High dimensional Ising model selection

Size: px
Start display at page:

Download "High dimensional Ising model selection"

Transcription

1 High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright)

2 Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse discrete graphical model (Banerjee et al. 08, Ravikumar, Wainwright, Lafferty 09.)

3 Binary Ising model p(x; θ,g)= 1 Z(θ) exp ( (s,t) E(G) θ st X s X t ) modeling the behavior of gases or magnets in statistical physics social network analysis, spatial statistics, computer vision X s { 1, +1}, s V (G)

4 General Graphical Models C X1 X2 X5 A X3 X4 B {X 1,X 3 } {X 4,X 5 } X 2 p(x) = 1 Z Ψ A(X A )Ψ B (X B )Ψ C (X C ) Set of distributions that factor according to a graph

5 Pairwise discrete graphical models p(x; θ,g)= 1 Z(θ) exp ( (s,t) E(G) θ st φ st (X s,x t ) ) φ st (x s,x t ) : arbitrary potential functions Ising x s x t Potts I(x s = x t ) Indicator I(x s,x t = j, k)

6 Samples from binary-valued pairwise MRFs Independence model θ st =0

7 Samples from binary-valued pairwise MRFs Medium coupling θ st 0.2

8 Samples from binary-valued pairwise MRFs Strong coupling θ st 0.8

9 Graphical model selection let G =(V, E) be an undirected graph on p = V vertices pairwise Markov random field: family of prob. distributions 1 P(x 1,..., x p ; θ) = Z(θ) exp { } θ st x s x t (s,t) E Problem of graph selection: given n independent and identically distributed (i.i.d.) samples of X =(X 1,..., X p ), identify the underlying graph structure

10 Ising Model Selection Given n observations x (1),..., x (n) drawn from above distribution, estimate graph G. Estimate: E(G) {(s, t) :θ st 0} Non-zero support set of θ

11 Sparse Model Estimation In many modern applications {images, signals, systems, networks} number of observations number of variables p n fmri images gene expression profiles social networks

12 Modern data settings Curse of dimensionality consistent procedures typically require p/n 0, sometimes even n>e p But if data has intrinsic structure with smaller dimension? Important to develop methods that leverage such structure Sparsity: many components or parameters are zero.

13 Sparsity l 0 quasi-norm l 1 norm l 2 norm [From Tropp, J. 2004] Sparsity: ell_0(params) is small Convex relaxation: ell_1(params) is small

14 Ising Model Estimation via MLE θ arg min θ (s,t) θ st [ 1 n n i=1 φ st (x (i) s,x (i) t ) ] log(z(θ)) + λ θ 1 Ê = {(s, t) : θ st 0} Optimization problem: ell_1 regularized maximum likelihood Intractable because of partition function Z(θ)

15 Global max. likelihood for discrete models? maximum likelihood for general graphical model in exponential family: θ = arg max θ st Ê[X s X t ] log Z(θ) θ R p }{{} (s,t) E empirical moments exact likelihood involves log partition function exp( 1 R log Z(θ) = n 2 xt Θx)dx exp ( (s,t) θ ) stx s x t x 1,+1 p for Gaussian RV for binary RV key consequence: likelihood computation is straightfoward for Gaussian MRFs (log-determinant) intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)

16 Neighborhood Regression Estimate conditional distribution at each node instead of the joint distribution. Sparsity pattern of conditional distribution parameters: neighborhood structure in original graph. p(x r X V \r ; θ,g)= exp( t N(r) 2 θ rtx r X t ) exp( t N(r) 2 θ rtx r X t )+1 Don t have to worry about partition function!

17 Graph selection via neighborhood regression Observation: Recovering graph G equivalent to recovering neighborhood set N(s) for all s V. Method: Given n i.i.d. samples {X (1),...,X (n) }, perform logistic regression of each node X s on X \s := {X s,t s} to estimate neighborhood structure b N(s). 1 For each node s V, perform l 1 regularized logistic regression of X s on the remaining variables X \s : bθ[s] := arg min θ R p 1 ( 1 n nx i=1 f(θ; X (i) \s ) {z } logistic likelihood + ρ n θ 1 {z} ) regularization 2 Estimate the local neighborhood b N(s) as the support (non-negative entries) of the regression vector b θ[s]. 3 Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

18 Empirical behavior: Unrescaled plots 1 Star graph; Linear fraction neighbors 0.8 Prob. success p = 64 p = p = Number of samples

19 Empirical behavior: Appropriately rescaled 1 Star graph; Linear fraction neighbors 0.8 Prob. success p = 64 p = p = Control parameter

20 High-dimensional analysis classical analysis: dimension p fixed, sample size n + high-dimensional analysis: allow both dimension p, sample size n, and maximum degree d to increase at arbitrary rates take n i.i.d. samples from MRF defined by G p,d study probability of success as a function of three parameters: Success(n, p, d) = P[Method recovers graph G p,d from n samples] theory is non-asymptotic: explicit probabilities for finite (n, p, d)

21 Sufficient conditions for consistent model selection graph sequences G p,d =(V, E) with p vertices, and maximum degree d. edge weights θ st θ min for all (s, t) E draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d) Theorem Under incoherence conditions, for a rescaled sample size θ LR (n, p, d) := n d 3 log p > θ crit and regularization parameter ρ n c 1 τ than 1 2 exp ( c 2 (τ 2) log p ) 1: log p n (RavWaiLaf06), then with probability greater (a) Uniqueness: For each node s V, the l 1 -regularized logistic convex program has a unique solution. (Non-trivial since p n = not strictly convex). (b) Correct exclusion: The estimated sign neighborhood N(s) correctly excludes all edges not in the true neighborhood.

22 Sufficient conditions for consistent model selection graph sequences G p,d =(V, E) with p vertices, and maximum degree d. edge weights θ st θ min for all (s, t) E draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d) Theorem Under incoherence conditions, for a rescaled sample size θ LR (n, p, d) := n d 3 log p > θ crit and regularization parameter ρ n c 1 τ than 1 2 exp ( c 2 (τ 2) log p ) 1: log p n (RavWaiLaf06), then with probability greater (a) Uniqueness: For each node s V, the l 1 -regularized logistic convex program has a unique solution. (Non-trivial since p n = not strictly convex). (b) Correct exclusion: The estimated sign neighborhood N(s) correctly excludes all edges not in the true neighborhood. (c) Correct inclusion: For θ min c 3 τ dρ n, the method selects the correct signed neighborhood. Consequence: For θ min = Ω(1/d), it suffices to have n = Ω(d 3 log p).

23 Results for 8-grid graphs 1 8!nearest neighbor grid (attractive) 0.8 Prob. success p = 64 p = p = Control parameter 3 4 Prob. of success P[Ĝ = G] versus rescaled sample size θ LR(n, p, d 3 )= n d 3 log p

24 Assumptions Define Fisher information matrix of logistic regression: Q := E θ [ 2 f(θ ; X) ]. A1. Dependency condition: Bounded eigenspectra: C min λ min (Q SS), and λ max (Q SS) C max. λ max (E θ [XX T ]) D max. A2. Incoherence There exists an ν (0, 1] such that Q S c S(Q SS) 1, 1 ν. where A, := max i j A ij. bounds on eigenvalues are fairly standard incoherence condition: partly necessary (prevention of degenerate models) partly an artifact of l1 -regularization incoherence condition is weaker than correlation decay

25 Assumptions I A1: Bounded eigenvalues

26 Assumptions II Q S c S (Q SS) 1 < 1 Energy (log likelihood) is suitably aligned (Tibshirani, 96)

27 Discrete graphical models P(X) exp( s V exp ( φ s (X s )+ φ st (X s,x t )) (s,t) E θ s;j I[X s = j]+ s V,j (s,t) E,j,k θ st;jk I[X s = j, X t = k] ) E {(s, t) : θ st 0} Each edge has multiple parameters

28 Discrete graphical models P(X r = j X V \r ; θ,g)= exp(θ r;j + t N(r) k θ rt;jk I[X t = k]) l exp(θ r;l + t N(r) k θ rt;lk I[X t = k]) Estimate conditional distributions at each node Optimization problem: Ell_1-Ell_q block-regularized logistic regression

29 Summary and questions Recovering structure for non-pairwise / higher order Ising graphical models Node-wise regression ~ pseudo-likelihood (product of local conditional probabilities) approximation of partition function Other tractable approximations? Recoverable using our method only for certain parameter settings Can fundamental limits on parameters be characterized?

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Introduction to graphical models: Lecture III

Introduction to graphical models: Lecture III Introduction to graphical models: Lecture III Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Some introductory lectures January 2013 1 / 25 Introduction

More information

High dimensional ising model selection using l 1 -regularized logistic regression

High dimensional ising model selection using l 1 -regularized logistic regression High dimensional ising model selection using l 1 -regularized logistic regression 1 Department of Statistics Pennsylvania State University 597 Presentation 2016 1/29 Outline Introduction 1 Introduction

More information

Learning discrete graphical models via generalized inverse covariance matrices

Learning discrete graphical models via generalized inverse covariance matrices Learning discrete graphical models via generalized inverse covariance matrices Duzhe Wang, Yiming Lv, Yongjoon Kim, Young Lee Department of Statistics University of Wisconsin-Madison {dwang282, lv23, ykim676,

More information

Sparse Graph Learning via Markov Random Fields

Sparse Graph Learning via Markov Random Fields Sparse Graph Learning via Markov Random Fields Xin Sui, Shao Tang Sep 23, 2016 Xin Sui, Shao Tang Sparse Graph Learning via Markov Random Fields Sep 23, 2016 1 / 36 Outline 1 Introduction to graph learning

More information

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013 School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Junming Yin Lecture 15, March 4, 2013 Reading: W & J Book Chapters 1 Roadmap Two

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

High-dimensional statistics: Some progress and challenges ahead

High-dimensional statistics: Some progress and challenges ahead High-dimensional statistics: Some progress and challenges ahead Martin Wainwright UC Berkeley Departments of Statistics, and EECS University College, London Master Class: Lecture Joint work with: Alekh

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

Learning and message-passing in graphical models

Learning and message-passing in graphical models Learning and message-passing in graphical models Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Graphical models and message-passing 1 / 41 graphical

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar Discrete Markov Random Fields the Inference story Pradeep Ravikumar Graphical Models, The History How to model stochastic processes of the world? I want to model the world, and I like graphs... 2 Mid to

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference IV: Variational Principle II Junming Yin Lecture 17, March 21, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Preconditioner Approximations for Probabilistic Graphical Models

Preconditioner Approximations for Probabilistic Graphical Models Preconditioner Approximations for Probabilistic Graphical Models Pradeep Ravikumar John Lafferty School of Computer Science Carnegie Mellon University Abstract We present a family of approximation techniques

More information

Graphical models and message-passing Part II: Marginals and likelihoods

Graphical models and message-passing Part II: Marginals and likelihoods Graphical models and message-passing Part II: Marginals and likelihoods Martin Wainwright UC Berkeley Departments of Statistics, and EECS Tutorial materials (slides, monograph, lecture notes) available

More information

Graphical models and message-passing Part I: Basics and MAP computation

Graphical models and message-passing Part I: Basics and MAP computation Graphical models and message-passing Part I: Basics and MAP computation Martin Wainwright UC Berkeley Departments of Statistics, and EECS Tutorial materials (slides, monograph, lecture notes) available

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Tightness of LP Relaxations for Almost Balanced Models

Tightness of LP Relaxations for Almost Balanced Models Tightness of LP Relaxations for Almost Balanced Models Adrian Weller University of Cambridge AISTATS May 10, 2016 Joint work with Mark Rowland and David Sontag For more information, see http://mlg.eng.cam.ac.uk/adrian/

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Nearest Neighbor based Coordinate Descent

Nearest Neighbor based Coordinate Descent Nearest Neighbor based Coordinate Descent Pradeep Ravikumar, UT Austin Joint with Inderjit Dhillon, Ambuj Tewari Simons Workshop on Information Theory, Learning and Big Data, 2015 Modern Big Data Across

More information

Composite Loss Functions and Multivariate Regression; Sparse PCA

Composite Loss Functions and Multivariate Regression; Sparse PCA Composite Loss Functions and Multivariate Regression; Sparse PCA G. Obozinski, B. Taskar, and M. I. Jordan (2009). Joint covariate selection and joint subspace selection for multiple classification problems.

More information

Improved Greedy Algorithms for Learning Graphical Models

Improved Greedy Algorithms for Learning Graphical Models Improved Greedy Algorithms for Learning Graphical Models Avik Ray, Sujay Sanghavi Member, IEEE and Sanjay Shakkottai Fellow, IEEE Abstract We propose new greedy algorithms for learning the structure of

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Exact MAP estimates by (hyper)tree agreement

Exact MAP estimates by (hyper)tree agreement Exact MAP estimates by (hyper)tree agreement Martin J. Wainwright, Department of EECS, UC Berkeley, Berkeley, CA 94720 martinw@eecs.berkeley.edu Tommi S. Jaakkola and Alan S. Willsky, Department of EECS,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference III: Variational Principle I Junming Yin Lecture 16, March 19, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Structure Learning of Mixed Graphical Models

Structure Learning of Mixed Graphical Models Jason D. Lee Institute of Computational and Mathematical Engineering Stanford University Trevor J. Hastie Department of Statistics Stanford University Abstract We consider the problem of learning the structure

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

Large-Deviations and Applications for Learning Tree-Structured Graphical Models

Large-Deviations and Applications for Learning Tree-Structured Graphical Models Large-Deviations and Applications for Learning Tree-Structured Graphical Models Vincent Tan Stochastic Systems Group, Lab of Information and Decision Systems, Massachusetts Institute of Technology Thesis

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

arxiv: v1 [stat.ap] 19 Oct 2015

arxiv: v1 [stat.ap] 19 Oct 2015 Submitted to the Annals of Applied Statistics STRUCTURE ESTIMATION FOR MIXED GRAPHICAL MODELS IN HIGH-DIMENSIONAL DATA arxiv:1510.05677v1 [stat.ap] 19 Oct 2015 By Jonas M. B. Haslbeck Utrecht University

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

3 Undirected Graphical Models

3 Undirected Graphical Models Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 3 Undirected Graphical Models In this lecture, we discuss undirected

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting

Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting Martin J. Wainwright Department of Statistics, and Department of Electrical Engineering and Computer

More information

Learning the Network Structure of Heterogenerous Data via Pairwise Exponential MRF

Learning the Network Structure of Heterogenerous Data via Pairwise Exponential MRF Learning the Network Structure of Heterogenerous Data via Pairwise Exponential MRF Jong Ho Kim, Youngsuk Park December 17, 2016 1 Introduction Markov random fields (MRFs) are a fundamental fool on data

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Kevin P. Murphy Last updated November 16, 2006 * Denotes advanced sections that may be omitted on a first reading. 1 Introduction We have seen that conditional independence

More information

Discriminative Fields for Modeling Spatial Dependencies in Natural Images

Discriminative Fields for Modeling Spatial Dependencies in Natural Images Discriminative Fields for Modeling Spatial Dependencies in Natural Images Sanjiv Kumar and Martial Hebert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 {skumar,hebert}@ri.cmu.edu

More information

Estimating Latent Variable Graphical Models with Moments and Likelihoods

Estimating Latent Variable Graphical Models with Moments and Likelihoods Estimating Latent Variable Graphical Models with Moments and Likelihoods Arun Tejasvi Chaganty Percy Liang Stanford University June 18, 2014 Chaganty, Liang (Stanford University) Moments and Likelihoods

More information

Which graphical models are difficult to learn?

Which graphical models are difficult to learn? Which graphical models are difficult to learn? Jose Bento Department of Electrical Engineering Stanford University jbento@stanford.edu Andrea Montanari Department of Electrical Engineering and Department

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

High Dimensional Inverse Covariate Matrix Estimation via Linear Programming

High Dimensional Inverse Covariate Matrix Estimation via Linear Programming High Dimensional Inverse Covariate Matrix Estimation via Linear Programming Ming Yuan October 24, 2011 Gaussian Graphical Model X = (X 1,..., X p ) indep. N(µ, Σ) Inverse covariance matrix Σ 1 = Ω = (ω

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Example: multivariate Gaussian Distribution

Example: multivariate Gaussian Distribution School of omputer Science Probabilistic Graphical Models Representation of undirected GM (continued) Eric Xing Lecture 3, September 16, 2009 Reading: KF-chap4 Eric Xing @ MU, 2005-2009 1 Example: multivariate

More information

Multivariate Bernoulli Distribution 1

Multivariate Bernoulli Distribution 1 DEPARTMENT OF STATISTICS University of Wisconsin 1300 University Ave. Madison, WI 53706 TECHNICAL REPORT NO. 1170 June 6, 2012 Multivariate Bernoulli Distribution 1 Bin Dai 2 Department of Statistics University

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

Sparse and Low Rank Recovery via Null Space Properties

Sparse and Low Rank Recovery via Null Space Properties Sparse and Low Rank Recovery via Null Space Properties Holger Rauhut Lehrstuhl C für Mathematik (Analysis), RWTH Aachen Convexity, probability and discrete structures, a geometric viewpoint Marne-la-Vallée,

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Conditional Independence and Factorization

Conditional Independence and Factorization Conditional Independence and Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Learning in Markov Random Fields An Empirical Study

Learning in Markov Random Fields An Empirical Study Learning in Markov Random Fields An Empirical Study Sridevi Parise, Max Welling University of California, Irvine sparise,welling@ics.uci.edu Abstract Learning the parameters of an undirected graphical

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Jason K. Johnson, Dmitry M. Malioutov and Alan S. Willsky Department of Electrical Engineering and Computer Science Massachusetts Institute

More information

Sparse signal recovery using sparse random projections

Sparse signal recovery using sparse random projections Sparse signal recovery using sparse random projections Wei Wang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-69 http://www.eecs.berkeley.edu/pubs/techrpts/2009/eecs-2009-69.html

More information

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning Professor Erik Sudderth Brown University Computer Science October 4, 2016 Some figures and materials courtesy

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Learning Graphs from Data: A Signal Representation Perspective

Learning Graphs from Data: A Signal Representation Perspective 1 Learning Graphs from Data: A Signal Representation Perspective Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard arxiv:1806.00848v1 [cs.lg] 3 Jun 2018 The construction of a meaningful

More information

Linear and Parallel Learning of Markov Random Fields

Linear and Parallel Learning of Markov Random Fields Yariv Dror Mizrahi 1 Misha Denil 2 Nando de Freitas 1,2,3 1 University of British Columbia, Canada 2 University of Oxford, United Kingdom 3 Canadian Institute for Advanced Research, CIFAR NCAP Program

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Information-Theoretic Limits of Selecting Binary Graphical Models in High Dimensions

Information-Theoretic Limits of Selecting Binary Graphical Models in High Dimensions IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 7, JULY 2012 4117 Information-Theoretic Limits of Selecting Binary Graphical Models in High Dimensions Narayana P. Santhanam, Member, IEEE, and Martin

More information