Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4

Size: px
Start display at page:

Download "Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4"

Transcription

1 Statistical Machine Learning II Spring 07, Learning Theory, Lecture 4 Jean Honorio jhonorio@purdue.edu Deterministic Optimization For brevity, everywhere differentiable functions will be called smooth. Similarly, not everywhere differentiable functions will be called nonsmooth. First, we define Lipschitz continuity. Definition 4. Lipschitz continuity. A function φ : R p R is called K- Lipschitz continuous with respect to the norm if and only if there is a constant K < + such that w, u R p φw φu K w u A smooth function φ : R p R is called K-Lipschitz continuous with respect to the norm if and only if there is a constant K < + such that w R p φw K Recall that the gradient of a smooth convex function φ : R p R at w fulfills: u R p φu φw φw, u w Definition 4. Subgradient. For a possibly nonsmooth convex function φ : R p R, we can define a subdifferential set as follows: φw = {g u R p φu φw g, u w } Each element g φw is called a subdifferential or subgradient of φ at w. Clearly, in the above definition, if φ : R p R is smooth, then φw has a single element for every w R p. If φw is nonsmooth there exist some w R p for which φw has more than one element. Consider for instance the nonsmooth function φw = w where w R. By Definition 4., we have: Thus, clearly φ0 = [, +]. φ0 = {g u R u g u}

2 Now, consider the following optimization problem where f : R p R is convex and K-Lipschitz with respect to the l -norm: ŵ = arg min fw w R p Let η t be the step size at iteration t. Specifically, let β be a constant factor and define: η t = β K t Consider the next subgradient descent algorithm for solving the above problem: Algorithm 4. Subgradient descent algorithm Input: Number of iterations T, factor β > 0, initial point w R p The setting of w can be uninformed, e.g., w = 0 for t =... T do w t+ w t η t g t where g t fw t end for Output: w T η tw t η t In what follows, we state our main result regarding convergence rates for Algorithm 4.. Theorem 4. Adapted from [, ]. Assume that f : R p R is convex and K-Lipschitz with respect to the l -norm in the problem of eq.. Recall that ŵ is the optimal solution of the problem of eq.. Assume that Algorithm 4. runs for a number of iterations T, factor β and initial point w, and that the algorithm outputs w T. We have: f w T fŵ K w ŵ 4β T βk + log T + 4 T Proof. Let a t w t ŵ. Note that since gt fw t, by Definition 4. we have: fŵ fw t g t, ŵ w t In fact, the above holds ŵ R p but in our problem we care about a unique ŵ. By the Lipschitz continuity of f, we know that t g t K. Therefore: a t+ = w t+ ŵ = w t ŵ η t g t = w t ŵ η t g t, w t ŵ + ηt g t a t + η t fŵ fw t + ηt K

3 Reorganizing the above, we obtain: η t fw t fŵ a t a t+ + ηt K Summing over t, we get: T η t fw t fŵ T a t a t+ + ηt K = a a T + + K w ŵ + β T ηt t w ŵ + β + log T where we used the fact that /t + log T. By Jensen s inequality and convexity of f, we have: T f w T fŵ = f η tw t η fŵ t η tfw t η fŵ t η t fw t fŵ = η t η t fw t fŵ = β K t w ŵ + β + log T β K T where we used the fact that T / t. This proves our claim. A more general setting? Now, consider the following optimization problem where f, r : R p R are convex and K-Lipschitz with respect to the l -norm: ŵ = arg min fw + rw w R p Consider the next subgradient descent algorithm for solving the above problem: 3

4 Algorithm 4. Subgradient descent algorithm Input: Number of iterations T, factor β > 0, initial point w R p The setting of w can be uninformed, e.g., w = 0 for t =... T do w t+/ w t η t g t where g t fw t w t+ arg min w R p w wt+/ + η t+rw end for Output: w T η tw t η t Before going into more general observations, lets first consider an example in order to show the usefulness of the above. Sparse optimization example. Let rw = λ w. In this case, the second assignment reduces to p independent assignments of the form: j =,..., p w t+ j arg min w j R w j w t+/ j + η t+ λ w j sgn w t+/ j max 0, w t+/ j η t+ λ While the Algorithm 4. might look like a drastic generalization of Algorithm 4., in fact it is not. Note that: w t+ = arg min w R p w wt+/ + η t+rw 3 Recall that g t fw t and let s t rw t. Note that w t+ is optimal if and only if 0 belongs to the subdifferential set of eq.3 evaluated at w t+. 0 w wt+/ t+rw w=w + η t+ 0 w w t+/ + η t+ rw 0 = w t+ w t+/ + η t+ s t+ w=wt+ = w t+ w t + η t g t + η t+ s t+ Reorganizing the above, we obtain: w t+ = w t η t g t η t+ s t+ which looks a lot like a regular subgradient descent step. 4

5 3 Stochastic Optimization In several optimization problems, it is possible to compute a stochastic version of the subgradient a lot faster than the true subgradient. Application : Stochastic Sample. For instance, in the problem of eq., consider functions that depend on n data samples z... z n Z and a collection of functions i f i : R p Z R. Let: fw = n f i w, z i i= Given two sets A, B and a scalar c, define A + B = {a + b a A and b B} and ca = {ca a A}. Clearly: fw = n i= f i w w, zi Assume that we pick a data sample j uniformly at random from {... n}, and use the following stochastic subgradient: g j w f j w w, zj 4 Let j be a uniformly distributed random variable with support on {... n}, we can see that: E j [g j w] = n P j [j = i] g i w i= i= = fw f i w w, zi Application : Stochastic Minibatch of Samples. Similarly, we can consider a minibatch instead of a single sample. Assume that we pick B data samples j... j B independently with replacement, uniformly at random from {... n}, and use the following stochastic subgradient: g j...j B w B B g jb w b= 5

6 where g jb w was defined in eq.4. Let j... j B be i.i.d. uniformly distributed random variables with support on {... n}, we can see that: E j...j B [g j...j B w] = B = B Bn = n B E jb [g jb w] b= B b= i= B P jb [j b = i] g i w b= i= i= = fw f i w w, zi f i w w, zi Application 3: Stochastic Coordinate. Consider a general function f : R p R. Let e k be the vector defined by e k i = [i = k]. The gradient of f is: f w w p fw =. f = k f e w w k k= w w p Assume that we pick a coordinate j uniformly at random from {... p}, and use the following stochastic subgradient: j f g j w p e w w j Let j be a uniformly distributed random variable with support on {... p}, we can see that: p E j [g j w] = P j [j = k] g k w p k= p k= = fw Clearly, we can also use the minibatch trick. k f p e w w k Back to the General Problem. Note that above, randomness does not come from uncertainty in the data but from generating a fast approximate version of the gradient. We will in general only assume that at every iteration t: E[g t ] fw t 6

7 Consider the next subgradient descent algorithm for solving eq.: Algorithm 4.3 Stochastic subgradient descent algorithm Input: Number of iterations T, factor β > 0, initial point w R p The setting of w can be uninformed, e.g., w = 0, The setting of w should be deterministic, i.e., non-stochastic. for t =... T do w t+ w t η t g t where E[g t ] fw t end for Output: w T η tw t η t In what follows, we state our main result regarding convergence rates for Algorithm 4.3. Theorem 4.. Assume that f : R p R is convex and K-Lipschitz with respect to the l -norm in the problem of eq.. Recall that ŵ is the optimal solution of the problem of eq.. Assume that Algorithm 4.3 runs for a number of iterations T, factor β and initial point w, and that the algorithm outputs w T. Assume that the stochastic subgradients [ ] g... g T are independent and that they fulfill the condition t E g t K. We have: E g...g T [f wt ] fŵ K w ŵ 4β T βk + log T + 4 T Fix δ 0,. With probability at least δ with respect to the choice of the stochastic subgradients g... g T, we have: f w T fŵ K w ŵ δ 4β βk + log T + T 4 T Proof. For proving the upper bound of E g...g T [f wt ] fŵ Z we follow a similar approach as in Theorem 4.. Define the random variable z = f w T fŵ. Note that z 0 and that E[z] = E[f w T ] fŵ. Recall that in the above we provided an upper bound Z for E[z]. That is, we showed that E[z] Z. By Markov s inequality Theorem., we have: which proves our second claim. P[z < Z/δ] P[z < E[z]/δ] = P[z E[z]/δ] δ 7

8 References [] J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 0Dec: , 009. [] J. Honorio. Convergence rates of biased stochastic optimization for learning sparse Ising models. International Conference on Machine Learning, pages 57 64, 0. 8

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research

OLSO. Online Learning and Stochastic Optimization. Yoram Singer August 10, Google Research OLSO Online Learning and Stochastic Optimization Yoram Singer August 10, 2016 Google Research References Introduction to Online Convex Optimization, Elad Hazan, Princeton University Online Learning and

More information

Stochastic Subgradient Method

Stochastic Subgradient Method Stochastic Subgradient Method Lingjie Weng, Yutian Chen Bren School of Information and Computer Science UC Irvine Subgradient Recall basic inequality for convex differentiable f : f y f x + f x T (y x)

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms

Lecture 23: Online convex optimization Online convex optimization: generalization of several algorithms EECS 598-005: heoretical Foundations of Machine Learning Fall 2015 Lecture 23: Online convex optimization Lecturer: Jacob Abernethy Scribes: Vikas Dhiman Disclaimer: hese notes have not been subjected

More information

Convergence rate of SGD

Convergence rate of SGD Convergence rate of SGD heorem: (see Nemirovski et al 09 from readings) Let f be a strongly convex stochastic function Assume gradient of f is Lipschitz continuous and bounded hen, for step sizes: he expected

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Accelerate Subgradient Methods

Accelerate Subgradient Methods Accelerate Subgradient Methods Tianbao Yang Department of Computer Science The University of Iowa Contributors: students Yi Xu, Yan Yan and colleague Qihang Lin Yang (CS@Uiowa) Accelerate Subgradient Methods

More information

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method ORIE 4741: Learning with Big Messy Data Proximal Gradient Method Professor Udell Operations Research and Information Engineering Cornell November 13, 2017 1 / 31 Announcements Be a TA for CS/ORIE 1380:

More information

Bregman Divergence and Mirror Descent

Bregman Divergence and Mirror Descent Bregman Divergence and Mirror Descent Bregman Divergence Motivation Generalize squared Euclidean distance to a class of distances that all share similar properties Lots of applications in machine learning,

More information

Deep Learning II: Momentum & Adaptive Step Size

Deep Learning II: Momentum & Adaptive Step Size Deep Learning II: Momentum & Adaptive Step Size CS 760: Machine Learning Spring 2018 Mark Craven and David Page www.biostat.wisc.edu/~craven/cs760 1 Goals for the Lecture You should understand the following

More information

On Nesterov s Random Coordinate Descent Algorithms - Continued

On Nesterov s Random Coordinate Descent Algorithms - Continued On Nesterov s Random Coordinate Descent Algorithms - Continued Zheng Xu University of Texas At Arlington February 20, 2015 1 Revisit Random Coordinate Descent The Random Coordinate Descent Upper and Lower

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Online Convex Optimization

Online Convex Optimization Advanced Course in Machine Learning Spring 2010 Online Convex Optimization Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz A convex repeated game is a two players game that is performed

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

Optimal Regularized Dual Averaging Methods for Stochastic Optimization Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña Tepper School of Business

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 17: Stochastic Optimization Part II: Realizable vs Agnostic Rates Part III: Nearest Neighbor Classification Stochastic

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Lecture: Adaptive Filtering

Lecture: Adaptive Filtering ECE 830 Spring 2013 Statistical Signal Processing instructors: K. Jamieson and R. Nowak Lecture: Adaptive Filtering Adaptive filters are commonly used for online filtering of signals. The goal is to estimate

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

Stochastic and Adversarial Online Learning without Hyperparameters

Stochastic and Adversarial Online Learning without Hyperparameters Stochastic and Adversarial Online Learning without Hyperparameters Ashok Cutkosky Department of Computer Science Stanford University ashokc@cs.stanford.edu Kwabena Boahen Department of Bioengineering Stanford

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Zaiyi Chen * Yi Xu * Enhong Chen Tianbao Yang Abstract Although the convergence rates of existing variants of ADAGRAD have a better dependence on the number of iterations under the strong convexity condition,

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

1 Review and Overview

1 Review and Overview DRAFT a final version will be posted shortly CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture # 16 Scribe: Chris Cundy, Ananya Kumar November 14, 2018 1 Review and Overview Last

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

arxiv: v4 [math.oc] 5 Jan 2016

arxiv: v4 [math.oc] 5 Jan 2016 Restarted SGD: Beating SGD without Smoothness and/or Strong Convexity arxiv:151.03107v4 [math.oc] 5 Jan 016 Tianbao Yang, Qihang Lin Department of Computer Science Department of Management Sciences The

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Proximal Methods for Optimization with Spasity-inducing Norms

Proximal Methods for Optimization with Spasity-inducing Norms Proximal Methods for Optimization with Spasity-inducing Norms Group Learning Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Proximal-Gradient Mark Schmidt University of British Columbia Winter 2018 Admin Auditting/registration forms: Pick up after class today. Assignment 1: 2 late days to hand in

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

Stochastic Composition Optimization

Stochastic Composition Optimization Stochastic Composition Optimization Algorithms and Sample Complexities Mengdi Wang Joint works with Ethan X. Fang, Han Liu, and Ji Liu ORFE@Princeton ICCOPT, Tokyo, August 8-11, 2016 1 / 24 Collaborators

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

On the fast convergence of random perturbations of the gradient flow.

On the fast convergence of random perturbations of the gradient flow. On the fast convergence of random perturbations of the gradient flow. Wenqing Hu. 1 (Joint work with Chris Junchi Li 2.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department of Operations

More information

Lecture 16: Perceptron and Exponential Weights Algorithm

Lecture 16: Perceptron and Exponential Weights Algorithm EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015 Lecture 16: Perceptron and Exponential Weights Algorithm Lecturer: Jacob Abernethy Scribes: Yue Wang, Editors: Weiqing Yu and Andrew

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Lecture 6: September 17

Lecture 6: September 17 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 6: September 17 Scribes: Scribes: Wenjun Wang, Satwik Kottur, Zhiding Yu Note: LaTeX template courtesy of UC Berkeley EECS

More information

Randomized Smoothing for Stochastic Optimization

Randomized Smoothing for Stochastic Optimization Randomized Smoothing for Stochastic Optimization John Duchi Peter Bartlett Martin Wainwright University of California, Berkeley NIPS Big Learn Workshop, December 2011 Duchi (UC Berkeley) Smoothing and

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models Convergence ates of Biased Stochastic Optimization for earning Sparse Ising Models Jean Honorio Stony Brook University, Stony Brook, NY 9, USA jhonorio@cs.sunysb.edu Abstract We study the convergence rate

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Adaptive Probabilities in Stochastic Optimization Algorithms

Adaptive Probabilities in Stochastic Optimization Algorithms Research Collection Master Thesis Adaptive Probabilities in Stochastic Optimization Algorithms Author(s): Zhong, Lei Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010421465 Rights

More information

Introduction to Machine Learning (67577) Lecture 7

Introduction to Machine Learning (67577) Lecture 7 Introduction to Machine Learning (67577) Lecture 7 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Solving Convex Problems using SGD and RLM Shai Shalev-Shwartz (Hebrew

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/59 Lecture 4a Feedforward neural network October 30, 2015 2/59 Table of contents 1 1. Objectives of Lecture

More information

Fast Rates for Exp-concave Empirial Risk Minimization

Fast Rates for Exp-concave Empirial Risk Minimization Fast Rates for Exp-concave Empirial Risk Minimization Tomer Koren, Kfir Y. Levy Presenter: Zhe Li September 16, 2016 High Level Idea Why could we use Regularized Empirical Risk Minimization? Learning theory

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

Stochastic Optimization: First order method

Stochastic Optimization: First order method Stochastic Optimization: First order method Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical and Computing Sciences JST, PRESTO

More information

4.1 Online Convex Optimization

4.1 Online Convex Optimization CS/CNS/EE 53: Advanced Topics in Machine Learning Topic: Online Convex Optimization and Online SVM Lecturer: Daniel Golovin Scribe: Xiaodi Hou Date: Jan 3, 4. Online Convex Optimization Definition 4..

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Proximal and First-Order Methods for Convex Optimization

Proximal and First-Order Methods for Convex Optimization Proximal and First-Order Methods for Convex Optimization John C Duchi Yoram Singer January, 03 Abstract We describe the proximal method for minimization of convex functions We review classical results,

More information

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Zaiyi Chen * Yi Xu * Enhong Chen Tianbao Yang Abstract Although the convergence rates of existing variants of ADAGRAD have a better dependence on the number of iterations under the strong convexity condition,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models Jean Honorio Stony Broo University, Stony Broo, NY 794, USA jhonorio@cs.sunysb.edu Abstract We study the convergence

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016 Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall 206 2 Nov 2 Dec 206 Let D be a convex subset of R n. A function f : D R is convex if it satisfies f(tx + ( t)y) tf(x)

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent

Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent Relative-Continuity for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent Haihao Lu August 3, 08 Abstract The usual approach to developing and analyzing first-order

More information

Composite Objective Mirror Descent

Composite Objective Mirror Descent Composite Objective Mirror Descent John C. Duchi 1,3 Shai Shalev-Shwartz 2 Yoram Singer 3 Ambuj Tewari 4 1 University of California, Berkeley 2 Hebrew University of Jerusalem, Israel 3 Google Research

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

The Perceptron Algorithm 1

The Perceptron Algorithm 1 CS 64: Machine Learning Spring 5 College of Computer and Information Science Northeastern University Lecture 5 March, 6 Instructor: Bilal Ahmed Scribe: Bilal Ahmed & Virgil Pavlu Introduction The Perceptron

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

arxiv: v1 [math.oc] 1 Jul 2016

arxiv: v1 [math.oc] 1 Jul 2016 Convergence Rate of Frank-Wolfe for Non-Convex Objectives Simon Lacoste-Julien INRIA - SIERRA team ENS, Paris June 8, 016 Abstract arxiv:1607.00345v1 [math.oc] 1 Jul 016 We give a simple proof that the

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

Notes on AdaGrad. Joseph Perla 2014

Notes on AdaGrad. Joseph Perla 2014 Notes on AdaGrad Joseph Perla 2014 1 Introduction Stochastic Gradient Descent (SGD) is a common online learning algorithm for optimizing convex (and often non-convex) functions in machine learning today.

More information

Least Mean Squares Regression

Least Mean Squares Regression Least Mean Squares Regression Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture Overview Linear classifiers What functions do linear classifiers express? Least Squares Method

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Accelerated Gradient Method for Multi-Task Sparse Learning Problem

Accelerated Gradient Method for Multi-Task Sparse Learning Problem Accelerated Gradient Method for Multi-Task Sparse Learning Problem Xi Chen eike Pan James T. Kwok Jaime G. Carbonell School of Computer Science, Carnegie Mellon University Pittsburgh, U.S.A {xichen, jgc}@cs.cmu.edu

More information

Information theoretic perspectives on learning algorithms

Information theoretic perspectives on learning algorithms Information theoretic perspectives on learning algorithms Varun Jog University of Wisconsin - Madison Departments of ECE and Mathematics Shannon Channel Hangout! May 8, 2018 Jointly with Adrian Tovar-Lopez

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.18

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.18 XVIII - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No18 Linearized alternating direction method with Gaussian back substitution for separable convex optimization

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Machine Learning (CSE 446): Neural Networks

Machine Learning (CSE 446): Neural Networks Machine Learning (CSE 446): Neural Networks Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 6, 2017 1 / 22 Admin No Wednesday office hours for Noah; no lecture Friday. 2 /

More information

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming Zhaosong Lu Lin Xiao March 9, 2015 (Revised: May 13, 2016; December 30, 2016) Abstract We propose

More information

Convergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity

Convergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity Convergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity Benjamin Grimmer Abstract We generalize the classic convergence rate theory for subgradient methods to

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

Stochastic Quasi-Newton Methods

Stochastic Quasi-Newton Methods Stochastic Quasi-Newton Methods Donald Goldfarb Department of IEOR Columbia University UCLA Distinguished Lecture Series May 17-19, 2016 1 / 35 Outline Stochastic Approximation Stochastic Gradient Descent

More information