Fast Rates for Exp-concave Empirial Risk Minimization

Size: px
Start display at page:

Download "Fast Rates for Exp-concave Empirial Risk Minimization"

Transcription

1 Fast Rates for Exp-concave Empirial Risk Minimization Tomer Koren, Kfir Y. Levy Presenter: Zhe Li September 16, 2016

2 High Level Idea Why could we use Regularized Empirical Risk Minimization? Learning theory perspective If we could use Regularized Empirical Risk Minimization, how to solve? Optimization algorithms

3 Problem setting Consider the problem of minimizing a stochastic objective F (w) = E[f (w, Z)] w W R d, a closed and convex domain W

4 Problem setting Consider the problem of minimizing a stochastic objective F (w) = E[f (w, Z)] w W R d, a closed and convex domain W random variable Z distributed according to an unknow distribution over a parameter space Z

5 Problem setting Consider the problem of minimizing a stochastic objective F (w) = E[f (w, Z)] w W R d, a closed and convex domain W random variable Z distributed according to an unknow distribution over a parameter space Z given n samples z 1,, z n of the random variable Z

6 Problem setting Consider the problem of minimizing a stochastic objective F (w) = E[f (w, Z)] w W R d, a closed and convex domain W random variable Z distributed according to an unknow distribution over a parameter space Z given n samples z 1,, z n of the random variable Z the goal: to produce an estimate ŵ W such that is small. E[F (ŵ)] min w F (w)

7 Assumptions f (, z) is α-exp-concave over the domain W for some α > 0. discuss later. f (, z) is β-smooth over W with repect to Euclidean norm. f (, z) is bounded over W.

8 Main results How to construct an estimate ŵ? Based on the sample z 1,, z n, construct where ˆF (w) = 1 n ŵ = argmin ˆF (w) w W n f (w, z i ) + 1 n R(w) i=1 R(w) : W R: a regularizer, 1-strongly-convex w.r.t Euclidean norm. Assump that R(w) R(w ) B for all w, w W for constant B > 0

9 Main results Theorem Let f : W Z R be a loss function defined over a closed and convex domain W R d, which α-exp-concave,β-smooth and C bounded w.r.t its first argument. Let R : W R be a 1-strongly-convex and B-bounded regularization function. Then for the regularized ERM estimate ŵ based on an i.i.d samples z 1,, z n, the expected excess loss is bounded as 24βd E[F (ŵ)] min F (w) w W αn + 100Cd n + B n = O(d/n) Don t care about whatever optimazition algorithms Care about the learning framework

10 Proof Technique Uniform Stability Average leave-one-out stablity Rademancher Complexity Local Rademancher Complexity

11 Average leave-one-out stablity Define the empirical leave-one-out risk for each i = 1,, n ˆF i (w) = 1 f (w, z j ) + 1 n n R(w) j i Let ŵ i = argmin ˆF i (w) w W The average leave-one-out stability of ŵ is defined as 1 n n (f (ŵ i, z i ) f (ŵ, z i )) i=1

12 Average leave-one-out stablity Theorem (Average leave-one-out stability). For any z 1,, z n Z and for ŵ 1,, ŵ n and ŵ as defined previously, we have 1 n n i=1 (f (ŵ i, z i ) f (ŵ, z i )) 24βd αn + 100Cd n

13 Proof of Main Theorem fix an arbitrary w W, we have F (w ) + 1 n R(w ) = E[ ˆF (w )] E[ ˆF (ŵ)] E[F (ŵ n )] F (w ) E[F (ŵ n ) ˆF (ŵ)] + 1 n R(w ) since the random variable ŵ 1,, ŵ n have same distribution: E[F (ŵ n )] = 1 n n E[F (ŵ i )] = 1 n i=1 n E[f (ŵ i, z i )] i=1

14 Proof of Main Theorem E[ ˆF (ŵ)] = 1 n n i=1 E[f (ŵ, z i)] + 1 n E[R(ŵ)] Combining the above inqualities, E[F (ŵ n )] F (w ) 1 n E[f (ŵ i, z i ) f (ŵ, z i )] + 1 n n E[R(w ) R(ŵ)] i=1 24βd αn + 100Cd n + B n = O(d n ) using the average leave-one-out stability theorem and the assumption.

15 Proof of Average Leave-one-out Stability Theorem

16 Local Strongly Convexity and Stability Definition (Local strong convexity). We say that a function g : K R is locally δ-strongly convex over a domain K R d at x with respect to a norm,if y K, g(y) g(x) + g(x)(y x) + δ y x 2 2

17 Local Strongly Convexity and Stability Lemma (Lemma 5). Let g 1, g 2 : K R be two convex functions defined over a closed and convex domain K R d, and let x 1 argming 1 (x) and x 2 argming 2 (x). Assume that g 2 is locally x K x K δ-strongly convex at x 1 with repect to a norm. Then, for h = g 2 g 1 we have Futhermore, if h is convex then x 2 x 1 2 δ h(x 1) 0 h(x 1 ) h(x 2 ) 2 δ ( h(x 1) ) 2 (1)

18 Average Stability Analysis Some Definitions Lemma f i ( ) = f (, z i ) for all i, h i = f i (ŵ) H = 1 δ I d + n i=1 h ih T i and H i = 1 δ I d + n j i h ih T i x M = x T Mx denotes the norm induced by a positive definite matrix M, dual norm x M = x T M 1 x (Lemma 6) For all i = 1,, n it holds that f i (ŵ i ) f i (ŵ) 6β δ ( h i H i ) 2

19 Average Stability Analysis Lemma (Lemma 8) Let I = {i [n] : h i H > 1 2 }. Then I 2d and we have ( h i H i ) 2 2d i I Lemma 6 + Lemma 8 = Stability Theorem Proof: i I (f i(ŵ i ) f i (ŵ)) C I 1 n 1 n i I (f i(ŵ i ) f i (ŵ)) 6β δn summing up. n 2Cd n i I ( h i H i ) 2 12βd δn

20 Continue to prove of Lemma 6 and Lemma 8?

21 Proof of Lemma 8 Lemma (Lemma 8) Let I = {i [n] : h i H > 1 2 }. Then I 2d and we have ( h i H i ) 2 2d Proof: i I a i = h T i H 1 h i for i = 1,, n, a i > 0. i a i d I 2d. ( h i H i ) 2 = hi T H 1 i hi T = a i + a2 i 1 a i 2a i i I ( h i H i ) 2 2 i I a i i a i = 2d

22 Proof of Lemma 6 Lemma (Lemma 6) For all i = 1,, n it holds that f i (ŵ i ) f i (ŵ) 6β δ ( h i H i ) 2 Proof: Using property of α-exp-concave of function. Smoothness Assumption. Lemma 5.

23 α-exp-concave function Definition The function f (w) is α-exp-concave over the domain W for some α > 0, if that the function exp( αf (w)) is concave over W. Lemma (Lemma 7) Let f : K R be an α-exp-concave function over a convex domain K R d such that f (x) f (y) C for any x, y K. Then for any δ 1 2 min{ 1 4C, α}, it holds that x, y K, f (y) f (x) + f (x) T (y x) + δ 2 ( f (x)t (y x)) 2

24 Proof of Lemma 6 Proof: Let g 1 = ˆF and g 2 = ˆF i, h i = 1 n f i Lemma7 = ˆF i is locally (δ/n) strongly convex at ŵ w.r.t Hi Lemma5 = ŵ i ŵ Hi 2n δ h(ŵ) H i = 2 δ h i H i f i is convex f i (ŵ i ) f i (ŵ) f i (ŵ i ) T (ŵ i ŵ) = f i (ŵ) T (ŵ i ŵ) + ( f i (ŵ i ) f i (ŵ)) T (ŵ i ŵ)

25 Proof of Lemma 6 f i (ŵ) T (ŵ i ŵ) = h T i (ŵ) T (ŵ i ŵ) h i H i ŵ i ŵ Hi 2 δ ( h i H i ) 2 ( f i (ŵ i ) f i (ŵ)) T (ŵ i ŵ) β ŵ i ŵ 2 2 ŵ i ŵ 2 2 δ ŵ i ŵ 2 H i H i (1/δ)I d. 4 δ ( h i H i ) 2, by using

26 Open Question Is smoothness assumption necessary? not necessary from online-batch convertion. limition of the analysis? Excess risk with high probability? Morkov s inequality?

27 Open Question Is smoothness assumption necessary? not necessary from online-batch convertion. limition of the analysis? Excess risk with high probability? Morkov s inequality?

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4 Statistical Machine Learning II Spring 07, Learning Theory, Lecture 4 Jean Honorio jhonorio@purdue.edu Deterministic Optimization For brevity, everywhere differentiable functions will be called smooth.

More information

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method ORIE 4741: Learning with Big Messy Data Proximal Gradient Method Professor Udell Operations Research and Information Engineering Cornell November 13, 2017 1 / 31 Announcements Be a TA for CS/ORIE 1380:

More information

Fast learning rates for plug-in classifiers under the margin condition

Fast learning rates for plug-in classifiers under the margin condition Fast learning rates for plug-in classifiers under the margin condition Jean-Yves Audibert 1 Alexandre B. Tsybakov 2 1 Certis ParisTech - Ecole des Ponts, France 2 LPMA Université Pierre et Marie Curie,

More information

Stochastic Optimization

Stochastic Optimization Introduction Related Work SGD Epoch-GD LM A DA NANJING UNIVERSITY Lijun Zhang Nanjing University, China May 26, 2017 Introduction Related Work SGD Epoch-GD Outline 1 Introduction 2 Related Work 3 Stochastic

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it Statistics 300B Winter 08 Final Exam Due 4 Hours after receiving it Directions: This test is open book and open internet, but must be done without consulting other students. Any consultation of other students

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Lower and Upper Bounds on the Generalization of Stochastic Exponentially Concave Optimization

Lower and Upper Bounds on the Generalization of Stochastic Exponentially Concave Optimization JMLR: Workshop and Conference Proceedings vol 40:1 16, 2015 28th Annual Conference on Learning Theory Lower and Upper Bounds on the Generalization of Stochastic Exponentially Concave Optimization Mehrdad

More information

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh Generalization Bounds in Machine Learning Presented by: Afshin Rostamizadeh Outline Introduction to generalization bounds. Examples: VC-bounds Covering Number bounds Rademacher bounds Stability bounds

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations JMLR: Workshop and Conference Proceedings vol 35:1 20, 2014 Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations H. Brendan McMahan MCMAHAN@GOOGLE.COM Google,

More information

Introduction to Machine Learning (67577) Lecture 7

Introduction to Machine Learning (67577) Lecture 7 Introduction to Machine Learning (67577) Lecture 7 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Solving Convex Problems using SGD and RLM Shai Shalev-Shwartz (Hebrew

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Learning with Decision-Dependent Uncertainty

Learning with Decision-Dependent Uncertainty Learning with Decision-Dependent Uncertainty Tito Homem-de-Mello Department of Mechanical and Industrial Engineering University of Illinois at Chicago NSF Workshop, University of Maryland, May 2010 Tito

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Sample Complexity of Learning Mahalanobis Distance Metrics. Nakul Verma Janelia, HHMI

Sample Complexity of Learning Mahalanobis Distance Metrics. Nakul Verma Janelia, HHMI Sample Complexity of Learning Mahalanobis Distance Metrics Nakul Verma Janelia, HHMI feature 2 Mahalanobis Metric Learning Comparing observations in feature space: x 1 [sq. Euclidean dist] x 2 (all features

More information

Lecture 16: FTRL and Online Mirror Descent

Lecture 16: FTRL and Online Mirror Descent Lecture 6: FTRL and Online Mirror Descent Akshay Krishnamurthy akshay@cs.umass.edu November, 07 Recap Last time we saw two online learning algorithms. First we saw the Weighted Majority algorithm, which

More information

Convex optimization COMS 4771

Convex optimization COMS 4771 Convex optimization COMS 4771 1. Recap: learning via optimization Soft-margin SVMs Soft-margin SVM optimization problem defined by training data: w R d λ 2 w 2 2 + 1 n n [ ] 1 y ix T i w. + 1 / 15 Soft-margin

More information

Lasso, Ridge, and Elastic Net

Lasso, Ridge, and Elastic Net Lasso, Ridge, and Elastic Net David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 14 A Very Simple Model Suppose we have one feature

More information

Full-information Online Learning

Full-information Online Learning Introduction Expert Advice OCO LM A DA NANJING UNIVERSITY Full-information Lijun Zhang Nanjing University, China June 2, 2017 Outline Introduction Expert Advice OCO 1 Introduction Definitions Regret 2

More information

Learnability, Stability, Regularization and Strong Convexity

Learnability, Stability, Regularization and Strong Convexity Learnability, Stability, Regularization and Strong Convexity Nati Srebro Shai Shalev-Shwartz HUJI Ohad Shamir Weizmann Karthik Sridharan Cornell Ambuj Tewari Michigan Toyota Technological Institute Chicago

More information

Bandit Convex Optimization

Bandit Convex Optimization March 7, 2017 Table of Contents 1 (BCO) 2 Projection Methods 3 Barrier Methods 4 Variance reduction 5 Other methods 6 Conclusion Learning scenario Compact convex action set K R d. For t = 1 to T : Predict

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

1 Delayed Renewal Processes: Exploiting Laplace Transforms

1 Delayed Renewal Processes: Exploiting Laplace Transforms IEOR 6711: Stochastic Models I Professor Whitt, Tuesday, October 22, 213 Renewal Theory: Proof of Blackwell s theorem 1 Delayed Renewal Processes: Exploiting Laplace Transforms The proof of Blackwell s

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Perceptron Mistake Bounds

Perceptron Mistake Bounds Perceptron Mistake Bounds Mehryar Mohri, and Afshin Rostamizadeh Google Research Courant Institute of Mathematical Sciences Abstract. We present a brief survey of existing mistake bounds and introduce

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Linear, Binary SVM Classifiers

Linear, Binary SVM Classifiers Linear, Binary SVM Classifiers COMPSCI 37D Machine Learning COMPSCI 37D Machine Learning Linear, Binary SVM Classifiers / 6 Outline What Linear, Binary SVM Classifiers Do 2 Margin I 3 Loss and Regularized

More information

Bregman Divergence and Mirror Descent

Bregman Divergence and Mirror Descent Bregman Divergence and Mirror Descent Bregman Divergence Motivation Generalize squared Euclidean distance to a class of distances that all share similar properties Lots of applications in machine learning,

More information

LEARNING IN CONCAVE GAMES

LEARNING IN CONCAVE GAMES LEARNING IN CONCAVE GAMES P. Mertikopoulos French National Center for Scientific Research (CNRS) Laboratoire d Informatique de Grenoble GSBE ETBC seminar Maastricht, October 22, 2015 Motivation and Preliminaries

More information

Supremum of simple stochastic processes

Supremum of simple stochastic processes Subspace embeddings Daniel Hsu COMS 4772 1 Supremum of simple stochastic processes 2 Recap: JL lemma JL lemma. For any ε (0, 1/2), point set S R d of cardinality 16 ln n S = n, and k N such that k, there

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-4-2007 Adaptive Online Gradient Descent Peter Bartlett Elad Hazan Alexander Rakhlin University of Pennsylvania Follow

More information

References for online kernel methods

References for online kernel methods References for online kernel methods W. Liu, J. Principe, S. Haykin Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley, 2010. W. Liu, P. Pokharel, J. Principe. The kernel least mean square

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Cubic regularization of Newton s method for convex problems with constraints

Cubic regularization of Newton s method for convex problems with constraints CORE DISCUSSION PAPER 006/39 Cubic regularization of Newton s method for convex problems with constraints Yu. Nesterov March 31, 006 Abstract In this paper we derive efficiency estimates of the regularized

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

(Part 1) High-dimensional statistics May / 41

(Part 1) High-dimensional statistics May / 41 Theory for the Lasso Recall the linear model Y i = p j=1 β j X (j) i + ɛ i, i = 1,..., n, or, in matrix notation, Y = Xβ + ɛ, To simplify, we assume that the design X is fixed, and that ɛ is N (0, σ 2

More information

Consistency of Nearest Neighbor Methods

Consistency of Nearest Neighbor Methods E0 370 Statistical Learning Theory Lecture 16 Oct 25, 2011 Consistency of Nearest Neighbor Methods Lecturer: Shivani Agarwal Scribe: Arun Rajkumar 1 Introduction In this lecture we return to the study

More information

Generalization bounds

Generalization bounds Advanced Course in Machine Learning pring 200 Generalization bounds Handouts are jointly prepared by hie Mannor and hai halev-hwartz he problem of characterizing learnability is the most basic question

More information

Lasso, Ridge, and Elastic Net

Lasso, Ridge, and Elastic Net Lasso, Ridge, and Elastic Net David Rosenberg New York University February 7, 2017 David Rosenberg (New York University) DS-GA 1003 February 7, 2017 1 / 29 Linearly Dependent Features Linearly Dependent

More information

Lecture Notes 15 Prediction Chapters 13, 22, 20.4.

Lecture Notes 15 Prediction Chapters 13, 22, 20.4. Lecture Notes 15 Prediction Chapters 13, 22, 20.4. 1 Introduction Prediction is covered in detail in 36-707, 36-701, 36-715, 10/36-702. Here, we will just give an introduction. We observe training data

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

A. Derivation of regularized ERM duality

A. Derivation of regularized ERM duality A. Derivation of regularized ERM dualit For completeness, in this section we derive the dual 5 to the problem of computing proximal operator for the ERM objective 3. We can rewrite the primal problem as

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity

Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity Noname manuscript No. (will be inserted by the editor) Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity Jason D. Lee Qihang Lin Tengyu Ma Tianbao

More information

Class 2 & 3 Overfitting & Regularization

Class 2 & 3 Overfitting & Regularization Class 2 & 3 Overfitting & Regularization Carlo Ciliberto Department of Computer Science, UCL October 18, 2017 Last Class The goal of Statistical Learning Theory is to find a good estimator f n : X Y, approximating

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. 1. Prediction with expert advice. 2. With perfect

More information

= (, ) V λ (1) λ λ ( + + ) P = [ ( ), (1)] ( ) ( ) = ( ) ( ) ( 0 ) ( 0 ) = ( 0 ) ( 0 ) 0 ( 0 ) ( ( 0 )) ( ( 0 )) = ( ( 0 )) ( ( 0 )) ( + ( 0 )) ( + ( 0 )) = ( + ( 0 )) ( ( 0 )) P V V V V V P V P V V V

More information

Importance Sampling for Minibatches

Importance Sampling for Minibatches Importance Sampling for Minibatches Dominik Csiba School of Mathematics University of Edinburgh 07.09.2016, Birmingham Dominik Csiba (University of Edinburgh) Importance Sampling for Minibatches 07.09.2016,

More information

Bandit Convex Optimization: T Regret in One Dimension

Bandit Convex Optimization: T Regret in One Dimension Bandit Convex Optimization: T Regret in One Dimension arxiv:1502.06398v1 [cs.lg 23 Feb 2015 Sébastien Bubeck Microsoft Research sebubeck@microsoft.com Tomer Koren Technion tomerk@technion.ac.il February

More information

Plug-in Approach to Active Learning

Plug-in Approach to Active Learning Plug-in Approach to Active Learning Stanislav Minsker Stanislav Minsker (Georgia Tech) Plug-in approach to active learning 1 / 18 Prediction framework Let (X, Y ) be a random couple in R d { 1, +1}. X

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Least squares under convex constraint

Least squares under convex constraint Stanford University Questions Let Z be an n-dimensional standard Gaussian random vector. Let µ be a point in R n and let Y = Z + µ. We are interested in estimating µ from the data vector Y, under the assumption

More information

Time Series Prediction & Online Learning

Time Series Prediction & Online Learning Time Series Prediction & Online Learning Joint work with Vitaly Kuznetsov (Google Research) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Motivation Time series prediction: stock values. earthquakes.

More information

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

Optimal Regularized Dual Averaging Methods for Stochastic Optimization Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña Tepper School of Business

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini and Mark Schmidt The University of British Columbia LCI Forum February 28 th, 2017 1 / 17 Linear Convergence of Gradient-Based

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 20 Subgradients Assumptions

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization A Sparsity Preserving Stochastic Gradient Method for Composite Optimization Qihang Lin Xi Chen Javier Peña April 3, 11 Abstract We propose new stochastic gradient algorithms for solving convex composite

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

On Some Estimates of the Remainder in Taylor s Formula

On Some Estimates of the Remainder in Taylor s Formula Journal of Mathematical Analysis and Applications 263, 246 263 (2) doi:.6/jmaa.2.7622, available online at http://www.idealibrary.com on On Some Estimates of the Remainder in Taylor s Formula G. A. Anastassiou

More information

1 Review and Overview

1 Review and Overview DRAFT a final version will be posted shortly CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture # 16 Scribe: Chris Cundy, Ananya Kumar November 14, 2018 1 Review and Overview Last

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

Accelerated Training of Max-Margin Markov Networks with Kernels

Accelerated Training of Max-Margin Markov Networks with Kernels Accelerated Training of Max-Margin Markov Networks with Kernels Xinhua Zhang University of Alberta Alberta Innovates Centre for Machine Learning (AICML) Joint work with Ankan Saha (Univ. of Chicago) and

More information

Multi-class classification via proximal mirror descent

Multi-class classification via proximal mirror descent Multi-class classification via proximal mirror descent Daria Reshetova Stanford EE department resh@stanford.edu Abstract We consider the problem of multi-class classification and a stochastic optimization

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini, Mark Schmidt University of British Columbia Linear of Convergence of Gradient-Based Methods Fitting most machine learning

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Computational Learning Theory - Hilary Term : Learning Real-valued Functions

Computational Learning Theory - Hilary Term : Learning Real-valued Functions Computational Learning Theory - Hilary Term 08 8 : Learning Real-valued Functions Lecturer: Varun Kanade So far our focus has been on learning boolean functions. Boolean functions are suitable for modelling

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

IFT Lecture 7 Elements of statistical learning theory

IFT Lecture 7 Elements of statistical learning theory IFT 6085 - Lecture 7 Elements of statistical learning theory This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s): Brady Neal and

More information

Computational and Statistical Learning theory

Computational and Statistical Learning theory Computational and Statistical Learning theory Problem set 2 Due: January 31st Email solutions to : karthik at ttic dot edu Notation : Input space : X Label space : Y = {±1} Sample : (x 1, y 1,..., (x n,

More information

Computing regularization paths for learning multiple kernels

Computing regularization paths for learning multiple kernels Computing regularization paths for learning multiple kernels Francis Bach Romain Thibaux Michael Jordan Computer Science, UC Berkeley December, 24 Code available at www.cs.berkeley.edu/~fbach Computing

More information

Accelerate Subgradient Methods

Accelerate Subgradient Methods Accelerate Subgradient Methods Tianbao Yang Department of Computer Science The University of Iowa Contributors: students Yi Xu, Yan Yan and colleague Qihang Lin Yang (CS@Uiowa) Accelerate Subgradient Methods

More information

Proximal and First-Order Methods for Convex Optimization

Proximal and First-Order Methods for Convex Optimization Proximal and First-Order Methods for Convex Optimization John C Duchi Yoram Singer January, 03 Abstract We describe the proximal method for minimization of convex functions We review classical results,

More information

δ xj β n = 1 n Theorem 1.1. The sequence {P n } satisfies a large deviation principle on M(X) with the rate function I(β) given by

δ xj β n = 1 n Theorem 1.1. The sequence {P n } satisfies a large deviation principle on M(X) with the rate function I(β) given by . Sanov s Theorem Here we consider a sequence of i.i.d. random variables with values in some complete separable metric space X with a common distribution α. Then the sample distribution β n = n maps X

More information

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence:

On Acceleration with Noise-Corrupted Gradients. + m k 1 (x). By the definition of Bregman divergence: A Omitted Proofs from Section 3 Proof of Lemma 3 Let m x) = a i On Acceleration with Noise-Corrupted Gradients fxi ), u x i D ψ u, x 0 ) denote the function under the minimum in the lower bound By Proposition

More information

Online Learning and Online Convex Optimization

Online Learning and Online Convex Optimization Online Learning and Online Convex Optimization Nicolò Cesa-Bianchi Università degli Studi di Milano N. Cesa-Bianchi (UNIMI) Online Learning 1 / 49 Summary 1 My beautiful regret 2 A supposedly fun game

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

Nonparametric Bayesian Methods

Nonparametric Bayesian Methods Nonparametric Bayesian Methods Debdeep Pati Florida State University October 2, 2014 Large spatial datasets (Problem of big n) Large observational and computer-generated datasets: Often have spatial and

More information

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444 Kernel Methods Jean-Philippe Vert Jean-Philippe.Vert@mines.org Last update: Jan 2015 Jean-Philippe Vert (Mines ParisTech) 1 / 444 What we know how to solve Jean-Philippe Vert (Mines ParisTech) 2 / 444

More information

Logistic Regression Trained with Different Loss Functions. Discussion

Logistic Regression Trained with Different Loss Functions. Discussion Logistic Regression Trained with Different Loss Functions Discussion CS640 Notations We restrict our discussions to the binary case. g(z) = g (z) = g(z) z h w (x) = g(wx) = + e z = g(z)( g(z)) + e wx =

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization Noname manuscript No. (will be inserted by the editor) Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization Saeed Ghadimi Guanghui Lan Hongchao Zhang the date of

More information

RegML 2018 Class 2 Tikhonov regularization and kernels

RegML 2018 Class 2 Tikhonov regularization and kernels RegML 2018 Class 2 Tikhonov regularization and kernels Lorenzo Rosasco UNIGE-MIT-IIT June 17, 2018 Learning problem Problem For H {f f : X Y }, solve min E(f), f H dρ(x, y)l(f(x), y) given S n = (x i,

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information