ). Two other types of squre mtrces tht wll be useful t lter stge re the lower trgulr d upper trgulr mtrces. The lower trgulr form permts ozero elemets oly o d below the dgol; t my be represeted by [ l ] j l l l O O l l l (.5) The upper trgulr form U permts ozero elemets oly o d bove the dgol; t my be represeted by U [ u ] j u u u u u O O u (.6) Chpter Pge

5 EE7 Computer odelg Techques Egeerg.. The Determt of Squre tr The determt of ( ) squre mtr A s wrtte s A d s defed by ether of or A j A ( j C j ) for y oe vlue of (.7) ( j C j ) for y oe vlue of j (.7b) whch C j s kow s the cofctor of the elemet j. The cofctor C j of ( ) squre mtr s obted by frst removg row d colum j to form ((-) (-)) mtr d the by performg the operto C j j ( ) (determt of A wth row d colum j removed) (.)..5 The tr Equto for er Algebrc Systems The cocept of mtr multplcto epressed Eq.(.5) d (.5b) llows us to represet the system of ler lgebrc equtos gve by Eq.(.) the form j j j j f f f f (.9) or, more compctly, the form A f (.9b) Here, A s the coeffcet mtr formed by coeffcets of the ler system, the orgl rght-hd sdes of the system re ow the compoets of the colum vector f. d the orgl ukow quttes re ow the compoets of the colum vector. A uque soluto for requres A to be squre mtr, d t requres the system of equtos to be lerly depedet. A coeffcet mtr wth zero determt s sgulr, uque soluto for requres osgulr mtr. Chpter Pge 5

6 EE7 Computer odelg Techques Egeerg The soluto of Eq.(.9b) my be derved wth the help of the ssoctve lw from Eq. (.7), the cocept of the verse from Eq.(.), d opertos wth the detty mtr from Eq. (.) s follows: I ( A A) A ( A ) A f (.) Amog the ddtol tools used methods for solvg mtr equtos re row d colum echges. A row echge the coeffcet mtr A of Eq. (.9b) s smply posto echge of two equtos. The sequece of the compoets of s preserved, but those of the rght-hd sde vector f must be echged to correspod to the ew postos. A colum echge the coeffcet mtr does ot lter the sequece of equtos but t requres correspodg echge the compoets of so tht the compoets re multpled by the pproprte coeffcets. Illustrtos of these cocepts re s follows. Echge of rows I d k: k f fk (.) Echge of colums j d k: j j k k j k f (.b)..6 Computtol Techques for Bsc Opertos The procedure of umercl computto: Fd mthemtcl model or wy of presetg the problem. Choose umercl method or clculto formul. Set up the computto procedure. Drw progrm flowchrt. Wrte progrm. u the computto. Check the computto results. Chpter Pge 6

7 EE7 Computer odelg Techques Egeerg Emple : Clculto of Iverse tr ) Fd mthemtcl model or wy of presetg the problem. Problem: Fd the verse mtr from by mtr. The otto of mthemtcl model s A A s the verse mtr A. ) Choose sutble umercl method or formul. Usg formul of verse mtr. A b b b b ) Set up the computto procedure Step Dt put Step Compute the mtr Step Error cotrol Step Compute the verse mtr Step 5 Output the result Chpter Pge 7

8 EE7 Computer odelg Techques Egeerg ) Drw progrm flowchrt STAT,,, DATA INPUT d d: b b b b / d / d / d / d tr s ot No-sgulr b, b, b, b ESUT, OUTPUT END 5) Wrte progrm Numercl computto progrm cludes four prts:. Defe the vrbles d type b. Dt put c. Computto d. Dt output Chpter Pge

9 EE7 Computer odelg Techques Egeerg Progrm emple C /* < POGA> */ # clude <stdo.h> # clude <stdlb.h> Vrbles type Dt put secto m( ) { t, j; double [][]; /* INPUT ATIX */ double b[][]; /* OUTPUT ATIX */ double d; /*** STEP DATA INPUT***/ prtf ( INVESE ATIX / * ); for (; <; ){ for (j; j<; j){ prtf ( %d%d,, j); scf ( %f, &[I][j]); } } /***STEP CACUATE ATIX***/ d[][]*[][]-[][]*[][]; Computg secto /***STEP EO CONTO***/ f (d. ){ prtf( IT IS NON-SING UA ATIX/ ); } /***STEP CACUATE INVESE ATIX***/ b[][][][]/d; b[][]-[][]/d; b[][]-[][]/d; b[][][][]/d; Dt output secto /***STEP 5 ESUT OUTPUT***/ prtf ( <SOUTION>/ ); prtf( B/ ); for (; <; ){ for (j; j<; j){ prtf( % f, b[][j]); } prtf ( / ); } } Chpter Pge 9

10 EE7 Computer odelg Techques Egeerg 6) Compute the problem < B ) Check the computto results Compre wth other method such s ATAB fuctos. * Tp A good progrm for umercl computto should hve followg chrcterstcs: ) short computto tme ) ccurte result ) short progrm steps ) esy to red 5) esy to move to other computers Emple : Compre wth ATAB mtr verse fucto by usg followg mtr: fd A A? usg ATAB progrm d ATAB verse fucto. Chpter Pge

11 EE7 Computer odelg Techques Egeerg..7 Itroducto to Numercl Computto er Equtos. Prelmres esstve Network. V V V V 5 5 Ω Ω Ω Ω Ω V V 5 Ohm s lw: V (.) Krchhoff s lws: I (.) U (.) The mplcto of Krchhoff s d Ohm s lw re tht the currets,, d must stsfy the followg reltos: 5 ) ( ) ( ) ( V V m m m m b b b (.5) Chpter Pge

12 EE7 Computer odelg Techques Egeerg The coeffcets d b re gve rel or comple umbers. Eq. (,5) s system f j m equtos wth vrbles, or ukows, vlues.,,..., Eq. (.5) c be wrtte compctly mtr form s A where ( ) j b A s m mtr of coeffcets, d ( ) vectors of dmeso m d, respectvely. b. Our job s to determe ther b d ( ) re colum j (.6) EXAPE I the 6 m rectgulr rego show Fgure.(), the electrc potetl s zero o the boudres. The chrge dstrbuto, however, s uform d gve by p v ε. Solve Posso s equto to determe the potetl dstrbuto the rectgulr rego. Soluto To determe the potetl dstrbuto the rectgulr rego, we use Posso s equto. y ρ ε v wth zero potetl o the boudres. Fgure. Geometry of the 6 m rectgulr rego d the h m mesh. Chpter Pge

13 EE7 Computer odelg Techques Egeerg By estblshg the rectgulr grd show Fgure.(b), we relze tht we hve s odes d, hece, s ukow potetls for whch to solve. eplcg by ts fte dfferece represetto, we obt ) (,,,,, j j j j j h It should be oted tht lthough the lthough the mesh sze ws ot eplctly used solvg plce s equto the prevous emple, h s cluded s prt of the mtr formto solvg Posso s equto. I SI system of uts, h should be meters. By pplyg the precedg dfferece equto t the vrous odes Fgure.(b), we obt the followg mtr equto: 6 5 Isted of solvg the resultg s equtos, we my ote some symmetry cosdertos Fgure.(b). It s cler tht 6 5 d tht Tkg these symmetry cosdertos to ccout, the umber of equtos reduces to two, d we obt the followg soluto:.56, 7 5. Chpter Pge

14 EE7 Computer odelg Techques Egeerg. Drect ethods for er Systems.. Guss Elmto Emple of Elmto Solve the system of Eqs (.7) By subtrctg the multple of the frst equto from the secod equto d the frst equto from the thrd equto, the frst derved system s obted: 6 (.) The frst equto, fter beg multpled by, becomes 6 (.9) Subtrct ths from the mddle equto Eq.(.7) to see tht result s ) ( ) (7 6) ( The sme rtole yelds the thrd equto the frst derved system. Cotue the computto by subtrctg the multple of the secod equto of the frst derved system from the thrd equto to obt the secod derved system: The dervto of ths upper trgulr system of equto s clled the forwrd elmto process. From the thrd equto of the the system bove, we mmedtely clculte The the secod equto, wth substtuted for, mples tht Chpter Pge

15 EE7 Computer odelg Techques Egeerg Flly, from the frst equto, wth ther umercl vlues replcg d, we see tht ( ) d thereby obt the soluto, whch,,. The computto of the ukows from the upper trgulr system s kow s bck substtuto. et us ssume tht Eq.(.5) the mtr of coeffcets s osgulr; tht s, ssume m, d tht soluto ests d s uque. The Eq.(.5) c be rewrtte s ,,, (.) where, for lter otto coveece, we hve defed b ( ) Assume tht, d subtrct the multplyg,. of the frst equto from the th equto for,,. The coeffcet of the th equto the becomes, d we thereby obt the frst derved system whch hs the form () () () (), (), (), (.) where () j j j (, j ) (.) () () () Assume et tht, d subtrct the multple / of the secod equto of th (.) from the equto (,, ). We thereby obt the secod derved system: Chpter Pge 5

16 EE7 Computer odelg Techques Egeerg () () () () () () (), (), (), (), (.) By repetg ths process utl the (-)st derved system hs bee costructed, we obt () () () () () ( ), (), (), ( ), (.) where the relto for obtg the coeffcets of the k th derved system from the coeffcets of precedg system hs the geerl form ( k,, ; j k,, ) (.5) ( k ) ( k ) k k ( k ) j j ( k ) kj kk I Eq. (.5), k rges from to -. The process s strted by ssgg () (,, ; j,, ) j j By specto of Eq.(.), we see tht the coeffcet mtr of the (-)st derved system s upper trgulr form. The remg step solvg ths system s esy. The vlue of c be obted from the fl equto of Eq.(.)sce osgulrty of A mples tht ecessrly ( ). Specfclly, ( ), ( ) d the (bckwrd) recursve formul for obtg the vlues of the ukows k terms of the prevously clculted vlues j (j > k) s k ( k ) k ( k ), j k kk ( k ) kj j (k,, ) (.6) Guss elmto: Formul (.6) s clled Bck Substtuto. Process (.6-.5) s referred to s Forwrd Elmto. Chpter Pge 6

17 EE7 Computer odelg Techques Egeerg The coeffcets of the successve derved systems ssocted wth Emple. re gve Tble.. TABE. Derved System Forwrd Elmto Orgl System A () Frst Derved System A () 6 Secod Derved System A ().. Guss Elmto wth Pvotg Becuse of the effect of propgted roudg errors, tve Guss elmto s sometmes ustsfctory. Emple. Assume tht the bsece of roud off error, the lst two equtos of the ( ) d derved system re where the zero coeffcets s obted from prevous clcultos. The soluto s. As we kow, resultts of rthmetc opertos usully hve roud off errors: Therefore, the computed derved system of equtos s ctully ε Sce ε, the computto of the ( )st derved system the tve elmto process s cotued wth the ozero elemet ε, d the lst two equtos of the fl derved system re Chpter Pge 7

18 EE7 Computer odelg Techques Egeerg ε ( ) ε ε Bck substtuto ppled to these equtos results the vlues ε ε ε For ε zero, d, whch s the correct vlue. But - wll hve ε ε ε cosderble error becuse, beg very close to, wll duce subtrctve ccellto umertor. The method of bck substtuto (.6) mples tht the vlues of ll the other ukows -,, obted by the use of the erroeous vlue of - re lso suspect. The dffculty the system dscussed bove s ot due smple to ε beg smll but rther to ts beg smll reltve to other coeffcets the sme colum. ( k ) The elemet kk used for elmto s termed pvot. The subtrctve ccellto dffculty just observed c be remeded f we choose s the k th pvot elemet the ( k ) ( coordte hvg the lrgest mgtude mog ll k ), k, k j. The * j* ( k ) elemet s the put the dgol posto by terchgg rows * d k d * j* colums j* d k. Tht s, equtos * d k, d ukows j* d k re terchged. Ths operto s clled pvotg for mml sze or, more smply, mml pvotg, see Fg.. We eed to fd the mmum of (-k) umbers before computg the k th derved system. At the epese of some crese roud off error propgto, populr ltertve procedure s to perform prtl pvotg, where the mml elemet s chose from oly the k th colum. Tht s, we choose the k th ( k ) pvot elemet, to be y coordte tht mmzes ( k ) k, k. The the k th d * th rows re terchged to put the pvot elemet the dgol posto. Fg.. llustrtes the prtl d mml pvotg strteges. kk * k Chpter Pge

19 EE7 Computer odelg Techques Egeerg () O ( k ) k, k Serch ths porto Of k th colum for pvot ( k ) kk ( k ) k () ( k ) k, ( k ) k ( k ) Prtl Pvotg () O Serch ths porto Of mtr for pvot ( k ) k, k ( k ) kk ( k ) k () ( k ) k, ( k ) k ( k ) Fg.. Prtl d ml Pvotg.. Itertve ethods for er Systems.. Jcob Iterto Cosder g (.?) wth m. Assume tht A s osgulr d the rows hve bee echged, s ecessry, so tht the dgol elemets re ozero. Eq. (.?) c the be rewrtte so tht the th equto s eplct for : ( b ) ( b ) ( b ), (.5) Chpter Pge 9

20 EE7 Computer odelg Techques Egeerg Assume tht tl ppromto of the soluto hs bee gve, or smply choose () () () T rbtrry vector. et X (,, ) deote ths tl ppromto. ) Substtute t to the rght-hd sde of Eq.(.5) d evlute. The elemets of the resultg vector gve the et ppromtos of the ukows. ( T () () () et vector X,, deote these ppromtos, d the substtute the ew () vector X, to the rght sde of Eq.(.5) to get further ppromto, X () ( ( ),, () ) T, d so o. The geerl step s gve by ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( b ) ( k ) ( k ) ( k ) ( b ) ( k ) ( k ) ( k ) ( b ), (.6) Scheme (.6) s clled the Jcob Iterto ethod. It c be prove tht uder cert codtos, for k, the sequece of vector (k) coverges to the ect soluto of equtos (.). Oe such codto s ech dgol elemet of the mtr of coeffcet stsfy the codto: j j j,,,. (.7) If ths codto s stsfed, the A s sd to be dgolly domt. The crter for stoppg the terto process re usully ether:. The umber of tertos hs eceeded some predetermed mmum K, or. The dfferece betwee successve vlues of ll s re less th some predetermed tolerce, ε. Oe terto stop dvso, multplcto d ddtos (or subtrctos.).. Guss Sedl Iterto Cosder g the recursve Jcob terto scheme (.6). Observe tht clcultg ( k ) ( k ) the "ew vlue of, the prevous vlue of s used o the rght-hd sde lthough the ew vlue, ( k ) s lredy kow. Chpter Pge

21 EE7 Computer odelg Techques Egeerg ( k ) ( k ) ( k ) Smlrly, for obtg the ew vlue, the odd vlues d re used, ( k ) ( k ) lthough the ew, d presumbly more ccurte vlues d of these vrbles re lredy vlble. A modfcto typclly (but ot lwys) gvg fster ( k ) covergece c be devsed f the clculto of ( ), the updted ew ( k ) ( k ) ( k ) ( k ) vlues,, re used phse of the erler vlues,, (.6). Ths modfcto results the Guss Sedl terto method, whch s defed by the recursve scheme. ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( b ) ( k ) ( k ) ( k ) ( b ) ( k ) ( k ) ( k ) ( b ), (.) Itertve methods re prtculrly populr for soluto of bd systems rsg umercl method for prtl dfferetl equtos. For such equtos, my cses the wdth k s reltvely wde-ofte proportol to / - but the bd tself hs reltvely few ozero etres. et p deote boud to the effort requred by elmto for soluto of bded systems s proportol to k, d for tertve methods, proportol to p, where s the umber of tertos ecessry for cceptble ccurcy. Thus tertve methods re preferble f tht s p < k, k < ~ p p Ufortutely, t s typclly dffcult to sses utl computtos hve lredy begu. Chpter Pge

22 EE7 Computer odelg Techques Egeerg Tble. Soluto of er Equtos. Computto ethods tr Codto Chrcterstcs *Guss Elmto Squre tr For ler systems of smll *Guss-Jord Squre tr or moderte sze, ether Elmto Guss Elmto or u *Cholesky s ethod Symmetrc tr Decomposto s effectve *u Decomposto Symmetrc tr d effcet. ethod (Sze < zero) Drect ethods Itertve ethods *Jcob Iterto *Guss-Sedl ethod *Successve over- elto (SO ethod) Dgolly Domt. j, > j j,,. For lrge d hgh-order ler equtos, for emple, solvg dfferetl equto, Itertve ethods re ttrctve. Fst covergece. Chpter Pge

23 EE7 Computer odelg Techques Egeerg EXAPE **********(wll be deleted)*************** I the 6 m rectgulr rego show Fgure.(), the electrc potetl s zero o the boudres. The chrge dstrbuto, however, s uform d gve by p v ε. Solve Posso s equto to determe the potetl dstrbuto the rectgulr rego. Soluto To determe the potetl dstrbuto the rectgulr rego, we use Posso s equto. y ρ ε v wth zero potetl o the boudres. Fgure. Geometry of the 6 m rectgulr rego d the h m mesh. By estblshg the rectgulr grd show Fgure.(b), we relze tht we hve s odes d, hece, s ukow potetls for whch to solve. eplcg by ts fte dfferece represetto, we obt (,,,,, ) j j j j j h Chpter Pge

24 EE7 Computer odelg Techques Egeerg It should be oted tht lthough the lthough the mesh sze ws ot eplctly used solvg plce s equto the prevous emple, h s cluded s prt of the mtr formto solvg Posso s equto. I SI system of uts, h should be meters. By pplyg the precedg dfferece equto t the vrous odes Fgure.(b), we obt the followg mtr equto: 6 5 Isted of solvg the resultg s equtos, we my ote some symmetry cosdertos Fgure.(b). It s cler tht 6 5 d tht Tkg these symmetry cosdertos to ccout, the umber of equtos reduces to two, d we obt the followg soluto:.56, 5.7 To mprove the ccurcy of the potetl dstrbuto, fer mesh such s the oe show Fgure. s requred. Becuse of the lrge umber of odes ths cse, symmetry should be used, d soluto for oly oe-qurter of the rectgulr geometry s desred. The pplcto of the dfferece equto t odes,,, d 5 should proceed routely, wheres specl cre should be eercsed t the boudry odes, 6, 9,, d, d lso t the corer ode. For emple, pplyg the dfferece equto t ode 6 yelds ) ( h Or ) ( h Chpter Pge

25 EE7 Computer odelg Techques Egeerg I equto ( ), symmetry ws used to y h complete the fve-pot str dfferece equto. Specfclly the potetl t ode to the rght of 6 ws tke equl to. Smlrly t the corer ode, we obt 5 ( 9 ) b c h Becuse of symmetry, b d 9 c, hece, ( 9 ) h Fg.. The fer mesh soluto d symmetry cosderto of emple. The mtr equto for the twelve odes show Fgure. s the Chpter Pge 5

26 EE7 Computer odelg Techques Egeerg The coeffcet the coeffcet mtr (to the left) of equto ppers wheever symmetry cosderto s used t boudry d corer odes. It should be oted tht the coeffcet mtr equto s the sme for both plce s d Possos equtos. The costt vector o the rght-hd sde of equto, however, depeds o the chrge dstrbuto wth d the potetl t the boudres of the rego of terest. Furthermore, f sted of uform chrge dstrbuto we hve gve chrge dstrbuto ), ( y v ρ, the costts vector o the rght-hd sde of equto should reflect the vlue of ), ( y v ρ clculted t ech ode. Soluto of equto gves , Chpter Pge 6

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS57 Numercl Alyss Lecture 4 System of Ler Equtos Professor Ju Zhg Deprtmet of Computer Scece Uversty of Ketucky Legto, KY 456 6 Ferury, 6 System of Ler Equtos where j re coeffcets, re ukows, d re rght

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Methods to Invert a Matrix

Methods to Invert a Matrix Lecture 3: Determts & trx Iverso ethods to Ivert trx The pproches vlble to fd the verse of mtrx re extesve d dverse. ll methods seek to solve ler system of equtos tht c be expressed mtrx formt s for the

More information

Computer Programming

Computer Programming Computer Progrmmg I progrmmg, t s ot eough to be vetve d geous. Oe lso eeds to be dscpled d cotrolled order ot be become etgled oe's ow completes. Hrl D. Mlls, Forwrd to Progrmmg Proverbs b Her F. Ledgrd

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Asynchronous Analogs of Iterative Methods and Their Efficiency for Parallel Computers

Asynchronous Analogs of Iterative Methods and Their Efficiency for Parallel Computers Itertol Coferece "Prllel d Dstrbuted Computg Systems" PDCS 23 (Ure, Khrv, Mrch 3-4, 23) sychroous logs of Itertve Methods d her Effcecy for Prllel Computers Msym Svcheo, leder Chemers Isttute for Modelg

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Random variables and sampling theory

Random variables and sampling theory Revew Rdom vrbles d smplg theory [Note: Beg your study of ths chpter by redg the Overvew secto below. The red the correspodg chpter the textbook, vew the correspodg sldeshows o the webste, d do the strred

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 5, My 13 1 A Effcet Method for Esy Coputto y Usg - Mtr y Cosderg the Iteger Vlues for Solvg Iteger Ler Frctol Progrg Proles VSeeregsy *, DrKJeyr

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Chapter 1. Introduction. Fundamental Concepts. Introduction. Historical background. Historical background. Fundamental Concepts

Chapter 1. Introduction. Fundamental Concepts. Introduction. Historical background. Historical background. Fundamental Concepts Chpter udmetl Cocepts Lecture Notes Dr Mohd Afed Uverst Mlys Perls N67 te lemet Alyss Itroducto A or sometmes referred s M, hs ecome powerful tool for umercl soluto of wde rge of egeerg prolems A s computtol

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information