Fitting: Deformable contours

Size: px
Start display at page:

Download "Fitting: Deformable contours"

Transcription

1 //0 Recap so far: Groupg ad Fttg Fttg: Deformable cotours Moday, Feb Prof. UT-Aust Goal: move from array of pxel values (or flter outputs to a collecto of regos, objects, ad shapes. Groupg: Pxels vs. regos Fttg: dges vs. boudares mage clusters o testy By groupg pxels based o Gestaltspred attrbutes, we ca map the pxels to a set of regos. mage clusters o color ach rego s cosstet accordg to the features ad smlarty metrc we used to do the clusterg. dges useful sgal to dcate occludg boudares, shape. Here the raw edge output s ot so bad Images from D. Jacobs but qute ofte boudares of terest are fragmeted, ad we have extra clutter edge pots. Fttg: dges vs. boudares Gve a model of terest, we ca overcome some of the mssg ad osy edges usg fttg techques. Wth votg methods lke the Hough trasform, detected pots vote o possble model parameters. Votg wth Hough trasform Hough trasform for fttg les, crcles, arbtrary shapes y (x, y y 0 (x0, y 0 x 0 x mage space b m Hough space I all cases, we kew the explct model to ft. CS376 Lecture 0 K. Grauma

2 //0 Today Fttg a arbtrary shape wth actve deformable cotours Deformable cotours a.k.a. actve cotours, sakes Gve: tal cotour (model ear desred object [Sakes: Actve cotour models, Kass, Wtk, & Terzopoulos, ICCV987] Fgure credt: Yur Boykov Deformable cotours a.k.a. actve cotours, sakes Deformable cotours: tuto Gve: tal cotour (model ear desred object Goal: evolve the cotour to ft exact object boudary Ma dea: elastc bad s teratvely adjusted so as to be ear mage postos wth hgh gradets, ad satsfy shape prefereces or cotour prors [Sakes: Actve cotour models, Kass, Wtk, & Terzopoulos, ICCV987] Fgure credt: Yur Boykov Image from Deformable cotours vs. Hough Lke geeralzed Hough trasform, useful for shape fttg; but Why do we wat to ft deformable shapes? tal termedate fal Hough Rgd model shape Sgle votg pass ca detect multple staces Deformable cotours Pror o shape types, but shape teratvely adjusted (deforms Requres talzato earby Oe optmzato pass to ft a sgle cotour Some objects have smlar basc form but some varety the cotour shape. CS376 Lecture 0 K. Grauma

3 //0 Why do we wat to ft deformable shapes? No-rgd, deformable objects ca chage ther shape over tme, e.g. lps, hads Why do we wat to ft deformable shapes? No-rgd, deformable objects ca chage ther shape over tme, e.g. lps, hads Fgure from Kass et al. 987 Why do we wat to ft deformable shapes? No-rgd, deformable objects ca chage ther shape over tme. Aspects we eed to cosder Represetato of the cotours Defg the eergy fuctos xteral Iteral Mmzg the eergy fucto xtesos: Trackg Iteractve segmetato Fgure credt: Jule Jomer Represetato We ll cosder a dscrete represetato of the cotour, cosstg of a lst of d pot postos ( vertces. ( 0 x, y 0 ( x 9, y9 x, y, for ( 0,,, Fttg deformable cotours How should we adjust the curret cotour to form the ew cotour at each terato? Defe a cost fucto ( eergy fucto that says how good a caddate cofgurato s. Seek ext cofgurato that mmzes that cost fucto. At each terato, we ll have the opto to move each vertex to aother earby locato ( state. tal termedate fal CS376 Lecture 0 K. Grauma 3

4 //0 ergy fucto The eergy (cost of the curret sake s defed as: teral exteral xteral eergy: tuto Measure how well the curve matches the mage data Attract the curve toward dfferet mage features dges, les, texture gradet, etc. Iteral eergy: ecourage pror shape prefereces: e.g., smoothess, elastcty, partcular kow shape. xteral eergy ( mage eergy: ecourage cotour to ft o places where mage structures exst, e.g., edges. A good ft betwee the curret deformable cotour ad the target shape the mage wll yeld a low value for ths cost fucto. xteral mage eergy How do edges affect sap of rubber bad? Thk of exteral eergy from mage as gravtatoal pull towards areas of hgh cotrast Gradet mages G x ( x, y ad ( x, y G y xteral eergy at a pot o the curve s: xteral mage eergy exteral ( ( G ( G ( x y Magtude of gradet G x( I Gy( I - (Magtude of gradet G x( I Gy( I xteral eergy for the whole curve: exteral Gx( x, y Gy ( x, y 0 Iteral eergy: tuto Iteral eergy: tuto A pror, we wat to favor smooth shapes, cotours wth low curvature, cotours smlar to a kow shape, etc. to balace what s actually observed (.e., the gradet mage. What are the uderlyg boudares ths fragmeted edge mage? Ad ths oe? CS376 Lecture 0 K. Grauma 4

5 //0 Iteral eergy For a cotuous curve, a commo teral eergy term s the bedg eergy. At some pot v(s o the curve, ths s: d ds Teso, lastcty d d s teral ( ( s Stffess, Curvature For our dscrete represetato, d ds Iteral eergy ( x, y 0 d ds v ( ( Iteral Note these eergy are dervatves for the whole relatve curve: to posto---ot spatal mage gradets. teral 0 Why do these reflect teso ad curvature? xample: compare curvature curvature( v ( x x x ( y y y (,5 (, Pealzg elastcty Curret elastc eergy defto uses a dscrete estmate of the dervatve: elastc 0 ( x x ( y y 0 (, (3, (, (3, What s the possble problem wth ths defto? Pealzg elastcty Curret elastc eergy defto uses a dscrete estmate of the dervatve: elastc 0 Istead: ( x x ( y y d 0 where d s the average dstace betwee pars of pots updated at each terato. Dealg wth mssg data The prefereces for low-curvature, smoothess help deal wth mssg data: Illusory cotours foud! [Fgure from Kass et al. 987] CS376 Lecture 0 K. Grauma 5

6 //0 xtedg the teral eergy: capture shape pror If object s some smooth varato o a kow shape, we ca use a term that wll pealze devato from that shape: teral 0 ( ˆ where { ˆ } are the pots of the kow shape. Total eergy: fucto of the weghts exteral teral 0 d teral exteral Gx( x, y Gy ( x, y 0 Fg from Y. Boykov Total eergy: fucto of the weghts e.g., weght cotrols the pealty for teral elastcty large medum small Recap: deformable cotour A smple elastc sake s defed by: A set of pots, A teral eergy term (teso, bedg, plus optoal shape pror A exteral eergy term (gradet-based To use to segmet a object: Italze the vcty of the object Modfy the pots to mmze the eergy Fg from Y. Boykov ergy mmzato Several algorthms have bee proposed to ft deformable cotours. We ll look at two: Greedy search Dyamc programmg (for d sakes ergy mmzato: greedy For each pot, search wdow aroud t ad move to where eergy fucto s mmal Typcal wdow sze, e.g., 5 x 5 pxels Stop whe predefed umber of pots have ot chaged last terato, or after max umber of teratos Note: Covergece ot guarateed Need decet talzato CS376 Lecture 0 K. Grauma 6

7 //0 ergy mmzato Several algorthms have bee proposed to ft deformable cotours. We ll look at two: Greedy search Dyamc programmg (for d sakes v 4 v 3 ergy mmzato: dyamc programmg v 5 v v 6 v Wth ths form of the eergy fucto, we ca mmze usg dyamc programmg, wth the Vterb algorthm. Iterate utl optmal posto for each pot s the ceter of the box,.e., the sake s optmal the local search space costraed by boxes. Fg from Y. Boykov [Am, Weymouth, Ja, 990] ergy mmzato: dyamc programmg Possble because sake eergy ca be rewrtte as a sum of par-wse teracto potetals:,, (, ( Or sum of trple-teracto potetals. (,, (,, Sake eergy: par-wse teractos ( x,, x, y,, y Gx ( x, y Gy ( x, y Re-wrtg the above wth v x, y : (,, G( where ( x x ( y y (,, ( v, v ( v, v3... ( v, v (, G( Ma dea: determe optmal posto (state of predecessor, for each possble posto of self. The backtrack from best state for last vertex. states m vertces ( v, v ( v, v3... ( v, v ( v, v ( v, v3 3( v3, v4 v v v3 v4 ( 0 ( 0 (3 0 ( m 0 Complexty: Vterb algorthm ( ( (3 ( m O( m 3 ( 3 ( 3 (3 ( 4 ( m 3 m 4 ( 4 ( 4 (3 4 ( v 4, v v vs. brute force search? ( ( (3 (m xample adapted from Y. Boykov v 4 v 3 ergy mmzato: dyamc programmg v 5 v v 6 v Wth ths form of the eergy fucto, we ca mmze usg dyamc programmg, wth the Vterb algorthm. Iterate utl optmal posto for each pot s the ceter of the box,.e., the sake s optmal the local search space costraed by boxes. Fg from Y. Boykov [Am, Weymouth, Ja, 990] CS376 Lecture 0 K. Grauma 7

8 //0 ergy mmzato: dyamc programmg DP ca be appled to optmze a ope eded sake ( v, v ( v, v3... ( v, v For a closed sake, a loop s troduced to the eergy. ( v, v ( v, v3... ( v, v ( v, v 4 3 Work aroud: Fx v ad solve for rest. Fx a termedate ode at ts posto foud (, solve for rest. Aspects we eed to cosder Represetato of the cotours Defg the eergy fuctos xteral Iteral Mmzg the eergy fucto xtesos: Trackg Iteractve segmetato Trackg va deformable cotours Trackg va deformable cotours. Use fal cotour/model extracted at frame t as a tal soluto for frame t+. volve tal cotour to ft exact object boudary at frame t+ 3. Repeat, talzg wth most recet frame. Vsual Dyamcs Group, Dept. geerg Scece, Uversty of Oxford. Trackg Heart Vetrcles (multple frames Applcatos: Traffc motorg Huma-computer teracto Amato Survellace Computer asssted dagoss medcal magg 3D actve cotours Lmtatos May over-smooth the boudary Jörge Ahlberg Caot follow topologcal chages of objects CS376 Lecture 0 K. Grauma 8

9 //0 Lmtatos xteral eergy: sake does ot really see object boudares the mage uless t gets very close to t. Dstace trasform xteral mage ca stead be take from the dstace trasform of the edge mage. orgal -gradet dstace trasform mage gradets I are large oly drectly o the boudary Value at (x,y tells how far that posto s from the earest edge pot (or other bary mage structure edges >> help bwdst Deformable cotours: pros ad cos Pros: Useful to track ad ft o-rgd shapes Cotour remas coected Possble to fll subjectve cotours Flexblty how eergy fucto s defed, weghted. Cos: Must have decet talzato ear true boudary, may get stuck local mmum Parameters of eergy fucto must be set well based o pror formato Summary Deformable shapes ad actve cotours are useful for Segmetato: ft or sap to boudary mage Trackg: prevous frame s estmate serves to talze the ext Fttg actve cotours: Defe terms to ecourage certa shapes, smoothess, low curvature, push/pulls, Use weghts to cotrol relatve fluece of each compoet cost Ca optmze d sakes wth Vterb algorthm. Image structure (esp. gradets ca act as attracto force for teractve segmetato methods. CS376 Lecture 0 K. Grauma 9

Image Analysis. Active contour models (snakes)

Image Analysis. Active contour models (snakes) Image Analyss Actve contour models (snakes) Chrstophoros Nkou cnkou@cs.uo.gr Images taken from: Computer Vson course by Krsten Grauman, Unversty of Texas at Austn. Unversty of Ioannna - Department of Computer

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S.

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S. Bg Data Aaltcs Data Fttg ad Samplg Ackowledgemet: Notes b Profs. R. Szelsk, S. Setz, S. Lazebk, K. Chaturved, ad S. Shah Fttg: Cocepts ad recpes A bag of techques If we kow whch pots belog to the le, how

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR

Outline. Point Pattern Analysis Part I. Revisit IRP/CSR Pot Patter Aalyss Part I Outle Revst IRP/CSR, frst- ad secod order effects What s pot patter aalyss (PPA)? Desty-based pot patter measures Dstace-based pot patter measures Revst IRP/CSR Equal probablty:

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

LECTURE 24 LECTURE OUTLINE

LECTURE 24 LECTURE OUTLINE LECTURE 24 LECTURE OUTLINE Gradet proxmal mmzato method Noquadratc proxmal algorthms Etropy mmzato algorthm Expoetal augmeted Lagraga mehod Etropc descet algorthm **************************************

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Spreadsheet Problem Solving

Spreadsheet Problem Solving 1550 1500 CO Emmssos for the US, 1989 000 Class meetg #6 Moday, Sept 14 th CO Emssos (MMT Carbo) y = 1.3x 41090.17 1450 1400 1350 1300 1989 1990 1991 199 1993 1994 1995 1996 1997 1998 1999 000 Year GEEN

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

A Method for Damping Estimation Based On Least Square Fit

A Method for Damping Estimation Based On Least Square Fit Amerca Joural of Egeerg Research (AJER) 5 Amerca Joural of Egeerg Research (AJER) e-issn: 3-847 p-issn : 3-936 Volume-4, Issue-7, pp-5-9 www.ajer.org Research Paper Ope Access A Method for Dampg Estmato

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK

OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK 23rd World Gas Coferece, Amsterdam 2006 OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK Ma author Tg-zhe, Ne CHINA ABSTRACT I cha, there are lots of gas ppele etwork eeded to be desged ad costructed owadays.

More information

G S Power Flow Solution

G S Power Flow Solution G S Power Flow Soluto P Q I y y * 0 1, Y y Y 0 y Y Y 1, P Q ( k) ( k) * ( k 1) 1, Y Y PQ buses * 1 P Q Y ( k1) *( k) ( k) Q Im[ Y ] 1 P buses & Slack bus ( k 1) *( k) ( k) Y 1 P Re[ ] Slack bus 17 Calculato

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

Interactive Image Segmentation Based on Gaussian Mixture Models with Spatial Prior

Interactive Image Segmentation Based on Gaussian Mixture Models with Spatial Prior Iteratoal Joural of Multmeda ad Ubqutous Egeerg Vol.0, o.7 (205), pp.05-4 http://dx.do.org/0.4257/jmue.205.0.7. Iteractve Image Segmetato Based o Gaussa Mxture Models wth Spatal Pror Mo Ya ad Peg-Lag Shu

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares.

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares. Lecture 3 Optmzato Trt 04 P.H.S.Torr Least Squares Fttg Classc least squares Total least squares Robust Estmato Fttg: Cocepts ad recpes Least squares le fttg Data:,,,, Le equato: = m + b Fd m, b to mmze

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK

ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK ABOUT ONE APPROACH TO APPROXIMATION OF CONTINUOUS FUNCTION BY THREE-LAYERED NEURAL NETWORK Ram Rzayev Cyberetc Isttute of the Natoal Scece Academy of Azerbaa Republc ramrza@yahoo.com Aygu Alasgarova Khazar

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

Bayes Decision Theory - II

Bayes Decision Theory - II Bayes Decso Theory - II Ke Kreutz-Delgado (Nuo Vascocelos) ECE 175 Wter 2012 - UCSD Nearest Neghbor Classfer We are cosderg supervsed classfcato Nearest Neghbor (NN) Classfer A trag set D = {(x 1,y 1 ),,

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Nonparametric Techniques

Nonparametric Techniques Noparametrc Techques Noparametrc Techques w/o assumg ay partcular dstrbuto the uderlyg fucto may ot be kow e.g. mult-modal destes too may parameters Estmatg desty dstrbuto drectly Trasform to a lower-dmesoal

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher

More information

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10, PHYS Look over Chapter 9 Sectos - Eamples:, 4, 5, 6, 7, 8, 9, 0, PHYS Look over Chapter 7 Sectos -8 8, 0 eamples, 3, 4, 6, 7, 8,9, 0 ad How To ake Phscs Pa We wll ow look at a wa of calculatg where the

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

is the score of the 1 st student, x

is the score of the 1 st student, x 8 Chapter Collectg, Dsplayg, ad Aalyzg your Data. Descrptve Statstcs Sectos explaed how to choose a sample, how to collect ad orgaze data from the sample, ad how to dsplay your data. I ths secto, you wll

More information

RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS

RECURSIVE FORMULATION FOR MULTIBODY DYNAMICS ultbody Dyamcs Lecture Uversty of okyo, Japa Dec. 8, 25 RECURSIVE FORULAION FOR ULIODY DYNAICS Lecturer: Sug-Soo m Professor, Dept. of echatrocs Egeerg, orea Vstg Professor, Ceter for Collaboratve Research

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Pinaki Mitra Dept. of CSE IIT Guwahati

Pinaki Mitra Dept. of CSE IIT Guwahati Pak Mtra Dept. of CSE IIT Guwahat Hero s Problem HIGHWAY FACILITY LOCATION Faclty Hgh Way Farm A Farm B Illustrato of the Proof of Hero s Theorem p q s r r l d(p,r) + d(q,r) = d(p,q) p d(p,r ) + d(q,r

More information

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law Module : The equato of cotuty Lecture 5: Coservato of Mass for each speces & Fck s Law NPTEL, IIT Kharagpur, Prof. Sakat Chakraborty, Departmet of Chemcal Egeerg 2 Basc Deftos I Mass Trasfer, we usually

More information

Physics 114 Exam 2 Fall Name:

Physics 114 Exam 2 Fall Name: Physcs 114 Exam Fall 015 Name: For gradg purposes (do ot wrte here): Questo 1. 1... 3. 3. Problem Aswer each of the followg questos. Pots for each questo are dcated red. Uless otherwse dcated, the amout

More information

Source-Channel Prediction in Error Resilient Video Coding

Source-Channel Prediction in Error Resilient Video Coding Source-Chael Predcto Error Reslet Vdeo Codg Hua Yag ad Keeth Rose Sgal Compresso Laboratory ECE Departmet Uversty of Calfora, Sata Barbara Outle Itroducto Source-chael predcto Smulato results Coclusos

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information