Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme

Size: px
Start display at page:

Download "Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme"

Transcription

1 Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Oren Peles and Eli Turkel Department of Applied Mathematics, Tel-Aviv University In memoriam of Prof. Saul Abarbanel. August 2-24, 28

2 Lecture outline Background and motivation Governing equations Two-fluids model RK/Implicit smoother with source terms Dual time stepping approach with backward differencing Dual time stepping approach with DIRK Adaptive time steps Lagrangian trajectories of burning droplets Examples Conclusions and future work

3 Motivation - Leidenfrost effect of droplets moving on a ratchet -Leidenfrost maze* The Leidenfrost effect is a physical phenomenon in which a liquid, in near contact with a mass significantly hotter than the liquid's boiling point, produces an insulating vapor layer keeping that liquid from boiling rapidly. Because of this 'repulsive force', a droplet hovers over the surface rather than making physical contact with it. This is most commonly seen when cooking: one sprinkles drops of water in a pan to gauge its temperature: if the pan's temperature is at or above the Leidenfrost point, the water skitters across the pan and takes longer to evaporate than in a pan below the temperature of the Leidenfrost point (but still above boiling temperature). *Cheng, C., Guy, M., Narduzzo, A., & Takashina, K. (25). The Leidenfrost Maze. European Journal of Physics, 36(3), 354

4 We wish to simulate the maze. Problem statement very low Mach number, unsteady, twophase flow (surrounding air and vapours from the droplets) with moving finite size droplets.

5 Background We wish to accelerate the computation of time dependent problems in the framework of a dual-time stepping based code with an explicit scheme for pseudo time and an implicit scheme for the physical time. Physical models low Mach compressible flows with perfect gas, two-fluids mixing model, inviscid and viscous flows. Acceleration methods within the pseudo-time marching: multigrid, local time steps, implicit residual smoothing For the pseudo time stepping a low-storage RK/Implicit Smoother method is used. We consider the schemes for the physical time Backward differencing (BDF) and Diagonally Implicit Runge-Kutta (DIRK). Adaptive time steps based on DIRK scheme.

6 Governing equations The Navier-Stokes equations for the conservative variables Q = in conservation form are: F is the inviscid flux Q t + F Q = F v Q + S ρ, ρu, ρv, ρw, ρe T F v is the viscous flux F = ρu, ρuu + px, ρuu + py, ρuw + pz, ρu E + p T F v =, τ x, τ y, τ z, uτ x + vτ y + wτ z + k T T ρ is the gas density, p is the pressure, u, v and w are the velocity vector components and E is the internal energy ρe = p γ + 2 ρ u2 + v 2 + w 2 τ x, τ y, τ z are the stress vectors, k is the thermal conductivity and T is the temperature

7 Two-Fluids model Simple modelling of steady and unsteady mixing of two perfect gases

8 Model governing equations h h Sc u z u y u x T H u t E pz w u t wu py v u t vu px u u t uu Sc u t Sc u t z y x z y x Pr ˆ ˆ ˆ The continuity equation is replaced by two continuity equations for the two gases composing the mixture The modified Navier-Stokes equations are given by

9 w y w y W Energy and Total enthalpy p E H u p E 2 2 v p v p C C w y w y w C w y w y w C Heat capacities Total density and mean molecular weight Equation of state p = ρrt W

10 2 2 / / / / / / / / / 2 2 U c w pw U c w pw w v u w w v v u u W U p b b p a a Transformation Jacobian for primitive to conservative variables U c w pw U c w pw w v u w w v v u u U W v b b v a a Conservative to primitive variables transformation Jacobian

11 RK/Implicit smoother with source terms We solve the system in conservation form: Q t F SQ Applying the Gauss theorem for an arbitrary control volume and a discretization in time yields the basic scheme: Q t S V S F nds S V all F faces nds

12 The low-storage Runge-Kutta time marching scheme is: Q () = Q n Q (k+) = Q () α k+ ΔτR k Q n+ = Q (p) k = p- α k are the RK coefficients The residual of the k-th step is: R k = V all faces F n ds S k For accelerating the calculations using large CFL numbers the residual is replaced by a spatially smoothed residual ΔQ

13 Following Rossow 26, Swanson et al. 27, we start with the spatially discretized equation: Q t V faces Linearizing F and S in time we obtain: all F nds S I t Ands V all faces t S Q Q R k F A Q S Q - the flux Jacobian - the source Jacobian

14 Transforming the equations to primitive variables, the flux Jacobian is written as: where A A A Finally, the implicit smoothing scheme is given by: A 2 A A I + ε Δτ V all faces ε is a relaxation factor. A + nds Δτ S Q ΔQ local = R k ε Δτ V all faces A n ΔQ NB ds The implicit smoothing scheme is solved iteratively, using symmetric Gauss- Seidel method or red-black iterations (RB is useful for parallel computing).

15 Dual time stepping approach with backward differencing The system we solve in the pseudo time τ is Q τ + Q t + F Q = F v Q For each physical time step, we solve the NS equation for a steady state. The derivative with respect to the physical time is a source term and approximated via backward differencing scheme: S = Q t 3Qn+ 4Q n + Q n 2Δt

16 Since Q n+ is unknown, we replace it by the best approximation Q (k+) which is the solution in the next pseudo-time RK stage. We have S 3Q(k+) 4Q n + Q n 2Δt Q (k+) = Q () α k+ Δτ R k + α k+ 3Δτ 2Δt 3Δτ Identify + α k+ as a point-implicit smoothing operator and inspired by this 2Δt formulation, the modified RK/implicit smoother operator for time dependent problem is:

17 where the modified residual is I + ε Δτ V all faces R k = V A + nds all faces F 3 Δτ α k 2 Δt n ds 3Q() 4Q n + Q n 2Δt + Δτ S W ΔQ local = R k ε Δτ V all faces A n ΔQ NB ds We note that this formulation is not the standard one* in which the original residual is given by R k = V all faces F n ds 3Q(k) 4Q n + Q n 2Δt The original smoother operator is I + ε Δτ V all faces A + nds 3 2 Δτ Δt + Δτ S W ΔQ local = R k ε Δτ V all faces A n ΔQ NB ds *Vatsa, V., & Turkel, E. (23). Choice of variables and preconditioning for time dependent problems. In 6th AIAA Computational Fluid Dynamics Conference (p. 3692)

18 Shu-Osher problem comparison of Convergence between old and new method Standard method New method

19 Dual time stepping approach with Diagonally Implicit Runge- Kutta (DIRK) Why DIRK? DIRK is a good choice for a high order scheme. Similar to BDF, DIRK requires only one forward time step. High order scheme allows larger time steps. Internal stages cost CPU time (good for GPUs). Allows varying time steps and hence adaptive time steps. Good for sharply varying in time transient problems. Analysis for the time step is not needed.

20 We wish to solve the semi-discrete equation of the form The DIRK time marching scheme is u = R u t u (j) = u n Δt a ij R i j j = s u (n+) = u n Δt i= s b j R j Where R j = R u j, u n = u t n, u j is the solution of the j-th RK step and also j= a = u = u n a jj j > b j = a js u n+ = u s

21 We choose the DIRK3 scheme. The non-zero coefficients are given by a a a a 32 2 a (2a ) a a a b a j js.788 For the lower order embedded scheme bˆ bˆ bˆ

22 Rewrite as u (j) = u n Δt j i= a ij R i R u (j) R j un u j a jj Δt a jj j i= a ij R i = ( ) Using a low-storage RK/Implicit smoother method we solve u j τ = R u j for u j in pseudo-time until R u j is sufficiently small. The residual smoother operator is I + ε Δτ V all faces A + nds Δτ a jj Δt ΔQ local = R k ε Δτ V all faces A n ΔQ NB ds

23 Adaptive time steps For a given DIRK scheme of order p, the embedded scheme is a scheme of lower order, p- with the same a ij coefficients and b i instead of b i Let u n+ be the solution of the given DIRK scheme after one time step of size Δt and let u n+ be the solution of the embedded scheme, both with initial condition u n, we have: u n+ = u n + c t p u n+ = u n + c t p We want to bound u n+ u n+ relative to the norm of the solution u n so that u n+ u n+ = u n u n Δt n+ Δt n Δt n+ Δt n p TOL TOL u n u n u n u n p

24 The TOL parameter determines the required accuracy. A large TOL enables large time steps with low accuracy while smaller TOL yields a more accurate solution with smaller time steps (so an increased CPU time).

25 Lagrangian trajectories of burning droplets Droplets position and velocity vectors are calculated in a Lagrangian manner with dx p = v dv p dt p and = f D v dt τ g v p u Where f D is the drag coefficient, τ u is the droplet relaxation time and v g is the velocity vector of the gas. A source term is added to the gas flow equation to account the mass flux burning rate m of the droplets Continuity equation dρ dt = m G x, t Energy equation dh dt = m C p G x, t

26 Where C p is the heat capacity of the burning gases escaping from the droplet and G x, t is a moving Green function which is taking in to account the finite size of the droplets cantered in its temporal position with a Gaussian width equal the droplet s radii - G x, t = σ 3 2π 3 exp x x p t 2σ 2 2 σ = 3m 4πρ /3

27 Results Riemann problem with perfect gas Two-fluids Riemann problem Shock-Sine wave interaction (Shu-Osher problem) Shock wave/bubble interaction Leidenfrost maze

28 Sod s shock tube - Riemann problem with perfect gas One-dimensional problem with initial conditions: p = PSI and T = 23: K p = PSI and T = 288: 89K on the right side of the tube on the left side Typical time step for BDF is e-6 Time steps for Tol=e-3 - Δt 3 6 Time steps for Tol=e-2 - Δt.3 5

29 Two-fluids Riemann problem Initial conditions P L =6894 Pa ρ L = kg/m 3 Cp/Cv=. M L =5 gr/mole P R =6894 Pa ρ R =.25 kg/m 3 Cp/Cv=.4 M R =29 gr/mole In the next slides we present the solution at t = 2ms

30 Velocity

31 Pressure Density

32 Shock-Sine wave interaction (Shu-Osher problem) One-dimensional problem with initial conditions: ρ = 3:85743; u = 2:629369; P= for x.4 ρ = +.2 sin 5x; u = ; P = for x >.4 BDF - Δt = 3 Tol = 2e-3 Δt 2x 3 Tol = e-2 Δt 4x 3

33 Shock-wave-bubble interaction (using two-fluids model) Schematic description Air, Pre-shock conditions Air, Post-shock conditions Helium, Bubble Shockwave direction M=.22 Initial conditions

34 Time steps evolution Typical time step for BDF is e-4 For this problem the total CPU time gain was approximately a factor of four.

35 Comparing results between methods

36 Mach number Density

37 The maze with the ratchet directions

38

39 Mach number contour map and streamlines

40 Conclusions and future work We developed a method using dual time stepping with the combination of a low-storage RK/Implicit residual smoother for pseudo time marching and DIRK for the physical time The parameter (TOL) controls the accuracy and also the CPU time The method requires less CPU time for problems with time scales which are sharply varying DIRK based dual time stepping still requires a convergence and stability analysis

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Extension to moving grids

Extension to moving grids Extension to moving grids P. Lafon 1, F. Crouzet 2 & F. Daude 1 1 LaMSID - UMR EDF/CNRS 2832 2 EDF R&D, AMA April 3, 2008 1 Governing equations Physical coordinates Generalized coordinates Geometrical

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 3 Governing Equations of Fluid Dynamics The starting point of any numerical simulation are the governing equations of the physics of the problem to be solved. In this chapter, we first present

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay Dipartimento di Ingegneria Industriale, Università di Bergamo CERMICS-ENPC

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

Direct Numerical Simulations of a Two-dimensional Viscous Flow in a Shocktube using a Kinetic Energy Preserving Scheme

Direct Numerical Simulations of a Two-dimensional Viscous Flow in a Shocktube using a Kinetic Energy Preserving Scheme 19th AIAA Computational Fluid Dynamics - 5 June 009, San Antonio, Texas AIAA 009-3797 19th AIAA Computational Fluid Dynamics Conference, - 5 June 009, San Antonio, Texas Direct Numerical Simulations of

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models Numerical Study of Natural Unsteadiness Using Wall-Distance-Free urbulence Models Yi-Lung Yang* and Gwo-Lung Wang Department of Mechanical Engineering, Chung Hua University No. 707, Sec 2, Wufu Road, Hsin

More information

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Xinghui Zhong 12/09/ 2009 Outline 1 Introduction Why SSP methods Idea History/main reference 2 Explicit SSP Runge-Kutta Methods

More information

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations . Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations We need to review the governing equations of fluid mechanics before examining the methods of computational aerodynamics in detail.

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

Parallel Computation of Forced Vibration for A Compressor Cascade

Parallel Computation of Forced Vibration for A Compressor Cascade 44th AIAA Aerospace Sciences Meeting and Exhibit 9-2 January 26, Reno, Nevada AIAA 26-628 AIAA Paper 26-628 Parallel Computation of Forced Vibration for A Compressor Cascade Zongjun Hu and Gecheng Zha

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50 Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations Matthew McMullen Advisor: Antony Jameson Co-advisor: Juan Alonso Sponsor: Accelerated Strategic Computing Initiative

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Matthew McMullen and Antony Jameson and Juan J. Alonso Dept. of Aeronautics & Astronautics Stanford University

More information

Improved Seventh-Order WENO Scheme

Improved Seventh-Order WENO Scheme 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Eposition 4-7 January 2, Orlando, Florida AIAA 2-45 Improved Seventh-Order WENO Scheme Yiqing Shen Gecheng Zha Dept.

More information

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Computational Fluid Dynamics (CFD) 1...in the phrase computational fluid dynamics the word computational is simply an adjective to fluid dynamics.... -John D. Anderson 2 1 Equations of Fluid

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements

Numerical Methods for Problems with Moving Fronts Orthogonal Collocation on Finite Elements Electronic Text Provided with the Book Numerical Methods for Problems with Moving Fronts by Bruce A. Finlayson Ravenna Park Publishing, Inc., 635 22nd Ave. N. E., Seattle, WA 985-699 26-524-3375; ravenna@halcyon.com;www.halcyon.com/ravenna

More information

Numerical Solution of Partial Differential Equations governing compressible flows

Numerical Solution of Partial Differential Equations governing compressible flows Numerical Solution of Partial Differential Equations governing compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow

Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow F. Piscaglia, A. Montorfano Dipartimento di Energia, POLITECNICO DI MILANO Content Introduction

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Nonlinear iterative solvers for unsteady Navier-Stokes equations

Nonlinear iterative solvers for unsteady Navier-Stokes equations Proceedings of Symposia in Applied Mathematics Nonlinear iterative solvers for unsteady Navier-Stokes equations Philipp Birken and Antony Jameson This paper is dedicated to Gene Golub. Abstract. The application

More information

Eli Turkel 1 and Veer N. Vatsa 2

Eli Turkel 1 and Veer N. Vatsa 2 ESAIM: MAN Vol. 39, N o 3, 005, pp. 515 535 DOI: 10.1051/man:00501 ESAIM: Mathematical Modelling and Numerical Analysis LOCAL PRECONDITIONERS FOR STEADY AND UNSTEADY FLOW APPLICATIONS Eli Turkel 1 and

More information

Stabilization of Explicit Flow Solvers Using a Proper Orthogonal Decomposition Technique

Stabilization of Explicit Flow Solvers Using a Proper Orthogonal Decomposition Technique 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-1096 Stabilization of Explicit Flow Solvers Using a Proper

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

Applied Computational Fluid Dynamics. in Marine Engineering

Applied Computational Fluid Dynamics. in Marine Engineering Applied Computational Fluid Dynamics in Marine Engineering Objectives Understand basic CFD theory Learn how to set up and run simulations in Star CCM+ and interpret results Learn about limitations and

More information

Computation of NACA0012 Airfoil Transonic Buffet Phenomenon with Unsteady Navier-Stokes Equations

Computation of NACA0012 Airfoil Transonic Buffet Phenomenon with Unsteady Navier-Stokes Equations 5th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 9-2 January 22, Nashville, Tennessee AIAA 22-699 Computation of NACA2 Airfoil Transonic Buffet Phenomenon with

More information

Force analysis of underwater object with supercavitation evolution

Force analysis of underwater object with supercavitation evolution Indian Journal of Geo-Marine Sciences Vol. 42(8), December 2013, pp. 957-963 Force analysis of underwater object with supercavitation evolution B C Khoo 1,2,3* & J G Zheng 1,3 1 Department of Mechanical

More information

1 PART1: Bratu problem

1 PART1: Bratu problem D9: Advanced Numerical Analysis: 3 Computer Assignment 3: Recursive Projection Method(RPM) Joakim Möller PART: Bratu problem. Background The Bratu problem in D is given by xx u + yy u + λe u =, u Γ = ()

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering - University

More information

Module 2: Governing Equations and Hypersonic Relations

Module 2: Governing Equations and Hypersonic Relations Module 2: Governing Equations and Hypersonic Relations Lecture -2: Mass Conservation Equation 2.1 The Differential Equation for mass conservation: Let consider an infinitely small elemental control volume

More information

Preconditioned Smoothers for the Full Approximation Scheme for the RANS Equations

Preconditioned Smoothers for the Full Approximation Scheme for the RANS Equations https://doi.org/10.1007/s10915-018-0792-9 Preconditioned Smoothers for the Full Approximation Scheme for the RANS Equations Philipp Birken 1 Jonathan Bull 2 Antony Jameson 3 Received: 14 October 2017 /

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

On limiting for higher order discontinuous Galerkin method for 2D Euler equations

On limiting for higher order discontinuous Galerkin method for 2D Euler equations On limiting for higher order discontinuous Galerkin method for 2D Euler equations Juan Pablo Gallego-Valencia, Christian Klingenberg, Praveen Chandrashekar October 6, 205 Abstract We present an implementation

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Department of Mathematics University of California Santa Barbara, Santa Barbara, California,

Department of Mathematics University of California Santa Barbara, Santa Barbara, California, The Ghost Fluid Method for Viscous Flows 1 Ronald P. Fedkiw Computer Science Department Stanford University, Stanford, California 9435 Email:fedkiw@cs.stanford.edu Xu-Dong Liu Department of Mathematics

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm

How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm AIAA 2 2673 How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm Antony Jameson Stanford University Stanford, CA 9435 D. A. Caughey

More information

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms Future Generation Computer Systems () 65 7 Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms R. Naidoo a,b, S. Baboolal b, a Department

More information

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations AA210A Fundamentals of Compressible Flow Chapter 5 -The conservation equations 1 5.1 Leibniz rule for differentiation of integrals Differentiation under the integral sign. According to the fundamental

More information

C1.2 Ringleb flow. 2nd International Workshop on High-Order CFD Methods. D. C. Del Rey Ferna ndez1, P.D. Boom1, and D. W. Zingg1, and J. E.

C1.2 Ringleb flow. 2nd International Workshop on High-Order CFD Methods. D. C. Del Rey Ferna ndez1, P.D. Boom1, and D. W. Zingg1, and J. E. C. Ringleb flow nd International Workshop on High-Order CFD Methods D. C. Del Rey Ferna ndez, P.D. Boom, and D. W. Zingg, and J. E. Hicken University of Toronto Institute of Aerospace Studies, Toronto,

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Active Flux for Advection Diffusion

Active Flux for Advection Diffusion Active Flux for Advection Diffusion A Miracle in CFD Hiroaki Nishikawa National Institute of Aerospace! NIA CFD Seminar! August 25, 2015 In collaboration with the University of Michigan Supported by NASA

More information

Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm. Sammy Isono

Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm. Sammy Isono Fourth-Order Implicit Runge-Kutta Time Marching Using A Newton-Krylov Algorithm by Sammy Isono A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Lei Qiao Northwestern Polytechnical University Xi an, China Texas A&M University College Station, Texas Fifth deal.ii Users and Developers

More information

A Numerical Study of Compressible Two-Phase Flows Shock and Expansion Tube Problems

A Numerical Study of Compressible Two-Phase Flows Shock and Expansion Tube Problems A Numerical Study of Compressible Two-Phase Flows Shock and Expansion Tube Problems Dia Zeidan,a) and Eric Goncalves 2 School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan

More information

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and

More information

7 Mathematical Methods 7.6 Insulation (10 units)

7 Mathematical Methods 7.6 Insulation (10 units) 7 Mathematical Methods 7.6 Insulation (10 units) There are no prerequisites for this project. 1 Introduction When sheets of plastic and of other insulating materials are used in the construction of building

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations 2013 SIAM Conference On Computational Science and Engineering Boston, 27 th February 2013 PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations U. Villa,

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Time-adaptive methods for the incompressible Navier-Stokes equations

Time-adaptive methods for the incompressible Navier-Stokes equations Time-adaptive methods for the incompressible Navier-Stokes equations Joachim Rang, Thorsten Grahs, Justin Wiegmann, 29.09.2016 Contents Introduction Diagonally implicit Runge Kutta methods Results with

More information

Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel

Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel Numerical Analysis of Nonequilibrium-flow at Nozzle Inlet in High-entahlpy Shock Tunnel,, -8, E mail: kaneko@fluid.nuae.nagoya-u.ac.jp,, E mail: menshov@nuae.nagoya-u.ac.jp,, E mail: nakamura@nuae.nagoya-u.ac.jp

More information

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Short Training Program Report Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Julian Koellermeier RWTH Aachen University Supervisor: Advisor: Prof. Thierry Magin von

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

Jun 22-25, 2009/San Antonio, TX

Jun 22-25, 2009/San Antonio, TX 19th AIAA Computational Fluid Dynamics 22-25 June 2009, San Antonio, Texas AIAA 2009-4273 AIAA 2009 4273 An Assessment of Dual-Time Stepping, Time Spectral and Artificial Compressibility based Numerical

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM

APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM AIAA 2003-3693 APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM Vladimir V. Golubev* and Axel Rohde Embry-Riddle Aeronautical University Daytona

More information

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544

MULTIGRID CALCULATIONS FOB. CASCADES. Antony Jameson and Feng Liu Princeton University, Princeton, NJ 08544 MULTIGRID CALCULATIONS FOB. CASCADES Antony Jameson and Feng Liu Princeton University, Princeton, NJ 0544 1. Introduction Development of numerical methods for internal flows such as the flow in gas turbines

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Aerothermodynamics of High Speed Flows

Aerothermodynamics of High Speed Flows Aerothermodynamics of High Speed Flows Lecture 1: Introduction G. Dimitriadis 1 The sound barrier Supersonic aerodynamics and aircraft design go hand in hand Aspects of supersonic flow theory were developed

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Wave propagation methods for hyperbolic problems on mapped grids

Wave propagation methods for hyperbolic problems on mapped grids Wave propagation methods for hyperbolic problems on mapped grids A France-Taiwan Orchid Project Progress Report 2008-2009 Keh-Ming Shyue Department of Mathematics National Taiwan University Taiwan ISCM

More information

Y. Abe, N. Iizuka, T. Nonomura, K. Fujii Corresponding author:

Y. Abe, N. Iizuka, T. Nonomura, K. Fujii Corresponding author: Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-2012-2801 ICCFD7-2801 Symmetric-conservative metric evaluations for higher-order finite

More information

Implicit-explicit exponential integrators

Implicit-explicit exponential integrators Implicit-explicit exponential integrators Bawfeh Kingsley Kometa joint work with Elena Celledoni MaGIC 2011 Finse, March 1-4 1 Introduction Motivation 2 semi-lagrangian Runge-Kutta exponential integrators

More information

A method for avoiding the acoustic time step restriction in compressible flow

A method for avoiding the acoustic time step restriction in compressible flow A method for avoiding the acoustic time step restriction in compressible flow Nipun Kwatra Jonathan Su Jón T. Grétarsson Ronald Fedkiw Stanford University, 353 Serra Mall Room 27, Stanford, CA 9435 Abstract

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction

Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction Gregory H. Furumoto, a) Xiaolin Zhong, and John C. Skiba Department of Mechanical and Aerospace

More information

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE Kevin G. Wang (1), Patrick Lea (2), and Charbel Farhat (3) (1) Department of Aerospace, California Institute of Technology

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Solution Algorithms for Viscous Flow

Solution Algorithms for Viscous Flow Solution Algorithms for Viscous Flow Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA Indian Institute of Science Bangalore, India September 20, 2004 Flo3xx Computational

More information

Effects of the Jacobian Evaluation on Direct Solutions of the Euler Equations

Effects of the Jacobian Evaluation on Direct Solutions of the Euler Equations Middle East Technical University Aerospace Engineering Department Effects of the Jacobian Evaluation on Direct Solutions of the Euler Equations by Ömer Onur Supervisor: Assoc. Prof. Dr. Sinan Eyi Outline

More information

Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations

Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations Will Pazner Brown University, 8 George St., Providence, RI, 9, U.S.A. Per-Olof Persson University of

More information

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures Supplemental material for paper published in the International J of Hydrogen Energy, Vol. 30, 6044-6060, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.182 Application of a Laser Induced Fluorescence

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Control Theory Approach to Aero Shape Optimization

Control Theory Approach to Aero Shape Optimization Control Theory Approach to Aero Shape Optimization. Overview. Finite Volume Method 3. Formulation of Optimal Design Problem 4. Continuous Adjoint Approach 5. Discrete Adjoint Approach Overview of Adjoint

More information

Notes 4: Differential Form of the Conservation Equations

Notes 4: Differential Form of the Conservation Equations Low Speed Aerodynamics Notes 4: Differential Form of the Conservation Equations Deriving Conservation Equations From the Laws of Physics Physical Laws Fluids, being matter, must obey the laws of Physics.

More information

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand Institute of Aerospace Thermodynamics Numerical modelling of phase change processes in clouds Challenges and Approaches Martin Reitzle Bernard Weigand Introduction Institute of Aerospace Thermodynamics

More information

Verified Calculation of Nonlinear Dynamics of Viscous Detonation

Verified Calculation of Nonlinear Dynamics of Viscous Detonation Verified Calculation of Nonlinear Dynamics of Viscous Detonation Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and Joseph

More information

High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method

High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method AIAA SciTech Forum 7- January 29 San Diego California AIAA Scitech 29 Forum.254/6.29-5 High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method Lingquan Li Jialin Lou and Hong Luo

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information