Compressible Navier-Stokes (Euler) Solver based on Deal.II Library

Size: px
Start display at page:

Download "Compressible Navier-Stokes (Euler) Solver based on Deal.II Library"

Transcription

1 Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Lei Qiao Northwestern Polytechnical University Xi an, China Texas A&M University College Station, Texas Fifth deal.ii Users and Developers Workshop Texas A&M University, College Station, TX, USA August 5,

2 Outline Motivation and Goal Current work Conclusion and TODOs 2

3 Motivation This is what I typically need to compute 3

4 The pain point Mesh generation: Time consuming Boring Experience depending Solution: Mesh adaptation let solver tell what is good mesh 4

5 Deal.II the library Mesh adaptation with tree data structure FEM discretization Parallelization and excellent scalability 5

6 Goal A N-S solver based on deal.ii that: Starts from initial value on coarse mesh Converges to solution on a reasonable fine mesh adaptively With High-order capability 6

7 Current work Governing Equation Solving technique Solver implementation Solver verification 7

8 Governing Equation Compressible + r F(w) =S(w) Use primitive variables as working var. w =(u j,,p) T 8

9 Governing Equation The Flux F = F c F v F c (w) = u u + Ip u 1 A = u i u j + ij p u i 1 A (E + p)u (E + p)u i 9

10 Governing Equation The Flux F = F c F v F v (w) = 1 Re 1 ij 0 ij u i j 1 A With T = p R ij = j i )+ k 10

11 Governing Equation Weak form: On domain Z v l + 8v = v l 2 T w =(u j,,p) T, Find w 2 S that satisfy Z v l,i i = Z v l S l (w) 11

12 Governing Equation Weak form: Integrate by part to get boundary flux Z l (w) v l Z l F l,i (w) i v l F l,i (w)n i Z v l S l (w) 12

13 Governing Equation Treat boundary conditions and discontinuities on hanging node with this boundary flux Compute numerical flux with Roe scheme[1] 13

14 Governing Equation Boundary conditions: Far field: Riemann invariant Slip wall: Non-penetration u n =0 out = in p out = p in 14

15 Solving technique BDF-1 (Implicit Euler) time integration Newton linearization Direct linear solver from Trilinos* * Iterative solver doesn t stable enough, only used for scalability test For steady run, time step size is determined according to norm of Newton update[2] 15

16 Solver implementation Starts from step-33 of deal.ii tutorial Change working vars. from conservative ones to primitive ones viscous flux Riemann boundary condition Roe flux[2] to replace the too viscous Lax flux Parallelize: learned from step-40 Version control with Git CMake project Regression test suit 16

17 Solver verification Scalability Manufactured solution[3] Subsonic Supersonic Adaptive simulation over circle Flow over foil NACA

18 Scalability 22,288 cells 91,312 DoFs GMRES solver from Trilinos with DD+ILUT precond. 18

19 Solver verification Manufactured solution[3] 8 u(x, y)= u 0 +u x sin(a ux x)+u y cos(a uy y)+u xy cos(a uxy xy) >< v(x, y)= v w = J(x, y) = 0 +v x cos(a vx x)+v y sin(a vy y) +v xy cos(a vxy xy) (x, y)= 0 + x sin(a x x)+ y cos(a y y)+ xy cos(a xy xy) >: p(x, y)= p 0 +p x cos(a px x)+p y sin(a py y) +p xy sin(a pxy xy) J h (x, + r F(w) =S(w) S(x, + r F(J) 19

20 Solver verification Manufactured solution[3] 8 u(x, y)= u 0 +u x sin(a ux x)+u y cos(a uy y)+u xy cos(a uxy xy) >< v(x, y)= v w = J(x, y) = 0 +v x cos(a vx x)+v y sin(a vy y) +v xy cos(a vxy xy) (x, y)= 0 + x sin(a x x)+ y cos(a y y)+ xy cos(a xy xy) >: p(x, y)= p 0 +p x cos(a px x)+p y sin(a py y) +p xy sin(a pxy xy) Choosing different Constants to get subsonic or supersonic case 20

21 Solver verification Manufactured solution Subsonic convergence order 21

22 Solver verification Manufactured solution Supersonic convergence order 22

23 Solver verification Adaptive simulation over circle C1 mapping on wall boundary Subsonic: Mach = 0.1 Almost inviscid: Cv=1e-6 just for stabilization Converged Cd= which ideal value is zero 23

24 Solver verification Adaptive simulation over cylinder Converged density contour 24

25 Solver verification Adaptive simulation over cylinder Converge history of density contour and mesh adaptation 25

26 Solver verification Flow over NACA2412 foil Subsonic: Mach=0.3 Converged pressure contour 26

27 Solver verification Flow over NACA2412 foil Subsonic: Mach=0.3 Oscillation may be caused by geometry non-smoothness 27

28 Solver verification Flow over NACA2412 foil Subsonic: Mach=0.3 Almost inviscid: Cv=3e-6 just for stabilization Converged Cd= which ideal value is zero Converged Cl=0.2576, Cm= As a reference, xfoil[4] gives Cd= Cl= Cm=

29 Conclusion A prototype NS solver based on deal.ii is constructed The solver could run in parallel but the solver doesn t scale perfectly High order convergence is confirmed by MMS Solving process could start from very coarsen mesh and go on with mesh adaptation The solver can give out reasonable aerodynamics data 29

30 ToDos Stable and efficient preconditioner for iterative solver (Now my hope is on MDF ordering of ILU) Describe wall boundary with NURBS geometry Non-slip boundary condition Anisotropic adaptation for boundary layer 30

31 Reference 1. J. Blazek. Computational Fluid Dynamics: Principles and Applications (Second Edition). Elsevier Science, Oxford, second edition edition, ISBN J. Gatsis. Preconditioning Techniques for a Newton Krylov Algorithm for the Compressible Navier Stokes Equations. PhD thesis, University of Toronto, C. J. Roy, C. C. Nelson, T. M. Smith, and C. C. Ober. Verification of Euler/Navier- stokes codes using the method of manufactured solutions. International Journal for Numerical Methods in Fluids, 44(6): , M. Drela, H. Youngren. xfoil/ 31

32 Thanks 32

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Khosro Shahbazi,a Dimitri J. Mavriplis b Nicholas K. Burgess b a Division of Applied

More information

C1.2 Ringleb flow. 2nd International Workshop on High-Order CFD Methods. D. C. Del Rey Ferna ndez1, P.D. Boom1, and D. W. Zingg1, and J. E.

C1.2 Ringleb flow. 2nd International Workshop on High-Order CFD Methods. D. C. Del Rey Ferna ndez1, P.D. Boom1, and D. W. Zingg1, and J. E. C. Ringleb flow nd International Workshop on High-Order CFD Methods D. C. Del Rey Ferna ndez, P.D. Boom, and D. W. Zingg, and J. E. Hicken University of Toronto Institute of Aerospace Studies, Toronto,

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

High Order Discontinuous Galerkin Methods for Aerodynamics

High Order Discontinuous Galerkin Methods for Aerodynamics High Order Discontinuous Galerkin Methods for Aerodynamics Per-Olof Persson Massachusetts Institute of Technology Collaborators: J. Peraire, J. Bonet, N. C. Nguyen, A. Mohnot Symposium on Recent Developments

More information

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization by Laslo Tibor Diosady B.A.Sc., University of Toronto (2005) Submitted to

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544 MULTIGRID CALCULATIONS FOB. CASCADES Antony Jameson and Feng Liu Princeton University, Princeton, NJ 0544 1. Introduction Development of numerical methods for internal flows such as the flow in gas turbines

More information

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme Edwin van der Weide and Magnus Svärd I. Background information for the SBP-SAT scheme As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical solution. Proving

More information

Active Flux for Advection Diffusion

Active Flux for Advection Diffusion Active Flux for Advection Diffusion A Miracle in CFD Hiroaki Nishikawa National Institute of Aerospace! NIA CFD Seminar! August 25, 2015 In collaboration with the University of Michigan Supported by NASA

More information

Nonlinear iterative solvers for unsteady Navier-Stokes equations

Nonlinear iterative solvers for unsteady Navier-Stokes equations Proceedings of Symposia in Applied Mathematics Nonlinear iterative solvers for unsteady Navier-Stokes equations Philipp Birken and Antony Jameson This paper is dedicated to Gene Golub. Abstract. The application

More information

Code Verification of Multiphase Flow with MFIX

Code Verification of Multiphase Flow with MFIX Code Verification of Multiphase Flow with MFIX A N I R U D D H A C H O U D H A R Y ( A N I R U D D @ V T. E D U ), C H R I S T O P H E R J. ROY ( C J R O Y @ V T. E D U ), ( V I R G I N I A T E C H ) 23

More information

The Generalized Boundary Layer Equations

The Generalized Boundary Layer Equations The Generalized Boundary Layer Equations Gareth H. McKinley (MIT-HML) November 004 We have seen that in general high Reynolds number flow past a slender body such as an airfoil can be considered as an

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 43 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Treatment of Boundary Conditions These slides are partially based on the recommended textbook: Culbert

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Oren Peles and Eli Turkel Department of Applied Mathematics, Tel-Aviv University In memoriam of

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

NEWTON-GMRES PRECONDITIONING FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE NAVIER-STOKES EQUATIONS

NEWTON-GMRES PRECONDITIONING FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE NAVIER-STOKES EQUATIONS NEWTON-GMRES PRECONDITIONING FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE NAVIER-STOKES EQUATIONS P.-O. PERSSON AND J. PERAIRE Abstract. We study preconditioners for the iterative solution of the

More information

The hybridized DG methods for WS1, WS2, and CS2 test cases

The hybridized DG methods for WS1, WS2, and CS2 test cases The hybridized DG methods for WS1, WS2, and CS2 test cases P. Fernandez, N.C. Nguyen and J. Peraire Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics, MIT 5th High-Order

More information

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing Lakhdar Remaki Outline What we doing in CFD? CFD in Industry Shock-filter model for mesh adaptation

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Deforming Composite Grids for Fluid Structure Interactions

Deforming Composite Grids for Fluid Structure Interactions Deforming Composite Grids for Fluid Structure Interactions Jeff Banks 1, Bill Henshaw 1, Don Schwendeman 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

More information

Finite volume method on unstructured grids

Finite volume method on unstructured grids Finite volume method on unstructured grids Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics

Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics J.J.W. van der Vegt and H. van der Ven Nationaal Lucht- en Ruimtevaartlaboratorium National

More information

Efficient BDF time discretization of the Navier Stokes equations with VMS LES modeling in a High Performance Computing framework

Efficient BDF time discretization of the Navier Stokes equations with VMS LES modeling in a High Performance Computing framework Introduction VS LES/BDF Implementation Results Conclusions Swiss Numerical Analysis Day 2015, Geneva, Switzerland, 17 April 2015. Efficient BDF time discretization of the Navier Stokes equations with VS

More information

Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm. Sammy Isono

Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm. Sammy Isono Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm by Sammy Isono A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

FOR many computational fluid dynamics (CFD) applications, engineers require information about multiple solution

FOR many computational fluid dynamics (CFD) applications, engineers require information about multiple solution AIAA Aviation 13-17 June 2016, Washington, D.C. 46th AIAA Fluid Dynamics Conference AIAA 2016-3809 Improved Functional-Based Error Estimation and Adaptation without Adjoints William C. Tyson *, Katarzyna

More information

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD German Aerospace Center Seminar Krzysztof Fidkowski Department of Aerospace Engineering The University of Michigan May 4, 2009 K. Fidkowski

More information

FINITE ELEMENT SUPG PARAMETERS COMPUTED FROM LOCAL DOF-MATRICES FOR COMPRESSIBLE FLOWS

FINITE ELEMENT SUPG PARAMETERS COMPUTED FROM LOCAL DOF-MATRICES FOR COMPRESSIBLE FLOWS FINITE ELEMENT SUPG PARAMETERS COMPUTED FROM LOCAL DOF-MATRICES FOR COMPRESSIBLE FLOWS Lucia Catabriga Department of Computer Science, Federal University of Espírito Santo (UFES) Av. Fernando Ferrari,

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

Length Learning Objectives Learning Objectives Assessment

Length Learning Objectives Learning Objectives Assessment Universidade Federal Fluminense PGMEC Course: Advanced Computational Fluid Dynamics Coordinator: Vassilis Theofilis Academic Year: 2018, 2 nd Semester Length: 60hrs (48hrs classroom and 12hrs tutorials)

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement HONOM 2011 in Trento DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology DLR Braunschweig 11. April 2011 1 / 35 Research

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement 16th International Conference on Finite Elements in Flow Problems DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology

More information

Discretization Error Reduction through r Adaptation in CFD

Discretization Error Reduction through r Adaptation in CFD Discretization Error Reduction through r Adaptation in CFD ASME Verification and Validation Symposium May 13 15, 2015 William C. Tyson, Christopher J. Roy, Joseph M. Derlaga, and Charles W. Jackson Aerospace

More information

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering - University

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

arxiv: v1 [math.na] 25 Jan 2017

arxiv: v1 [math.na] 25 Jan 2017 Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations arxiv:1701.07181v1 [math.na] 25 Jan 2017 Will Pazner 1 and Per-Olof Persson 2 1 Division of Applied Mathematics,

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations 2013 SIAM Conference On Computational Science and Engineering Boston, 27 th February 2013 PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations U. Villa,

More information

Finite Element Solver for Flux-Source Equations

Finite Element Solver for Flux-Source Equations Finite Element Solver for Flux-Source Equations Weston B. Lowrie A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics Astronautics University

More information

Force analysis of underwater object with supercavitation evolution

Force analysis of underwater object with supercavitation evolution Indian Journal of Geo-Marine Sciences Vol. 42(8), December 2013, pp. 957-963 Force analysis of underwater object with supercavitation evolution B C Khoo 1,2,3* & J G Zheng 1,3 1 Department of Mechanical

More information

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Chao Yang 1 and Xiao-Chuan Cai 2 1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China, yang@mail.rdcps.ac.cn

More information

Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop

Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop .. Tectonic evolution at mid-ocean ridges: geodynamics and numerical modeling. Second HPC-GA Workshop Marco Cuffaro, Edie Miglio, Mattia Penati, Marco Viganò Politecnico di Milano - MOX, Dipartimento di

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

Efficient and Flexible Solution Strategies for Large- Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems

Efficient and Flexible Solution Strategies for Large- Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Spring 1-1-2016 Efficient and Flexible Solution Strategies for Large-

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu and Roy H. Stogner roystgnr@cfdlab.ae.utexas.edu Univ. of Texas at Austin September 9, 2008 1 Introduction 2 Weighted Residuals

More information

Jacobian-Free Newton Krylov Discontinuous Galerkin Method and Physics-Based Preconditioning for Nuclear Reactor Simulations

Jacobian-Free Newton Krylov Discontinuous Galerkin Method and Physics-Based Preconditioning for Nuclear Reactor Simulations INL/CON-08-14243 PREPRINT Jacobian-Free Newton Krylov Discontinuous Galerkin Method and Physics-Based Preconditioning for Nuclear Reactor Simulations International Conference on Reactor Physics, Nuclear

More information

Entropy stable schemes for compressible flows on unstructured meshes

Entropy stable schemes for compressible flows on unstructured meshes Entropy stable schemes for compressible flows on unstructured meshes Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore deep@math.tifrbng.res.in http://math.tifrbng.res.in/

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws Kilian Cooley 1 Prof. James Baeder 2 1 Department of Mathematics, University of Maryland - College Park 2 Department of Aerospace

More information

A Finite-Element based Navier-Stokes Solver for LES

A Finite-Element based Navier-Stokes Solver for LES A Finite-Element based Navier-Stokes Solver for LES W. Wienken a, J. Stiller b and U. Fladrich c. a Technische Universität Dresden, Institute of Fluid Mechanics (ISM) b Technische Universität Dresden,

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Matthew McMullen and Antony Jameson and Juan J. Alonso Dept. of Aeronautics & Astronautics Stanford University

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

Viscous Fluids. Amanda Meier. December 14th, 2011

Viscous Fluids. Amanda Meier. December 14th, 2011 Viscous Fluids Amanda Meier December 14th, 2011 Abstract Fluids are represented by continuous media described by mass density, velocity and pressure. An Eulerian description of uids focuses on the transport

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 59 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS The Finite Volume Method These slides are partially based on the recommended textbook: Culbert B.

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Numerical Solution of Partial Differential Equations governing compressible flows

Numerical Solution of Partial Differential Equations governing compressible flows Numerical Solution of Partial Differential Equations governing compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

Curved grid generation and DG computation for the DLR-F11 high lift configuration

Curved grid generation and DG computation for the DLR-F11 high lift configuration ECCOMAS Congress 2016, Crete Island, Greece, 5-10 June 2016 Curved grid generation and DG computation for the DLR-F11 high lift configuration Ralf Hartmann 1, Harlan McMorris 2, Tobias Leicht 1 1 DLR (German

More information

Termination criteria for inexact fixed point methods

Termination criteria for inexact fixed point methods Termination criteria for inexact fixed point methods Philipp Birken 1 October 1, 2013 1 Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany Department of Mathematics/Computer

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

Far Field Noise Minimization Using an Adjoint Approach

Far Field Noise Minimization Using an Adjoint Approach Far Field Noise Minimization Using an Adjoint Approach Markus P. Rumpfkeil and David W. Zingg University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario, M3H 5T6, Canada

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Optimizing Runge-Kutta smoothers for unsteady flow problems

Optimizing Runge-Kutta smoothers for unsteady flow problems Optimizing Runge-Kutta smoothers for unsteady flow problems Philipp Birken 1 November 24, 2011 1 Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany. email:

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Iterative Methods and High-Order Difference Schemes for 2D Elliptic Problems with Mixed Derivative

Iterative Methods and High-Order Difference Schemes for 2D Elliptic Problems with Mixed Derivative Iterative Methods and High-Order Difference Schemes for 2D Elliptic Problems with Mixed Derivative Michel Fournié and Samir Karaa Laboratoire MIP, CNRS UMR 5640, Université Paul Sabatier, 118 route de

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes Science in China Series A: Mathematics Aug., 008, Vol. 51, No. 8, 1549 1560 www.scichina.com math.scichina.com www.springerlink.com A class of the fourth order finite volume Hermite weighted essentially

More information

Simulation of low Mach number flows

Simulation of low Mach number flows Simulation of low Mach number flows Improvement of accuracy and convergence of the TAU code using time derivative preconditioning Ralf Heinrich, Braunschweig, 9th February 008 Simulation of low Mach number

More information

Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier-Stokes equations

Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier-Stokes equations Fluid Dynamics and Co-located Conferences June 24-27, 2013, San Diego, CA 21st AIAA Computational Fluid Dynamics Conference AIAA 2013-2685 Performance tuning of Newton-GMRES methods for discontinuous Galerkin

More information

On a class of numerical schemes. for compressible flows

On a class of numerical schemes. for compressible flows On a class of numerical schemes for compressible flows R. Herbin, with T. Gallouët, J.-C. Latché L. Gastaldo, D. Grapsas, W. Kheriji, T.T. N Guyen, N. Therme, C. Zaza. Aix-Marseille Université I.R.S.N.

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2008; 56:2111 2138 Published online 4 September 2007 in Wiley InterScience (www.interscience.wiley.com)..1608 Anisotropic

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Discontinuous Galerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity

Discontinuous Galerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity Discontinuous Galerkin methods for compressible flows: higher order accuracy, error estimation and adaptivity Ralf Hartmann Institute of Aerodynamics and Flow Technology German Aerospace Center (DLR) Lilienthalplatz

More information

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm AIAA 2 2673 How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm Antony Jameson Stanford University Stanford, CA 9435 D. A. Caughey

More information

Applied Mathematics and Mechanics (English Edition) Transversal effects of high order numerical schemes for compressible fluid flows

Applied Mathematics and Mechanics (English Edition) Transversal effects of high order numerical schemes for compressible fluid flows Appl. Math. Mech. -Engl. Ed., 403), 343 354 09) Applied Mathematics and Mechanics English Edition) https://doi.org/0.007/s0483-09-444-6 Transversal effects of high order numerical schemes for compressible

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information