Length Learning Objectives Learning Objectives Assessment

Size: px
Start display at page:

Download "Length Learning Objectives Learning Objectives Assessment"

Transcription

1 Universidade Federal Fluminense PGMEC Course: Advanced Computational Fluid Dynamics Coordinator: Vassilis Theofilis Academic Year: 2018, 2 nd Semester Length: 60hrs (48hrs classroom and 12hrs tutorials) 180hrs total student time Learning Objectives (mandatory): Extend knowledge on prototype (hyperbolic, parabolic, elliptic) equations acquired in previous courses to the equations of Fluid Mechanics. Mesh generation using the Open Source GMSH meshing s/w Familiarization with three CFD open source codes, OpenFOAM (finite volumes), nek5000 (spectral element, incompressible) and nektar++ (spectral element, incompressible and Discontinuous Galerkin, compressible) Write, debug and run: o Two incompressible NS codes for the solution of two-dimensional problems, with: A splitting scheme in primitive variables, using finite-difference spatial discretization Solution of the vorticity transport equation, using spectral collocation spatial discretization o Two compressible NS codes for the solution of one- and two-dimensional problems Burgers equation in two spatial dimensions Interaction of a vortex with a shock Learning Objectives (optional): Learn basic parallelization techniques using OpenMP (UFF) and MPI (U of Liverpool). Apply to: o Solve large linear systems of equations, AX=B, by distributing matrix A o Parallelize own existing codes, identifying performance bottlenecks Assessment: Average mark of four courseworks performed during the course Coursework 1: Solution of the ODE f + 2 f = 0, f(0) = 3 o Discretize using FD-2, FD-4, Padé and CGL using LAPACK (mandatory) Coursework 2: Solution of the two-dimensional Poisson equation in a unit square o Discretize and solve the linear PDE as a linear system and as an eigenvalue problem, o using finite difference and spectral methods. Solve Serial (using Fortran and Lapack, mandatory) Parallel using up to 40 cores (using ScaLAPACK, optional) o Compare results with analytical solution and discuss convergence of FD vs spectral methods

2 Coursework 3: Solutions using OpenFOAM o Solve the laminar compressible flow on a flat plate, inviscid supersonic flow over a diamond-shaped airfoil and turbulent subsonic flow on an airfoil o Use gmsh to create a mesh (.geo and.msh), convert gmsh.msh file to be read by OpenFOAM and run simulations in OF o Compare numerical results with theory: Lees & Reshotko (laminar flat plate) Prandtl-Meyer (diamond-shaped airfoil) Coursework 4: Solve the incompressible NS for the 2D lid-driven cavity o Use primitive variables, a pressure correction scheme and discretize using FD-4 and CGL spatial discretization, using a collocated scheme o Solve the stream function / vorticity transport equation Assets: Student s own laptop Computing cluster at UFF (OpenMP) One node of the computing cluster Barkla at the Univ. of Liverpool o (40 CPUs, 384 GB shared memory) o pre-installed OpenFOAM, nek5000 and nektar++ software o Job scheduling system Bibliography: RH Pletcher, JC Tannehill, DA Anderson (2013) Computational Fluid Mechanics and Heat Transfer, (3 rd Edition), CRC Press Online Documentation o OpenFOAM ( o nek5000 ( o nektar++ ( Material distributed in class

3 Schedule: Taught Classes (UFF): o Aug (V Theofilis): Numerical solution of linear systems, eigenvalue problems and parallelization (12hrs) Monday, August 20 o Classification of PDEs o Intro to Finite Difference (FD) and Spectral Methods o Convergence and presentation of results o Intro to gnuplot Tuesday, August 21 o Intro to LAPACK o Numerical solution of linear and nonlinear systems, linear and nonlinear eigenvalue problems using FD and the Chebyshev Gauss Lobatto spectral method Wednesday, August 22 o Intro to Parallel Computation and MPI o Intro to ScaLAPACK Thursday, August 23 Friday, August 24 o Assignment and discussion of Courseworks 1 and 2 o Sept (Leonardo Alves): Introduction to GMSH and OpenFOAM (12hrs) Monday, Sept 17 o Intro to GMSH. Examples: Flat-plate boundary layer 2D Lid-driven cavity, uniform and wall-refined mesh Tuesday, Sept 18 o Intro to OF o Intro to Paraview o Solution of laminar flows using OF: PPF, Couette, 2D Lid-driven Cavity, Blasius Wednesday, Sept 19 o Solution of turbulent and compressible flows using OF: Flow around a NACA0012 airfoil Flow in a compression ramp Thursday, Sept 20 Friday, Sept 21 o Assignment and discussion of Courseworks 1 and 2

4 o Oct 29 Nov 2 (V Theofilis): Splitting methods (6hrs) and the stream-function / vorticity transport equations (6hrs) for the solution of the 2D incompressible Navier-Stokes equations Monday, Oct 29 o Primitive variables and pressure correction schemes o Boundary condition based on the pressure Poisson equation Tuesday, Oct 30 o Temporal discretization using Runge-Kutta explicit schemes The Spalart, Moser, Rogers semi-implicit scheme o Spatial discretization using FD-4 and CGL Wednesday, Oct 31 o Stream function / vorticity transport equations o The Moin-Kim algorithm Thursday, Nov 1 Friday, Nov 2 o Assignment and discussion of Coursework 4 o November (Leonardo Alves): Introduction to nektar++ and nek5000 (12hrs) Monday, Nov 26 o Intro to nektar++. Meshing using GMSH. Examples: 2D Lid-driven cavity, uniform and wall-refined mesh Tuesday, Nov 27 o Laminar compressible flows using nektar++: Flow around a NACA0012 airfoil Flow in a compression ramp Comparisons with OpenFOAM Wednesday, Nov 28 o Intro to nek5000. Examples: 3D Lid-driven cavity, uniform mesh Thursday, Nov 29 Friday, Nov 30 o Discussion of Coursework 3 o December Intro to compressible Euler and NS (8hrs) and Revision (4hrs): Monday, Dec 17 o Basics of spatial discretization for compressible Euler and NS Finite differences Finite volumes

5 Spectral collocation Discontinuous Galerkin Tuesday, Dec 18 o Laminar compressible flows examples using own-written s/w: 1D and 2D Burgers equation 2D Vortex/shock interaction Wednesday, Dec 19 o Revision Day Online Tutorials (Skype name: v.theofilis): o Week 35: 2pm 4 pm (Central European Time) o Week 39: 2pm 4 pm (Central European Time) o Week 45: 2pm 4 pm (Central European Time)

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL 2018. MWF 2:00pm - 2:50pm MTH 0407 Instructor: M. Machedon Office: MTH 3311 e-mail: mxm@math.umd.edu Required text: Evans, Partial Differential Equations second

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID

WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID WALL RESOLUTION STUDY FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOW USING A MULTIDOMAIN CHEBYSHEV GRID Zia Ghiasi sghias@uic.edu Dongru Li dli@uic.edu Jonathan Komperda jonk@uic.edu Farzad

More information

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007 A Study of Transonic Flow and Airfoils Presented by: Huiliang Lui 3 th April 7 Contents Background Aims Theory Conservation Laws Irrotational Flow Self-Similarity Characteristics Numerical Modeling Conclusion

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR

DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR LEAP AND NON-LEAP YEAR *A non-leap year has 365 days whereas a leap year has 366 days. (as February has 29 days). *Every year which is divisible by 4

More information

An example of the Rvachev function method

An example of the Rvachev function method arxiv:1603.00320v1 [physics.flu-dyn] 1 Mar 2016 An example of the Rvachev function method Alexander V. Proskurin Altai State University, Altai State Technical University, k210@list.ru Anatoly M. Sagalakov

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

ME EN 3700: FLUID MECHANICS (Fall 2003)

ME EN 3700: FLUID MECHANICS (Fall 2003) ME EN 3700: FLUID MECHANICS (Fall 2003) Lecturer: Eric R. Pardyjak Lecture: MTWThF 7:30am - 8:20am Room 104 EMCB Office Hours: (9:00am - 10:30am M W F, Room 169 KEN Website: http://www.mech.utah.edu/~pardyjak/

More information

MECFLUID - Advanced Fluid Mechanics

MECFLUID - Advanced Fluid Mechanics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - DECA - Department of Civil and Environmental Engineering ERASMUS

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

ME 260A/B ADVANCED FLUID MECHANICS

ME 260A/B ADVANCED FLUID MECHANICS ME 260A/B by Ö. Savaş Department of Mechanical Engineering University of California, Berkeley 2018-2019 1 Ö. Savaş ME 260A/B Advanced Fluid Mechanics August 01, 2018 6113 Etcheverry Hall 2018-19 COURSE:

More information

Phys 631 Mathematical Methods of Theoretical Physics Fall 2018

Phys 631 Mathematical Methods of Theoretical Physics Fall 2018 Phys 631 Mathematical Methods of Theoretical Physics Fall 2018 Course information (updated November 10th) Instructor: Joaquín E. Drut. Email: drut at email.unc.edu. Office: Phillips 296 Where and When:

More information

Ph.D. and M.S. in Computational Science and Engineering. Two different M.S. and Ph.D. degrees in Applied mathematics and Engineering

Ph.D. and M.S. in Computational Science and Engineering. Two different M.S. and Ph.D. degrees in Applied mathematics and Engineering Ph.D. and M.S. in Computational Science and Engineering Two different M.S. and Ph.D. degrees in Applied mathematics and Engineering MS in CSE - Mathematics MS in CSE Mechanical/Electrical Engineering PhD

More information

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

Partial Differential Equations II

Partial Differential Equations II Partial Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Partial Differential Equations II 1 / 28 Almost Done! Homework

More information

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide Content ECN part of TNO SU2 applications at ECN Incompressible flow solver Pressure-based

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Computational Engineering

Computational Engineering Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering Academic

More information

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016 Numerical Modelling in Fortran: day 10 Paul Tackley, 2016 Today s Goals 1. Useful libraries and other software 2. Implicit time stepping 3. Projects: Agree on topic (by final lecture) (No lecture next

More information

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005 Numerical Methods for Partial Differential Equations Instructor: Tim Warburton Class Location: Duncan Hall 1046 Class Time: 9:5am to 10:40am Office Hours: 10:45am to noon in DH 301 CAAM 45 Spring 005 Homeworks

More information

PARTIAL DIFFERENTIAL EQUATIONS. MTH 5230, Fall 2007, MW 6:30 pm - 7:45 pm. George M. Skurla Hall 116

PARTIAL DIFFERENTIAL EQUATIONS. MTH 5230, Fall 2007, MW 6:30 pm - 7:45 pm. George M. Skurla Hall 116 PARTIAL DIFFERENTIAL EQUATIONS MTH 5230, Fall 2007, MW 6:30 pm - 7:45 pm George M. Skurla Hall 116 Ugur G. Abdulla Office Hours: S311, TR 2-3 pm COURSE DESCRIPTION The course presents partial diffrential

More information

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow

Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Assessment of Implicit Implementation of the AUSM + Method and the SST Model for Viscous High Speed Flow Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering - University

More information

Simulation of low Mach number flows

Simulation of low Mach number flows Simulation of low Mach number flows Improvement of accuracy and convergence of the TAU code using time derivative preconditioning Ralf Heinrich, Braunschweig, 9th February 008 Simulation of low Mach number

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library

Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Compressible Navier-Stokes (Euler) Solver based on Deal.II Library Lei Qiao Northwestern Polytechnical University Xi an, China Texas A&M University College Station, Texas Fifth deal.ii Users and Developers

More information

EULER AND SECOND-ORDER RUNGE-KUTTA METHODS FOR COMPUTATION OF FLOW AROUND A CYLINDER

EULER AND SECOND-ORDER RUNGE-KUTTA METHODS FOR COMPUTATION OF FLOW AROUND A CYLINDER EULER AND SEOND-ORDER RUNGE-KUTTA METHODS FOR OMPUTATION OF FLOW AROUND A YLINDER László Daróczy, László Baranyi MSc student, Professor University of Miskolc, Hungary Department of Fluid and Heat Engineering,

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

A Finite-Element based Navier-Stokes Solver for LES

A Finite-Element based Navier-Stokes Solver for LES A Finite-Element based Navier-Stokes Solver for LES W. Wienken a, J. Stiller b and U. Fladrich c. a Technische Universität Dresden, Institute of Fluid Mechanics (ISM) b Technische Universität Dresden,

More information

Clawpack Tutorial Part I

Clawpack Tutorial Part I Clawpack Tutorial Part I Randall J. LeVeque Applied Mathematics University of Washington Conservation Laws Package www.clawpack.org (pdf s will be posted and green links can be clicked) Some collaborators

More information

Some notes about PDEs. -Bill Green Nov. 2015

Some notes about PDEs. -Bill Green Nov. 2015 Some notes about PDEs -Bill Green Nov. 2015 Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary conditions etc. Because they are multi-dimensional, they can

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Code MIGALE state- of- the- art

Code MIGALE state- of- the- art Code MIGALE state- of- the- art A. Colombo HiOCFD4 4th International Workshop on High- Order CFD Method Foundation for Research and Technology Hellas (FORTH), Heraklion (Crete) 4th June 2016 1 with the

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

PHYS 1112: Introductory Physics-Electricity and Magnetism, Optics, Modern Physics

PHYS 1112: Introductory Physics-Electricity and Magnetism, Optics, Modern Physics FALL 2012 Department of Physics & Astronomy, University of Georgia PHYS 1112: Introductory Physics-Electricity and Magnetism, Optics, Modern Physics The course syllabus is a general plan for the course;

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Course Syllabus: Continuum Mechanics - ME 212A

Course Syllabus: Continuum Mechanics - ME 212A Course Syllabus: Continuum Mechanics - ME 212A Division Course Number Course Title Academic Semester Physical Science and Engineering Division ME 212A Continuum Mechanics Fall Academic Year 2017/2018 Semester

More information

DIRECT NUMERICAL SIMULATION IN A LID-DRIVEN CAVITY AT HIGH REYNOLDS NUMBER

DIRECT NUMERICAL SIMULATION IN A LID-DRIVEN CAVITY AT HIGH REYNOLDS NUMBER Conference on Turbulence and Interactions TI26, May 29 - June 2, 26, Porquerolles, France DIRECT NUMERICAL SIMULATION IN A LID-DRIVEN CAVITY AT HIGH REYNOLDS NUMBER E. Leriche, Laboratoire d Ingénierie

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme Edwin van der Weide and Magnus Svärd I. Background information for the SBP-SAT scheme As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical solution. Proving

More information

PHYSFLU - Physics of Fluids

PHYSFLU - Physics of Fluids Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS ICAS 2000 CONGRESS SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS H Yao, R K Cooper, and S Raghunathan School of Aeronautical Engineering The Queen s University of Belfast, Belfast BT7 1NN,

More information

2017 Autumn Courses. Spanish Elementary. September - December Elementary 1 - A1.1 Complete beginner

2017 Autumn Courses. Spanish Elementary. September - December Elementary 1 - A1.1 Complete beginner 2017 Autumn Courses 2017 Autumn Courses Spanish Elementary September December 2017 Elementary 1 A1.1 Complete beginner Monday 25 Sept 27 Nov 25 Sept 11 Dec 14.30 16.30 17.30 26 Sept 28 Nov 26 Sept 12 Dec

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics Dr.Eng. Reima Iwatsu Phone: 0355 69 4875 e-mail: iwatsu@las.tu-cottbus.de NACO Building Room 53-107 Time Summer Term Lecture: Tuesday 7:30-9:00 (every two weeks) LG4/310 Exercise:

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW DATA SET Data provenance: J. Graham 1, M. Lee 2, N. Malaya 2, R.D. Moser 2, G. Eyink 1 & C. Meneveau 1 Database ingest and Web Services: K. Kanov

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

ACD2503 Aircraft Aerodynamics

ACD2503 Aircraft Aerodynamics ACD2503 Aircraft Aerodynamics Session delivered by: Prof. M. D. Deshpande 1 Aims and Summary PEMP It is intended dto prepare students for participation i i in the design process of an aircraft and its

More information

Transition Meeting into Year 4

Transition Meeting into Year 4 Transition Meeting into Year 4 AGENDA 1. Yorkshire Graduate Recruitment Fair 2. Criteria for progression from level 3 to level 4 3. Academic choices at level 4 Options 4. Personal Development PAL mentoring

More information

Aerodynamics. Professor: Luís Eça

Aerodynamics. Professor: Luís Eça Professor: Luís Eça 1. Introduction Aerodynamical forces. Flow description. Dependent variables and physical principles that govern the flow 2. Incompressible, Viscous Flow Analytical solutions of the

More information

Screening Exam Topics

Screening Exam Topics Screening Exam Topics Academic Year 2015-2016 The Screening Exam aims to achieve three objectives: (i) To determine if the student has a deep understanding of the basic knowledge of at least two areas

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Implicit Large Eddy Simulation of Transitional Flow over a SD7003 Wing Using High-order Spectral Difference Method

Implicit Large Eddy Simulation of Transitional Flow over a SD7003 Wing Using High-order Spectral Difference Method 40th Fluid Dynamics Conference and Exhibit 28 June - 1 July 2010, Chicago, Illinois AIAA 2010-4442 Implicit Large Eddy Simulation of Transitional Flow over a SD7003 Wing Using High-order Spectral Difference

More information

Nonlinear Wave Theory for Transport Phenomena

Nonlinear Wave Theory for Transport Phenomena JOSO 2016 March 9-11 2015 Nonlinear Wave Theory for Transport Phenomena ILYA PESHKOV CHLOE, University of Pau, France EVGENIY ROMENSKI Sobolev Institute of Mathematics, Novosibirsk, Russia MICHAEL DUMBSER

More information

MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014

MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014 MATH 122 SYLLBAUS HARVARD UNIVERSITY MATH DEPARTMENT, FALL 2014 INSTRUCTOR: HIRO LEE TANAKA UPDATED THURSDAY, SEPTEMBER 4, 2014 Location: Harvard Hall 102 E-mail: hirohirohiro@gmail.com Class Meeting Time:

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

A gas-kinetic theory based multidimensional high-order method for the compressible Navier Stokes solutions

A gas-kinetic theory based multidimensional high-order method for the compressible Navier Stokes solutions Acta Mech. Sin. 2017) 334):733 741 DOI 10.1007/s10409-017-0695-2 RESEARCH PAPER A gas-kinetic theory based multidimensional high-order method for the compressible Navier Stokes solutions Xiaodong Ren 1

More information

The hybridized DG methods for WS1, WS2, and CS2 test cases

The hybridized DG methods for WS1, WS2, and CS2 test cases The hybridized DG methods for WS1, WS2, and CS2 test cases P. Fernandez, N.C. Nguyen and J. Peraire Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics, MIT 5th High-Order

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

Schedule and Reading Assignments 8.01

Schedule and Reading Assignments 8.01 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall 2013 Website: http://web.mit.edu/8.01t/www/ Schedule and Reading Assignments 8.01 Reading Sources: Classical Mechanics: MIT

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mechanical Engineering SEMESTER 4 TIMETABLE

NATIONAL UNIVERSITY OF SINGAPORE Department of Mechanical Engineering SEMESTER 4 TIMETABLE SEMESTER 4 TIMETABLE MONDAY 9:00 10:00 ME2101 T T1 Fundamentals Of Mechanical Design Lai M O Refer tutorial 9:00 10:00 ME2114 T T1 Mechanics Of Materials II Tan, V Refer tutorial 9:00 10:00 ME2135 T T1

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0139.9 NUMERICAL FLUID MECHANICS SPRING 015 Problem Set 4 Issued: Wednesday, March 18, 015 Due: Wednesday,

More information

(rev ) Important Dates Calendar FALL

(rev ) Important Dates Calendar FALL (rev. 8-9-6) Important Dates Calendar 205-2 06 FALL 206-207 st 0 Weeks 2nd 0 Weeks Middle 8 Weeks Returning Students New Students Open Registration Begins New and Returning Students May 24 May 24 May 24

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 014 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

LES of Turbulent Flows: Lecture 1

LES of Turbulent Flows: Lecture 1 LES of Turbulent Flows: Lecture 1 Dr. Jeremy A. Gibbs Department of Mechanical Engineering University of Utah Fall 2016 1 / 41 Overview 1 Syllabus Administrative Course Overview Coursework 2 LES Books

More information

FINITE-DIFFERENCE IMPLEMENTATION OF LATTICE BOLTZMANN METHOD FOR USE WITH NON-UNIFORM GRIDS

FINITE-DIFFERENCE IMPLEMENTATION OF LATTICE BOLTZMANN METHOD FOR USE WITH NON-UNIFORM GRIDS 7. ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2013-143 11-13 September 2013 - METU, Ankara TURKEY FINITE-DIFFERENCE IMPLEMENTATION OF LATTICE BOLTZMANN METHOD FOR USE WITH NON-UNIFORM GRIDS Fatih ÇEVİK

More information

Finite volume method on unstructured grids

Finite volume method on unstructured grids Finite volume method on unstructured grids Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

Applications of parabolized stability equation for predicting transition position in boundary layers

Applications of parabolized stability equation for predicting transition position in boundary layers Appl. Math. Mech. -Engl. Ed., 33(6), 679 686 (2012) DOI 10.1007/s10483-012-1579-7 c Shanghai University and Springer-Verlag Berlin Heidelberg 2012 Applied Mathematics and Mechanics (English Edition) Applications

More information

NATIONAL UNIVERVERSITY OF SINGAPORE Department of Mechanical Engineering. MONDAY Start End Module Title Group Staff Venue

NATIONAL UNIVERVERSITY OF SINGAPORE Department of Mechanical Engineering. MONDAY Start End Module Title Group Staff Venue SEMESTER 3 TIMETABLE MONDAY 9:00 10:00 ME2112 Strength of Materials T T1 Quan C G Refer tutorial Shim, V 9:00 10:00 ME2134 Fluid Mechanics I T T1 Lim T T Refer tutorial Teo C J 9:00 10:00 ME2151 Principles

More information

Flow field in the compressor blade cascade NACA

Flow field in the compressor blade cascade NACA Flow field in the compressor blade cascade NACA 65-100 Tomáš Turek Thesis Supervisor: Ing. Tomáš Hyhlík, Ph.D. Abstract An investigation is made into the effects of a flow field in the compressor blade

More information

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Amir Eshghinejadfard, Abouelmagd Abdelsamie, Dominique Thévenin University of Magdeburg, Germany 14th Workshop on Two-Phase Flow Predictions

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

COMPUTATIONAL FLUID DYNAMICS Second Edition

COMPUTATIONAL FLUID DYNAMICS Second Edition COMPUTATIONAL FLUID DYNAMICS Second Edition This revised second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including

More information

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j Helsinki University of Technology CFD-group/ The Laboratory of Applied Thermodynamics MEMO No CFD/TERMO-5-97 DATE: December 9,997 TITLE A comparison of complete vs. simplied viscous terms in boundary layer

More information

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level Presented at the COMSOL Conference 2009 Boston The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level Marc K. Smith Woodruff School of Mechanical Engineering Georgia Institute

More information

Bejo Duka Ergys Rexhepi. Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA

Bejo Duka Ergys Rexhepi. Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA Bejo Duka Ergys Rexhepi Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA constant surface temperature received much attention because of the theoretical interest and the wide engineering

More information