Methods to Invert a Matrix

Size: px
Start display at page:

Download "Methods to Invert a Matrix"

Transcription

1 Lecture 3: Determts & trx Iverso ethods to Ivert trx The pproches vlble to fd the verse of mtrx re extesve d dverse. ll methods seek to solve ler system of equtos tht c be expressed mtrx formt s for the ukows coted the vector {x},.e., [ ]{ x } { b } { x } [ ] { b } The methods used to ccomplsh ths c be loosely grouped to the followg three ctegores: methods tht explctly clculte {x} methods tht mplctly clculte {x}, d tertve methods tht clculte {x} Of course hybrd methods exst tht re combtos of two or methods the ctegores lsted bove.

2 Lecture 3: Determts & trx Iverso Cosder the followg lst of methods whch s ot comprehesve:. Explct methods for sprse mtrces cludes Crmer s rule whch s specfc cse of usg self djot mtrces. Vrtos clude:. Guss elmto - Row echelo form; ll etres below ozero etry the mtrx re zero - Bress lgorthm; every elemet computed s the determt of [] - Tr-dgol mtrx lgorthm; specl form of Guss elmto b. Guss-Jord elmto. LDU decomposto mplct method tht fctors [] to product of lower d upper trgulr mtrces d dgol mtrx. Vrtos clude. LU reducto specl prllelzed verso of LDU decomposto lgorthm - Crout mtrx decomposto s specl type of LU decomposto 3. Cholesky LDL decomposto mplct method tht decomposes [], whe t s postvedefte mtrx, to the product of lower trgulr mtrx, dgol mtrx d the cojugte trspose. Frotl solvers used fte elemet methods b. Nested dssecto for symmetrc mtrces, bsed o grph prttog c. mum degree lgorthm d. Symbolc Cholesky decomposto

3 Lecture 3: Determts & trx Iverso 5. Itertve methods:. Guss-Sedel methods Successve over relxto (SOR) Bck ft lgorthms b. Cojugte grdet methods (CG) used ofte optmzto problems Noler cojugte grdet method Bcojugte grdet method (BCG) Bcojugte grdet stblzed method (BCGSTB) Cojugte resdul method c. Jcob method d. odfed Rchrdso terto e. Geerlzed mml resdul method (GRES) bsed o the rold terto f. Chebyshev terto vods er products but eeds bouds o the spectrum g. Stoe's method (SIP: Strogly Implct Procedure) uses complete LU decomposto h. czmrz method. Itertve refemet procedure to tur ccurte soluto more ccurte oe 6. Levso recurso for Toepltz mtrces 7. SPIE lgorthm hybrd prllel solver for rrow-bded mtrces Detls d dervtos re preseted for severl of the methods ths secto of the otes. Cocepts ssocted wth determts, cofctors d mors re preseted frst.

4 Lecture 3: Determts & trx Iverso The Determt of Squre trx squre mtrx of order ( x mtrx),.e., [ ] possesses uquely defed d sclr tht s desgted d s the determt of the mtrx, or merely the determt O L det [ ] Observe tht oly squre mtrces possess determts.

5 Lecture 3: Determts & trx Iverso Vertcl les d ot brckets desgte determt, d whle det[] s umber d hs o elemets, t s customry to represet t s rry of elemets of the mtrx [ ] det geerl procedure for fdg the vlue of determt sometmes s clled expso by mors. We wll dscuss ths method fter gog over some groud rules for opertg wth determts. O L

6 Lecture 3: Determts & trx Iverso Rules for Opertg wth Determts Rules pertg to the mpulto of determts re preseted ths secto wthout forml proof. Ther vldty s demostrted through exmples preseted t the ed of the secto. Rule #: Iterchgg g y row (or colum) of determt wth ts mmedte djcet row (or colum) flps the sg of the determt. Rule #: The multplcto of y sgle row (colum) of determt by sclr costt s equvlet to the multplcto of the determt by the sclr. Rule #3: If y two rows (colums) of determt re detcl, the vlue of the determt s zero d the mtrx from whch the determt s derved s sd to be sgulr. Rule #4: If y row (colum) of determt cots othg but zeroes the the mtrx from whch the determt s derved s sgulr. Rule #5: If y two rows (two colums) of determt re proportol,.e., the two rows (two colums) re lerly depedet, the the determt s zero d the mtrx from whch the determt s derved s sgulr.

7 Lecture 3: Determts & trx Iverso Rule #6: If the elemets of y row (colum) of determt re dded to or subtrcted from the correspodg elemets of other row (colum) the vlue of the determt s uchged. Rule #6: If the elemets of y row (colum) of determt re multpled by costt d the dded or subtrcted from the correspodg elemets of other row (colum), the vlue of the determt s uchged. Rule #7: The vlue of the determt of dgol mtrx s equl to the product of the terms o the dgol. Rule #8: The vlue for the determt of mtrx s equl to the vlue of the determt of the trspose of the mtrx. Rule #9: The determt of the product of two mtrces s equl to the product of the determts of the two mtrces. Rule #0: If the determt of the product of two squre mtrces s zero, the t lest oe of the two mtrces s sgulr. Rule #: If m x rectgulr mtrx s post-multpled by x m rectgulr mtrx B, the resultg squre mtrx [C] [][B] of order m wll, geerl, be sgulr f m >.

8 Lecture 3: Determts & trx Iverso I Clss Exmple

9 Lecture 3: Determts & trx Iverso Cosder the th order determt: ors d Cofctors [ ] det The m th order mor of the th order mtrx s the determt formed by deletg ( m ) rows d ( m ) colums the th order determt. For exmple the mor r of the determt s formed by deletg the th row d the r th colum. Becuse s th order determt, the mor r s of order m d cots m elemets. I geerl, mor formed by deletg p rows d p colums the th ordered d determt t s ( p) th order mor. If p, the mor s of frst order d cots oly sgle elemet from. F th t t th t th d t t t l t f f t d From ths t s esy to see tht the determt cots elemets of frst order mors, ech cotg sgle elemet. O L

10 Lecture 3: Determts & trx Iverso Whe delg wth mors other th the ( ) th order, the desgto of the elmted rows d colums of the determt must be cosdered crefully. It s best to cosder cosecutve rows j, k, l, m d cosecutve colums r, s, t, u so tht the ( ) th, ( ) th, d ( 3) th order mors would be desgted, respectvely, s j,r, jk,rs d jkl,rst. The complemetry mor, or the complemet of the mor, s desgted s N (wth subscrpts). Ths mor s the determt formed by plcg the elemets tht le t the tersectos of the deleted rows d colums of the orgl determt to squre rry the sme order tht they pper the orgl determt. For exmple, gve the determt from the prevous pge, the N 3 3 N 3 3,3 3 33

11 Lecture 3: Determts & trx Iverso The lgebrc complemet of the mor s the sged complemetry mor. If mor s obted by deletg rows, k, l d colums r, s, t from the determt the mor s desgted the complemetry mor s desgted kl, rst N kl, rst d the lgebrc complemet s desgted k l L r s t ( ) N kl, rst The cofctor, desgted wth cptl letters d subscrpts, s the sged ( ) th mor formed from the th order determt. Suppose the tht the ( ) th order mor s formed by deletg the th row d j th colum from the determt. The correspodg cofctor s j ( ) j j

12 Lecture 3: Determts & trx Iverso Observe the cofctor hs o meg for mors wth orders smller th ( ) uless the mor tself s beg treted s determt of order oe less th the determt from whch t ws derved. lso observe tht whe the mor s order ( ), the product of the cofctor d the complemet s equl to the product of the mor d the lgebrc complemet. We c ssemble the cofctors of squre mtrx of order ( x mtrx) t )to squre cofctor mtrx,.e., [ ] C O L So whe the elemets of mtrx re deoted wth cptl letters the mtrx represets mtrx of cofctors for other mtrx.

13 Lecture 3: Determts & trx Iverso I Clss Exmple

14 Lecture 3: Determts & trx Iverso Rules for Opertos wth Cofctors The determt for three by three mtrx c be computed v the expso of the mtrx by mors s follows: det [ ] Ths c be cofrmed usg the clssc expso techque for 3 x 3 determts. Ths expresso c be rewrtte s: det 3 [ ] or usg cofctor otto: det [ ]

15 Lecture 3: Determts & trx Iverso Rule #: determt my be evluted by summg the products of every elemet y row or colum by the respectve cofctor. Ths s kow s Lplce s expso. Rule #3: If ll cofctors row or colum re zero, the determt s zero d mtrx from whch they re derved s sgulr. Rule #4: If the elemets row or colum of determt re multpled by cofctors of the correspodg elemets of dfferet row or colum, the resultg sum of these products re zero.

16 Lecture 3: Determts & trx Iverso The djot trx The djot mtrx s the mtrx of trsposed cofctors. If we hve th order mtrx [ ] O [ ] O ths mtrx possess the followg mtrx of cofctors ths mtrx possess the followg mtrx of cofctors [ ] C O

17 Lecture 3: Determts & trx Iverso d the djot of the mtrx s defed s the trspose of the cofctor mtrx dj C [ ] T [ ] [ ] We wll show the ext secto tht fdg the verse of squre mtrx c be ccomplshed wth the followg expresso: O [ ] dj [ ] For 3x3mtrx 3 ths s kow s Crmer s rule.

18 Lecture 3: Determts & trx Iverso Drect Iverso ethod Suppose x mtrx s post multpled by ts djot d the resultg x mtrx s detfed s [P] [ P ] The elemets of mtrx [P] re dvded d d to two ctegores,.e., elemets tht t le log the dgol p p p

19 Lecture 3: Determts & trx Iverso d those tht do ot p p p p p The elemets of [P] tht le o the dgol re ll equl to the determt of [] (see Rule # d recogze the Lplce expso for ech dgol vlue). Note tht the odgol elemets wll be equl to zero sce they volve the expso of oe row of mtrx wth the cofctors of etrely dfferet row (see Rule #4)

20 Lecture 3: Determts & trx Iverso Thus p p p d 0 p p p p p

21 Lecture 3: Determts & trx Iverso whch leds to or P dj 0 0 [ ] [ ] [ ] [] I Whe ths expresso s compred to the t s evdet tht [] I [ ] dj [ ] [ I ] [ ] [ ] [ ] dj The verse exsts oly whe the determt of s ot zero,.e., whe s ot sgulr. [ ]

22 Lecture 3: Determts & trx Iverso I Clss Exmple

23 Lecture 3: Determts & trx Iverso The drect verso method preseted bove s referred to s brute force pproch. From computtol stdpot the method s effcet (but doble) whe the mtrx s qute lrge. There re more effcet methods for solvg lrge systems of ler equtos tht do ot volve fdg the verse. Geerlly these pproches re dvded to the followg two ctegores: Drect Elmto (ot verso) ethods (LDU decomposto, Guss elmto, Cholesky) Itertve ethods (Guss-Sedel, Jcob) We wll look t methods from both ctegores.

24 Lecture 3: Determts & trx Iverso Drect Elmto ethods Elmto methods fctor the mtrx [] to products of trgulr d dgol mtrces,.e., the mtrx c be expressed s [ ] [ L] [ D] [ U ] Where [L] d [U] re lower d upper trgulr mtrces wth ll dgol etres equl to. The mtrx [D] s dgol mtrx. Vrtos of ths decomposto re obted f the mtrc [D] s ssocted wth ether the mtrx [L] or the mtrx [U],.e., [ ] [ L ] [ U ] where [L] d [U] ths lst expresso re ot ecessrly the sme s the mtrces detfed the prevous expresso.

25 Lecture 3: Determts & trx Iverso I expded formt [ ] u u u u u l l l O O O Th t [L] d [U] th d t t Dff th u l l l O O O The mtrces [L] d [U] ths decomposto re ot uque. Dffereces the my vrtos of elmto methods re smply dffereces how these two mtrces re costructed. I solvg system of ler equtos we c ow wrte s [ ] { } { } b x s [ ] { } [ ][ ] { } { } b x U L x

26 Lecture 3: Determts & trx Iverso If we let the [ U ]{ x} { y} [ L ][ U ] { x} [ L] { y} { b} whch s eser computto. Solvg ths lst expresso for ech y c be ccomplshed wth the followg expresso b l j j y j y,, L, l Wth the vector {y} kow, the vector of ukows {x} re computed from x y u j j j l x, L, The process for solvg for the ukow vector quttes {x} c be completed wthout computg the verse of [].

27 Lecture 3: Determts & trx Iverso The Guss Drect Elmto ethod The Guss elmto method begs wth forwrd elmto process d fds ukows by bckwrd substtuto. Here the decomposto of the x mtrx [] [ ] [ L ] [ U ] s ccomplshed s follows. For ech vlue of (where rges from to ) compute d u u j l l j jj j, L, l j j uk l jk j, L, k If t y stge the elmto process the coeffcet of the frst equto,.e., jj (ofte referred to s the pvot pot) or l jj becomes zero the method fls.

28 Lecture 3: Determts & trx Iverso I Clss Exmple

29 Lecture 3: Determts & trx Iverso Cholesky s Decomposto Drect Elmto ethod I ler lgebr, the Cholesky decomposto or Cholesky trgle s decomposto of Hermt, postve-defte df mtrx to the product of lower trgulr mtrx d dts cojugte trspose. It ws dscovered by dré-lous Cholesky for rel mtrces (s opposed to mtrces wth elemets tht re complex). Whe t s pplcble, the Cholesky decomposto s roughly twce s effcet s the LU decomposto for solvg systems of ler equtos. The dstgushg feture of the Cholesky decomposto s tht the mtrx [], whch s symmetrcl d postve-defte, c be decomposed dto upper d lower trgulr mtrces tht re the trspose of ech other,.e., [ ] [ L ] [ L ] T Ths c be loosely thought of s the mtrx equvlet of tkg the squre root. Note tht [] s postve defte mtrx f for ll o-zero vectors {z} the er product { z} T [ ]{ z} > 0 s lwys greter th zero. Ths s gurteed f ll the egevlues of the mtrx re postve.

30 Lecture 3: Determts & trx Iverso Oce the decomposto hs bee performed, the soluto of the system of equtos proceeds by forwrd d bckwrds substtuto the sme mer s the Guss elmto method. Coveece recurrece reltoshps for the Cholesky decomposto re s follows for ech successve colum ( th dex) l k ( l ) These expressos c be modfed d where the expressos re free of eedg to tke squre root f the prevous mtrx expresso s fctored such tht where g [D] s dgol mtrx. k j l jk lk k l j l j,, [ ] [ L ] [ D ] [ L ] T

31 Lecture 3: Determts & trx Iverso Recurrece reltoshps for the Cholesky LDL decomposto. They re expressed s follows for ech successve colum ( th dex) d l l j k j d k d kk ( l ) k dkkl jk lk j, L, d Wth [] decomposed to trple mtrx product the soluto to the system of equtos proceeds wth { b} [ ] { x} T [ L][ D][ L] {} x [ L] { y}

32 Lecture 3: Determts & trx Iverso g b j l j y j y,, L, l but ow (verfy for homework) x y d k kj j j l l x, L,

33 Lecture 3: Determts & trx Iverso I Clss Exmple

34 Lecture 3: Determts & trx Iverso Guss-Sedel : Itertve ethod For lrge systems of equtos the explct d mplct elmto methods (bckwrds d forwrds) c be dequte from memory storge perspectve, executo tme d/or roudoff error ssues. Itertve soluto strteges re used whe these problems rse. Solutos foud usg tertve methods c be obted wth forekowledge of the error tolerce ssocted wth the method. The most commo tertve scheme s the Guss-Sedel method. Here tl estmte s mde for the soluto vector {x}. Subsequet to ths guess ech equto the system of ler equtos s used to solve for (updte) oe of the ukows from prevous clculto. l For ler system of three equtos three ukows the updtg procedure c be expressed by the followg expressos m m m x x x 3 b b b 3 m m ( ) ( x ) ( ) ( x ) m m ( )( x ) ( )( x ) 3 3 m m ( )( x ) ( )( x ) Note tht m d (m-) represet the curret d prevous terto respectvely.

35 Lecture 3: Determts & trx Iverso I geerl the Guss-Sedel terto formt c be expressed s m m m ( x ) b ( k )( xk ) ( k )( xk ) k k The orgl equtos must be of form where the dgol elemets of [] cot oly ozero vlues. For stble structure, t or compoet wth well-defed dboudry codtos ths wll lwys be possble. For coveece vector of zeroes s ofte used s tl guess t the soluto {x}. Itertos re repeted utl the soluto coverges to close eough to the true soluto. Sce we very seldom kow the true soluto pror (why do the problem f we kow the swer) tertos cotue utl the ext swer obted s oly frctolly dfferet th the swer from the prevous terto. themtclly ths s expressed s wth ε mx,..., m m ( x ) ( x ) m ( x ) x ( 00) (%) ε < ς

36 Lecture 3: Determts & trx Iverso where ς ( q) (%) d q s the desred umber of ccurte sgfct fgures. y techques hve bee developed order to mprove covergece of the Guss- Sedel method. The smplest d the most wdely used s successve over-relxto method (SOR). I ths pproch ewly computed vlue m x s modfed by tkg weghted verge of the curret d prevous vlues the followg mer: m m m ( x ) β ( x ) ( β )( x ) updted Here β s the relxto or weghtg fctor. For over-relxto methods β rges betwee d. The ssumpto s tht usg curret vlue of m x wll slowly l coverge to the exct soluto wheres the modfcto of m x defed bove wll speed covergece log. Whe β s betwee 0 d the pproch s termed successve uder-relxto method Whe β s betwee 0 d the pproch s termed successve uder relxto method (SUR). Choce of β vlue s problem depedet.

37 Lecture 3: Determts & trx Iverso I Clss Exmple

38 Lecture 3: Determts & trx Iverso The Jcob Itertve ethod The Jcob method clcultes ll ew vlues o the bss of the followg tertve expresso m m ( x ) b ( k )( x k ) k k The Guss-Sedel method typclly coverges to solutos fster th the Jcob method, the Jcob terto scheme hs cert dvtges whe soluto of system of equtos s coducted wth prllel processg (multple computers solvg the system t the sme tme).

39 Lecture 3: Determts & trx Iverso The Cojugte Grdet Itertve ethod Cojugte grdet methods re the most populr for solvg lrge systems of ler equtos of the form x b [ ]{ } { } Here {x}s ukow vector d d{b} s kow vector d d[] s kow, squre, symmetrc, postve-defte mtrx. Cojugte grdet methods re well suted for sprse mtrces. If [] s dese the best soluto strtegy s fctorg [] d usg bck substtuto. s oted erler, mtrx s postve defte f for every ozero vector {z} { z } T [ ]{ z } > 0 Ths my me lttle t ths pot becuse t s ot very tutve de. Oe hs hrd tme ssemblg metl pcture of postve-defte mtrx s opposed to mtrx tht s ot postve defte. mtrx tht s postve defte s defed s Hermt mtrx d there re umber of dvtgeous qultes ssocted wth ths ctegory of mtrces.

40 Lecture 3: Determts & trx Iverso If mtrx s postve defte Hermt mtrx the: ll egevlues of the mtrx re postve; ll the ledg prcpl mors of the mtrx re postve; d there exsts osgulr squre mtrx [B] such hthtt T [ ] [ B] [ B] Qudrtc forms re troduced ext d we wll see how the cocept of postve defte mtrces ffects qudrtc forms. The followg sclr fucto ( x ) x bx c f s sd to hve qudrtc form sclr lgebr. If we chge the formulto slghtly such tht f ( x) x bx 0

41 Lecture 3: Determts & trx Iverso Extedg ths equto formt to t lest two vrbles leds to equtos of the form f ( x, x ) ( x x x x ) ( b x b x ) d geerl f j, j ( x ) j x x j j x x j Ths lst expresso suggests tht we c rewrte t mtrx formt s f Where [] s kow xmtrx mtrx, the vector {b} of kow quttes s xvector s s the vector of ukows {x}. Severl observtos c be mde. Frst, the lst two equtos both sdes of the equl sg represet sclr quttes. s quck check o the mtrx expresso let {x} d {b} represet 3 x vectors, d [] s 3 x 3 squre mtrx. If [] s symmetrc d postve-defte the the qudrtc fucto f s mmzed by the soluto of x b j, j T T ({} x ) {}[ x ]{} x {}{} b x [ ]{ } { } k b k x k

42 Lecture 3: Determts & trx Iverso Let s cosder exmple. If we hve the followg system of ler equtos to solve 3 x x x 6x 8 [ ]{ x } { b } the the soluto of ths system, the qudrtc form of the system, d the mmzto of the qudrtc form s depcted the followg three grphs 3 [ ] 6 { x } x x 8 { b }

43 Lecture 3: Determts & trx Iverso ({ x} ) 3( x ) 4xx 6( x ) x 8x f Cotour plot depctg level surfces of the qudrtc fucto f({x}) Surfce plot of the qudrtc fucto f T T ({} x ) {}[ x ]{} x {}{} b x

44 Lecture 3: Determts & trx Iverso Tkg the prtl dervtve of sclr vlued fucto tht depeds o more th oe vrble results prtl dervtves wth respect to ech vrble. Returg to the system wth two ukow vrbles f ( x, x ) ( x x x x ) ( b x b x ) the [ f ( x, x )] x [ f ( x, x ) ] x Ths suggest the followg mtrx formt [ f ( x, x )] ] x x x x x b [ f ( x, x )] x x x b b b

45 Lecture 3: Determts & trx Iverso Now set the lst result equl to the zero vector,.e., 0 x b 0 x b Recll from clculus tht tkg dervtves d settg the resultg expresso(s) equl to zero yelds locl mmum or locl mxmum. We c geerl restte ths mtrx formt s or * { 0} [ ]{ x} { b} * [ ]{ x} { b} Thus the mmum/mxmum pot o the qudrtc surfce f T T ({ x} ) { x} [ ]{ x} { b} { x} occurs t {x} * whch s cocdetly the soluto of the system of ler equtos we wsh to solve.

46 Lecture 3: Determts & trx Iverso We ow seek wy to obt the soluto vector {x} * tertve fsho. Grphclly the tertve soluto would strt t some rbtrry strtg pot (could be the org, but the fgure below the tertve process strts t pot defed by ozero tl vector 0 {x}). Before estblshg tertve soluto techque we defe resdul vector {r} d error vector {e} t the th step.

47 Lecture 3: Determts & trx Iverso Before estblshg tertve soluto techque we defe resdul vector {r} d error vector {e} t the th step. The error vector s expressed s { e} { x} { x} d ths s vector tht dctes how fr we re from the soluto. The resdul vector s defed s { r} { b} [ ] {} x d ths resdul vector dctes how fr the mtrx product [] {x} s from correct vector {b}. Substtuto of the expresso for the error vector to the expresso for the resdul vector leds to the followg reltoshp betwee the two vectors ( ) { r} { b} [ ] { e} { x} {} b [ ] {} e [ ]{} x { b } [ ] { e } { b } {} r [ ] {} e

48 Lecture 3: Determts & trx Iverso ore mporttly, the resdul vector should be thought of terms of the followg expresso ( ) { r} [ ] { x} { b} [ f ( x, L, x ) ] x [ f ( x, Lx )] x {} x Thought must be gve to ths expresso. Ths represets the dervtve of the qudrtc sclr equto evluted t tthe compoets of fthe terto t vector t tthe th step. Thus the resdul vector wll lwys pot the drecto of steepest descet,.e., towrds the soluto pot. Ths s extremely mportt o-ler problems where tertve soluto schemes esly bog dow.

49 Lecture 3: Determts & trx Iverso Now let s puse d thk bout the soluto vector {x} geerl terms. vector wth elemets c be wrtte terms of ler combto of bss vectors. Whe s equl to 3 (.e., Crtes three spce) we c express vector s ler combto of the three ut vectors (,0,0), (0,,0) d (0,0,). But geerl {} { } s x α For the Crtes three spce exmple {} { } α 3 s x t the left we see dcted tht { } { } { } α α α s s s t the left we see dcted tht the α s re sclg fctors. Ths s mportt de to ltch oto. We wll ot tret them s α α α α vector. α α 3

50 Lecture 3: Determts & trx Iverso Next cosder the soluto expressed s the followg vector sum 0 {} x {} x α { s } The fuchs le represets α { s }.e., ler combto of the blue vectors. Ech blue vector correspods to specfc vlue of. The lst gree vector s the soluto d the frst red vector represets the tl guess. 0{} x

51 Lecture 3: Determts & trx Iverso For the frst tertve step the lst fgure 0 { x} { x} α { s } Ths expresso c be geerlzed to the followg tertve form { x} { x} α { s } The terto c be cotued utl soluto s obted tht s close eough. The ssues bol dow to fdg the α s,.e., the sclg fctors s well s the bss vectors, e.e., thess s. Let s see f we c use the cocept of the drecto of steepest descet to defe the bss vectors d the scle fctor t ech step.

52 Lecture 3: Determts & trx Iverso Retur to the exmple d use the strtg vector 0 {x} (-, -). Our frst step should be the drecto of steepest descet towrds the mmum. Tht drecto s the sold blck le the fgure below The ext ssue s how fr log the pth of steepest descet should we trvel? If we df defe the step s or geerl { x} { x} α { r} {} x { x} α { r} the how bg should the step be? le serch s procedure tht chooses the α to mmze f log drecto. lso ote tht the resdul vector s ow beg used s bss vector the expressos bove.

53 Lecture 3: Determts & trx Iverso The followg fgure llustrtes wht we re tryg to do. The process s restrcted to selectg pot log the surfce of the fucto f d the ple tht defes the drecto of steepest descet from the pot (-, -). 0 {} {r} s we trverse log the le of steepest descet we c plot the mgtude d the drecto of the grdet to the surfce t y pot o the le. We stop serchg log the le whe the grdet (dervtve) vector s orthogol to the le of steepest descet. The sclg fctor α s ow defed. ew serch drecto {r} The ew (red) serch drecto s updted drecto of deepest descet d wll be perpedculr to the old (blue) drecto.

54 Lecture 3: Determts & trx Iverso From the geometry of the prevous fgure we c see tht resdul vector 0 {r} d the updted resdul vector {r} re orthogol. Thus the umercl vlue for α c be obted from the followg dot product tke betwee these two vectors 0 T 0 { r} { r} { b } [ ] { x } ({} b [ ] 0 T {} x ) 0{} r [ ] {} 0 T {} r 0{} r [ ] {} T 0 ( ) { r } T 0 ({} b [ ] ( {} x α {} r ) {} r 0 T T 0 ( { b } [ ] { x } ) { r } α ( [ ] { r } ) { r } 0 0 T 0 α ( r ) {} r 0 0 T 0 α ( r ) {} r or 0 r T 0 0 { } { r } α 0 {} r T [ ] 0 {} r

55 Lecture 3: Determts & trx Iverso The tertos there most bsc formt re s follows { } { } [ ] {} x b r { } { } {} [ ] {} r r r r T T α { } { } { } r x x α

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Chapter 2 Solving Linear Equation

Chapter 2 Solving Linear Equation EE7 Computer odelg Techques Egeerg Chpter Solvg er Equto A ler equto represets the ler depedece of qutty φ o set of vrbles through d set of costt coeffcets α through α ; ts form s α α... α φ If we replce

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS57 Numercl Alyss Lecture 4 System of Ler Equtos Professor Ju Zhg Deprtmet of Computer Scece Uversty of Ketucky Legto, KY 456 6 Ferury, 6 System of Ler Equtos where j re coeffcets, re ukows, d re rght

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Computer Programming

Computer Programming Computer Progrmmg I progrmmg, t s ot eough to be vetve d geous. Oe lso eeds to be dscpled d cotrolled order ot be become etgled oe's ow completes. Hrl D. Mlls, Forwrd to Progrmmg Proverbs b Her F. Ledgrd

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Acoustooptic Cell Array (AOCA) System for DWDM Application in Optical Communication

Acoustooptic Cell Array (AOCA) System for DWDM Application in Optical Communication 596 Acoustooptc Cell Arry (AOCA) System for DWDM Applcto Optcl Commucto ml S. Rwt*, Mocef. Tyh, Sumth R. Ktkur d Vdy Nll Deprtmet of Electrcl Egeerg Uversty of Nevd, Reo, NV 89557, U.S.A. Tel: -775-78-57;

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information