Syllabus for AE3610, Aerodynamics I

Size: px
Start display at page:

Transcription

1 Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory and experiments for solving practical aerodynamic problems. Prerequisite Courses: AE 2610 Current Textbook: Anderson, J. D., Fundamentals of Aerodynamics (Fifth Edition), McGraw-Hill, New York, References: McCormick, B. W., Aerodynamics, Aeronautics, and Flight Mechanics, Wiley, Barlow, J. B., Rae, W. H. and Pope, A., Low-Speed Wind Tunnel Testing (Third Edition), Wiley, New York, 1999 Course Instructor: William W. Liou, Professor, Mechanical and Aerospace Engineering G-230, (269) , Office Hours: M 8am-10am, 1pm-2pm Course Objectives: 1. To understand the basic theory of incompressible aerodynamics; 2. To understand the standard experimental methods for wind tunnel testing; 3. To gain the preliminary knowledge of computational methods; 4. To gain the ability of interpreting experimental and computational data. Evaluation: Midterm Exam 1: 25% Final Exam: 30% Quiz: 20% Home Work & Lab: 25% Grades: A: , BA: 80-84, B: 75-79, CB: 70-74, C: 65-69, DC 60-64, D: 55-59, F: 0-50 Topics: Local surface quantities: pressure, skin friction, and temperature Integrated quantities: lift, drag, side force, pitch, roll and yaw moments Angle of attack, the center of pressure

2 Dimensional analysis, Reynolds number, Mach number Flow similarity, wind tunnel testing, experimental techniques Continuity equation, momentum equation, energy equation Streamline, vorticity, circulation Euler equation, Bernoulli s integral Potential flow, elemental solutions Non-lifting and lifting flows over a cylinder, Kutta-Joukowski theorem Airfoils, thin-airfoil theory Finite wing, Downwash, induced drag, lifting-line theory Viscous flow, boundary layer Example Schedule for AE3610, Aerodynamics I 08/31-09/07 (a) Introduction to aerodynamics and classification of aerodynamics; The most important local quantities on an aerodynamic surface: pressure, skin friction and temperature; The integrated forces and moments: lift, drag and side force, and pitch, roll and yaw moments; The non-dimensional coefficients of the local and integrated forces and moments such as the pressure coefficient, skin fiction coefficient, lift coefficient, drag coefficient, and pitch moment coefficient. A historical remark on Theory vs. Empiricism in aerodynamics. Introduction to Applied Aerodynamics Laboratory at WMU. Discussions on static pressure measurements using taps with a U-tube and velocity measurements using a Pitot tube. Hydrostatic equation and Bernoulli s equation. 09/07-09/14 (a) Labor Day (b) Further discussions on the lift, drag and pitch moment; Calculations of the lift, drag, and pitch moments from the pressure and skin friction distributions on an airfoil; Introducing the angle of attack and the center of pressure (aerodynamic center). Brief show of quantitative, global pressure visualizations using the molecule sensor (pressure sensitive paint). Velocity calibration experiments using a Pitot tube in the small tunnel in AAL and determination of the velocity data obtained from an inclined tube manometer and the output from a pressure transducer digitized by an A/D converter in a PC. 09/14-09/21 (a) Dimensional analysis (Buckingham Pi theorem); Non-dimensional numbers in aerodynamics: Reynolds number and Mach number; Types of flows; (b) Flow similarity and wind tunnel testing; Various wind tunnels; Survey of experimental techniques for measurements of forces, moments, model attitude, and flow fields;

3 Balance calibration in a small wing tunnel to determine the relationship between the normal force and the outputs of strain gauges. 09/21-09/28 (a) Vector algebra and calculus; Continuity equation and its application in lowspeed wind tunnels; (b) Momentum equation and physical interpretation; Substantial derivative; Measurements of the force and moment coefficients of a NACA airfoil in a small wind tunnel using a calibrated balance; 09/28-10/05 (a) Application of the integral momentum equation in wake survey; Energy equation; Hierarchy of solutions in aerodynamics; (b) Midterm Exam I Measurement of the drag of a NACA airfoil or a cylinder based on wake survey; 10/05-10/12 (a) Streamline, vorticity, and circulation; Euler equation and Bernoulli s integral; Applications of Bernoulli s equation in low-speed tunnels; (b) Potential flow and Laplace equation; Potential and stream function; Measurements of the pressure distribution on a NACA airfoil using pressure taps connected with a scanning valve in a small wind tunnel. 10/12-10/19 (a) Elemental solutions (uniform flow, source/sink flow and doublet flow) and combination of these solutions; (b) Potential flow around a non-lifting cylinder; the pressure distribution on a cylinder and comparison with experimental data; Measurements of the pressure distribution on a cylinder using a pressure tap by rotating the cylinder in a small wind tunnel; Comparison with the theoretical distribution given by the potential flow theory. 10/19-10/26 (a) Lifting-flow over a cylinder; (b) Kutta-Joukowski theorem; Magnus effect; d Alembert paradox; Implication on the design of airfoils using the Joukowsky transformation;

4 Hot-wire measurements of the unsteady wake behind a cylinder at different velocities; Observation of the change of the signal, indicating the different wake patterns. 10/26-11/02 (a) Introduction to airfoils; Nomenclature of the airfoil geometry; Airfoil characteristics; Avian airfoils, NACA airfoils and low-speed airfoils; (b) Vortex sheet as an idealized model of an airfoil; Kutta condition, Kelvin s circulation theorem; Symmetric thin airfoil theory; Hot-wire measurements of the unsteady wake behind a cylinder at different velocities; Observation of the change of the signal, indicating the different flow patterns. 11/02-11/09 (a) Cambered thin airfoil theory; Numerical method for arbitrary body; practical airfoils; High-lift configurations (flap and slat); (b) Midterm Exam II; Computational experiments using Sub 2D : Lifting circular cylinder flow; Comparison with experimental data; 11/09-11/16 (a) Finite wing; Downwash and induced drag; Biot-Savart theorem; (b) Prandtl s lifting line theory; Elliptical lift distribution; Aspect ratio effect; Physical significance; Computational experiments using Sub 2D : The pressure distributions, the lift and moment coefficients of a NACA airfoil at different angles of attack; 11/16-11/23 (a) Lifting surface theory: vortex lattice method; Survey of various wings; Wing and body integration; (b) Thanksgiving Day Recess; 11/23-11/30 (a) Viscous flows and skin friction drag; Boundary layer; Skin friction in a flat-plate laminar boundary layer; (b) Transition and turbulence; Skin friction in a flat-plate turbulent boundary layer;

5 12/08. Final Exam

FUNDAMENTALS OF AERODYNAMICS

*A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

Inviscid & Incompressible flow

< 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Low-speed wind tunnel

Given the water behaves as shown above, which direction will the cylinder rotate?

water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

ACD2503 Aircraft Aerodynamics

ACD2503 Aircraft Aerodynamics Session delivered by: Prof. M. D. Deshpande 1 Aims and Summary PEMP It is intended dto prepare students for participation i i in the design process of an aircraft and its

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

Introduction to Flight

l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

E80. Fluid Measurement The Wind Tunnel Lab. Experimental Engineering.

Fluid Measurement The Wind Tunnel Lab http://twistedsifter.com/2012/10/red-bull-stratos-space-jump-photos/ Feb. 13, 2014 Outline Wind Tunnel Lab Objectives Why run wind tunnel experiments? How can we use

Contents. I Introduction 1. Preface. xiii

Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012

The E80 Wind Tunnel Experiment the experience will blow you away by Professor Duron Spring 2012 Objectives To familiarize the student with the basic operation and instrumentation of the HMC wind tunnel

ENG ME 542 Advanced Fluid Mechanics

Instructor: M. S. Howe EMA 218 mshowe@bu.edu ENG This course is intended to consolidate your knowledge of fluid mechanics and to develop a critical and mature approach to the subject. It will supply the

Summer AS5150# MTech Project (summer) **

AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing

Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 28-30, 2017, IIT Kharagpur, India ICTACEM-2017/XXXX(paper No.) An Experimental

Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem

AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem UNIT II TWO DIMENSIONAL FLOWS Complex Potential, Point Source

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1

Lifting Airfoils in Incompressible Irrotational Flow AA21b Lecture 3 January 13, 28 AA21b - Fundamentals of Compressible Flow II 1 Governing Equations For an incompressible fluid, the continuity equation

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact N. Bampalas, J. M. R. Graham Department of Aeronautics, Imperial College London, Prince Consort Road, London, SW7 2AZ June 28 1 (Steady Kutta condition)

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

Lab Reports Due on Monday, 11/24/2014

AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4 - Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be

Fundamentals of Fluid Mechanics

Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

Introduction to Aerospace Engineering

4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

Aerodynamics. High-Lift Devices

High-Lift Devices Devices to increase the lift coefficient by geometry changes (camber and/or chord) and/or boundary-layer control (avoid flow separation - Flaps, trailing edge devices - Slats, leading

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

Department of Mechanical Engineering

Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution I II III IV V VI VII VIII Total 28 22 25 24 25 28 18 14 184 SEMESTER I AS1010 Introduction to Aerospace

Numerical Simulation of Unsteady Aerodynamic Coefficients for Wing Moving Near Ground

ISSN -6 International Journal of Advances in Computer Science and Technology (IJACST), Vol., No., Pages : -7 Special Issue of ICCEeT - Held during -5 November, Dubai Numerical Simulation of Unsteady Aerodynamic

Department of Energy Sciences, LTH

Department of Energy Sciences, LTH MMV11 Fluid Mechanics LABORATION 1 Flow Around Bodies OBJECTIVES (1) To understand how body shape and surface finish influence the flow-related forces () To understand

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5

Journal of Modern Science and Technology Vol. 1. No. 1. May 2013 Issue. Pp.52-60 Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Toukir Islam and S.M. Rakibul Hassan

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

Introduction to Aeronautics

Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the

Physical Science and Engineering. Course Information. Course Number: ME 100

Physical Science and Engineering Course Number: ME 100 Course Title: Course Information Basic Principles of Mechanics Academic Semester: Fall Academic Year: 2016-2017 Semester Start Date: 8/21/2016 Semester

Aerodynamics for Engineering Students

Aerodynamics for Engineering Students Aerodynamics for Engineering Students Sixth Edition E.L. Houghton P.W. Carpenter Steven H. Collicott Daniel T. Valentine AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid

Egon Krause. Fluid Mechanics

Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.5-7

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

Theory and Fundamental of Fluid Mechanics

1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

ME EN 3700: FLUID MECHANICS (Fall 2003)

ME EN 3700: FLUID MECHANICS (Fall 2003) Lecturer: Eric R. Pardyjak Lecture: MTWThF 7:30am - 8:20am Room 104 EMCB Office Hours: (9:00am - 10:30am M W F, Room 169 KEN Website: http://www.mech.utah.edu/~pardyjak/

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

Consider a wing of finite span with an elliptic circulation distribution:

Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE

Vol.1, Issue.2, pp-371-384 ISSN: 2249-6645 THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE Dr. Mohammed W. Khadim Mechanical Engineering

Math 575-Lecture Failure of ideal fluid; Vanishing viscosity. 1.1 Drawbacks of ideal fluids. 1.2 vanishing viscosity

Math 575-Lecture 12 In this lecture, we investigate why the ideal fluid is not suitable sometimes; try to explain why the negative circulation appears in the airfoil and introduce the vortical wake to

Process Fluid Mechanics

Process Fluid Mechanics CENG 2220 Instructor: Francesco Ciucci, Room 2577A (Lift 27-29), Tel: 2358 7187, email: francesco.ciucci@ust.hk. Office Hours: Tuesday 17:00-18:00 or by email appointment Teaching

Engineering Fluid Mechanics

Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

Two-Dimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood PEMP The potential theory and its application

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

Lecture-4. Flow Past Immersed Bodies

Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

AERODYNAMICS LAB MANUAL

AERODYNAMICS LAB MANUAL Year 2017-2018 Course Code AAE103 Regulations R16 Class IV Semester Branch Aeronautical Engineering Prepared by Mr. G. Satya Dileep Mr. N. Venkata Raghavendra Aeronautical Engineering

What is the crack propagation rate for 7075-T6 aluminium alloy.

- 130 - APPENDIX 4A 100 QUESTIONS BASED ON SOURCE DOCUMENTS LISTED IN APPENDIX 4B 20-06 Magnitude of reductions in heat transfer on the nose region of a body when ablation of the surface takes place. (PI2002)

Bluff Body, Viscous Flow Characteristics ( Immersed Bodies)

Bluff Body, Viscous Flow Characteristics ( Immersed Bodies) In general, a body immersed in a flow will experience both externally applied forces and moments as a result of the flow about its external surfaces.

Experimental Aerodynamics. Experimental Aerodynamics

Lecture 3: Vortex shedding and buffeting G. Dimitriadis Buffeting! All structures exposed to a wind have the tendency to vibrate.! These vibrations are normally of small amplitude and have stochastic character!

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

Experimental Investigation to Study Flow Characteristics over a Naca0018 Aerofoil and an Automobile Dome-A Comparative Study

Experimental Investigation to Study Flow Characteristics over a Naca0018 Aerofoil and an Automobile Dome-A Comparative Study M. Sri Rama Murthy 1, A. V. S. S. K. S. Gupta 2 1 Associate professor, Department

Aerodynamics. Professor: Luís Eça

Professor: Luís Eça 1. Introduction Aerodynamical forces. Flow description. Dependent variables and physical principles that govern the flow 2. Incompressible, Viscous Flow Analytical solutions of the

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING

28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc.

FLOW SEPARATION Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. (Form Drag, Pressure Distribution, Forces and Moments, Heat And Mass Transfer, Vortex Shedding)

Aerodynamics. Professor: Luís Eça

Aerodynamics Professor: Luís Eça Program 1. Introduction Aerodynamical forces. Flow description. Dependent variables and physical principles that govern the flow Program 2. Incompressible, Viscous Flow

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

University of Engineering and Technology, Taxila. Department of Civil Engineering

University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE-201 Fluid Mechanics - I Pre-requisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference

CE261 ENGINEERING MECHANICS - DYNAMICS

CE1 ENGINEERING MECHANICS - DYNAMICS Instructor JORGE A. RAMÍREZ, PH.D. ASSOCIATE PROFESSOR Water Resources, Hydrologic and Environmental Sciences Division Civil Engineering Department A Engineering Bldg.

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

BLUFF-BODY AERODYNAMICS

International Advanced School on WIND-EXCITED AND AEROELASTIC VIBRATIONS OF STRUCTURES Genoa, Italy, June 12-16, 2000 BLUFF-BODY AERODYNAMICS Lecture Notes by Guido Buresti Department of Aerospace Engineering

Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424

Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424 Evan Coleman April 29, 2013 Spring 2013 Dr. MacLean 1 Abstract The purpose of this experiment was to determine the lift coefficient,

Fluid mechanics MFKGT710005

Fluid mechanics MFKGT710005 MSc in Petroleum Engineering Full time course SUBJECT-MATTER COMMUNICATIONS DOSSIER UNIVERSITY OF MISKOLC FACULTY OF EARTH SCIENCE AND ENGINEERING INSTITUTE OF PETROLEUM AND

Flight Vehicle Terminology

Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

List of symbols. Latin symbols. Symbol Property Unit

Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze

An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow

An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow Antonio C. Mendes, Jose C. Pascoa Universidade da Beira Interior, Laboratory of Fluid Mechanics,

Instrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A

AerE 344 Lecture Notes Lecture # 05: elocimetry Techniques and Instrumentation Dr. Hui Hu Dr. Rye Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 500, U.S.A Sources/ Further

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS. John McArthur. A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL

AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS by John McArthur A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

PPT ON LOW SPEED AERODYNAMICS B TECH IV SEMESTER (R16) AERONAUTICAL ENGINEERING. Prepared by Dr. A. Barai. Mr. N. Venkata Raghavendra

PPT ON LOW SPEED AERODYNAMICS B TECH IV SEMESTER (R16) AERONAUTICAL ENGINEERING Prepared by Dr. A. Barai Professor Mr. N. Venkata Raghavendra Associate Professor INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text

Experimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil

Research Paper American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-1, pp-91-96 www.ajer.org Open Access Experimental Evaluation of Aerodynamics Characteristics

The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art

The Pilot Design Studio-Classroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art Studio Method Used for Many decades in Architectural and Art Schools Origins The concept of the

ME 425: Aerodynamics

ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B-1: Mathematics for Aerodynamics B-: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis

Unsteady Aerodynamic Vortex Lattice of Moving Aircraft. Master thesis

Unsteady Aerodynamic Vortex Lattice of Moving Aircraft September 3, 211 Master thesis Author: Enrique Mata Bueso Supervisors: Arthur Rizzi Jesper Oppelstrup Aeronautical and Vehicle engineering department,

Lecture # 16: Review for Final Exam

AerE 344 Lecture Notes Lecture # 16: Review for Final Exam Dr. Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 511, U.S.A Dimensional Analysis and Similitude Commonly used