Syllabus for AE3610, Aerodynamics I


 Elijah Welch
 4 years ago
 Views:
Transcription
1 Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory and experiments for solving practical aerodynamic problems. Prerequisite Courses: AE 2610 Current Textbook: Anderson, J. D., Fundamentals of Aerodynamics (Fifth Edition), McGrawHill, New York, References: McCormick, B. W., Aerodynamics, Aeronautics, and Flight Mechanics, Wiley, Barlow, J. B., Rae, W. H. and Pope, A., LowSpeed Wind Tunnel Testing (Third Edition), Wiley, New York, 1999 Course Instructor: William W. Liou, Professor, Mechanical and Aerospace Engineering G230, (269) , Office Hours: M 8am10am, 1pm2pm Course Objectives: 1. To understand the basic theory of incompressible aerodynamics; 2. To understand the standard experimental methods for wind tunnel testing; 3. To gain the preliminary knowledge of computational methods; 4. To gain the ability of interpreting experimental and computational data. Evaluation: Midterm Exam 1: 25% Final Exam: 30% Quiz: 20% Home Work & Lab: 25% Grades: A: , BA: 8084, B: 7579, CB: 7074, C: 6569, DC 6064, D: 5559, F: 050 Topics: Local surface quantities: pressure, skin friction, and temperature Integrated quantities: lift, drag, side force, pitch, roll and yaw moments Angle of attack, the center of pressure
2 Dimensional analysis, Reynolds number, Mach number Flow similarity, wind tunnel testing, experimental techniques Continuity equation, momentum equation, energy equation Streamline, vorticity, circulation Euler equation, Bernoulli s integral Potential flow, elemental solutions Nonlifting and lifting flows over a cylinder, KuttaJoukowski theorem Airfoils, thinairfoil theory Finite wing, Downwash, induced drag, liftingline theory Viscous flow, boundary layer Example Schedule for AE3610, Aerodynamics I 08/3109/07 (a) Introduction to aerodynamics and classification of aerodynamics; The most important local quantities on an aerodynamic surface: pressure, skin friction and temperature; The integrated forces and moments: lift, drag and side force, and pitch, roll and yaw moments; The nondimensional coefficients of the local and integrated forces and moments such as the pressure coefficient, skin fiction coefficient, lift coefficient, drag coefficient, and pitch moment coefficient. A historical remark on Theory vs. Empiricism in aerodynamics. Introduction to Applied Aerodynamics Laboratory at WMU. Discussions on static pressure measurements using taps with a Utube and velocity measurements using a Pitot tube. Hydrostatic equation and Bernoulli s equation. 09/0709/14 (a) Labor Day (b) Further discussions on the lift, drag and pitch moment; Calculations of the lift, drag, and pitch moments from the pressure and skin friction distributions on an airfoil; Introducing the angle of attack and the center of pressure (aerodynamic center). Brief show of quantitative, global pressure visualizations using the molecule sensor (pressure sensitive paint). Velocity calibration experiments using a Pitot tube in the small tunnel in AAL and determination of the velocity data obtained from an inclined tube manometer and the output from a pressure transducer digitized by an A/D converter in a PC. 09/1409/21 (a) Dimensional analysis (Buckingham Pi theorem); Nondimensional numbers in aerodynamics: Reynolds number and Mach number; Types of flows; (b) Flow similarity and wind tunnel testing; Various wind tunnels; Survey of experimental techniques for measurements of forces, moments, model attitude, and flow fields;
3 Balance calibration in a small wing tunnel to determine the relationship between the normal force and the outputs of strain gauges. 09/2109/28 (a) Vector algebra and calculus; Continuity equation and its application in lowspeed wind tunnels; (b) Momentum equation and physical interpretation; Substantial derivative; Measurements of the force and moment coefficients of a NACA airfoil in a small wind tunnel using a calibrated balance; 09/2810/05 (a) Application of the integral momentum equation in wake survey; Energy equation; Hierarchy of solutions in aerodynamics; (b) Midterm Exam I Measurement of the drag of a NACA airfoil or a cylinder based on wake survey; 10/0510/12 (a) Streamline, vorticity, and circulation; Euler equation and Bernoulli s integral; Applications of Bernoulli s equation in lowspeed tunnels; (b) Potential flow and Laplace equation; Potential and stream function; Measurements of the pressure distribution on a NACA airfoil using pressure taps connected with a scanning valve in a small wind tunnel. 10/1210/19 (a) Elemental solutions (uniform flow, source/sink flow and doublet flow) and combination of these solutions; (b) Potential flow around a nonlifting cylinder; the pressure distribution on a cylinder and comparison with experimental data; Measurements of the pressure distribution on a cylinder using a pressure tap by rotating the cylinder in a small wind tunnel; Comparison with the theoretical distribution given by the potential flow theory. 10/1910/26 (a) Liftingflow over a cylinder; (b) KuttaJoukowski theorem; Magnus effect; d Alembert paradox; Implication on the design of airfoils using the Joukowsky transformation;
4 Hotwire measurements of the unsteady wake behind a cylinder at different velocities; Observation of the change of the signal, indicating the different wake patterns. 10/2611/02 (a) Introduction to airfoils; Nomenclature of the airfoil geometry; Airfoil characteristics; Avian airfoils, NACA airfoils and lowspeed airfoils; (b) Vortex sheet as an idealized model of an airfoil; Kutta condition, Kelvin s circulation theorem; Symmetric thin airfoil theory; Hotwire measurements of the unsteady wake behind a cylinder at different velocities; Observation of the change of the signal, indicating the different flow patterns. 11/0211/09 (a) Cambered thin airfoil theory; Numerical method for arbitrary body; practical airfoils; Highlift configurations (flap and slat); (b) Midterm Exam II; Computational experiments using Sub 2D : Lifting circular cylinder flow; Comparison with experimental data; 11/0911/16 (a) Finite wing; Downwash and induced drag; BiotSavart theorem; (b) Prandtl s lifting line theory; Elliptical lift distribution; Aspect ratio effect; Physical significance; Computational experiments using Sub 2D : The pressure distributions, the lift and moment coefficients of a NACA airfoil at different angles of attack; 11/1611/23 (a) Lifting surface theory: vortex lattice method; Survey of various wings; Wing and body integration; (b) Thanksgiving Day Recess; 11/2311/30 (a) Viscous flows and skin friction drag; Boundary layer; Skin friction in a flatplate laminar boundary layer; (b) Transition and turbulence; Skin friction in a flatplate turbulent boundary layer;
5 12/08. Final Exam
FUNDAMENTALS OF AERODYNAMICS
*A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGrawHill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas
More informationFundamentals of Aerodynamics
Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill
More information1. Fluid Dynamics Around Airfoils
1. Fluid Dynamics Around Airfoils Twodimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the
More informationFundamentals of Aerodynamits
Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE
More informationGiven a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.
Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular
More informationInviscid & Incompressible flow
< 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Lowspeed wind tunnel
More informationGiven the water behaves as shown above, which direction will the cylinder rotate?
water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counterclockwise 3) Not enough information F y U 0 U F x V=0 V=0
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More informationACD2503 Aircraft Aerodynamics
ACD2503 Aircraft Aerodynamics Session delivered by: Prof. M. D. Deshpande 1 Aims and Summary PEMP It is intended dto prepare students for participation i i in the design process of an aircraft and its
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationAEROSPACE ENGINEERING
AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics
More informationIntroduction to Flight
l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education
More informationSPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30
SPC 307  Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the
More informationE80. Fluid Measurement The Wind Tunnel Lab. Experimental Engineering.
Fluid Measurement The Wind Tunnel Lab http://twistedsifter.com/2012/10/redbullstratosspacejumpphotos/ Feb. 13, 2014 Outline Wind Tunnel Lab Objectives Why run wind tunnel experiments? How can we use
More informationContents. I Introduction 1. Preface. xiii
Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................
More informationIntroduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)
Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.
More informationCALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018
CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis
More informationThe E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012
The E80 Wind Tunnel Experiment the experience will blow you away by Professor Duron Spring 2012 Objectives To familiarize the student with the basic operation and instrumentation of the HMC wind tunnel
More informationENG ME 542 Advanced Fluid Mechanics
Instructor: M. S. Howe EMA 218 mshowe@bu.edu ENG This course is intended to consolidate your knowledge of fluid mechanics and to develop a critical and mature approach to the subject. It will supply the
More informationSummer AS5150# MTech Project (summer) **
AE1  M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance
More informationAn Experimental Validation of Numerical PostStall Aerodynamic Characteristics of a Wing
Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 2830, 2017, IIT Kharagpur, India ICTACEM2017/XXXX(paper No.) An Experimental
More informationCopyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.
Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the
More informationAERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem
AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem UNIT II TWO DIMENSIONAL FLOWS Complex Potential, Point Source
More informationLifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b  Fundamentals of Compressible Flow II 1
Lifting Airfoils in Incompressible Irrotational Flow AA21b Lecture 3 January 13, 28 AA21b  Fundamentals of Compressible Flow II 1 Governing Equations For an incompressible fluid, the continuity equation
More informationChemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017
Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering
More informationAerodynamic Rotor Model for Unsteady Flow and Wake Impact
Aerodynamic Rotor Model for Unsteady Flow and Wake Impact N. Bampalas, J. M. R. Graham Department of Aeronautics, Imperial College London, Prince Consort Road, London, SW7 2AZ June 28 1 (Steady Kutta condition)
More informationMestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13
Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :
More informationLab Reports Due on Monday, 11/24/2014
AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4  Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be
More informationFundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationIntroduction to Aerospace Engineering
4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,
More informationAerodynamics. HighLift Devices
HighLift Devices Devices to increase the lift coefficient by geometry changes (camber and/or chord) and/or boundarylayer control (avoid flow separation  Flaps, trailing edge devices  Slats, leading
More informationMasters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16
Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed
More informationDepartment of Mechanical Engineering
Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible
More informationDetailed Outline, M E 521: Foundations of Fluid Mechanics I
Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Secondorder tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic
More informationDEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution
DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution I II III IV V VI VII VIII Total 28 22 25 24 25 28 18 14 184 SEMESTER I AS1010 Introduction to Aerospace
More informationNumerical Simulation of Unsteady Aerodynamic Coefficients for Wing Moving Near Ground
ISSN 6 International Journal of Advances in Computer Science and Technology (IJACST), Vol., No., Pages : 7 Special Issue of ICCEeT  Held during 5 November, Dubai Numerical Simulation of Unsteady Aerodynamic
More informationDepartment of Energy Sciences, LTH
Department of Energy Sciences, LTH MMV11 Fluid Mechanics LABORATION 1 Flow Around Bodies OBJECTIVES (1) To understand how body shape and surface finish influence the flowrelated forces () To understand
More informationChapter 6: Incompressible Inviscid Flow
Chapter 6: Incompressible Inviscid Flow 61 Introduction 62 Nondimensionalization of the NSE 63 Creeping Flow 64 Inviscid Regions of Flow 65 Irrotational Flow Approximation 66 Elementary Planar Irrotational
More informationExperimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5
Journal of Modern Science and Technology Vol. 1. No. 1. May 2013 Issue. Pp.5260 Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Toukir Islam and S.M. Rakibul Hassan
More informationDEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum
DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures
More informationIntroduction to Aeronautics
Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the
More informationPhysical Science and Engineering. Course Information. Course Number: ME 100
Physical Science and Engineering Course Number: ME 100 Course Title: Course Information Basic Principles of Mechanics Academic Semester: Fall Academic Year: 20162017 Semester Start Date: 8/21/2016 Semester
More informationAerodynamics for Engineering Students
Aerodynamics for Engineering Students Aerodynamics for Engineering Students Sixth Edition E.L. Houghton P.W. Carpenter Steven H. Collicott Daniel T. Valentine AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK
More informationFluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid
More informationEgon Krause. Fluid Mechanics
Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.57
More informationAE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson
AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGrawHill, Inc.
More informationTheory and Fundamental of Fluid Mechanics
1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationME EN 3700: FLUID MECHANICS (Fall 2003)
ME EN 3700: FLUID MECHANICS (Fall 2003) Lecturer: Eric R. Pardyjak Lecture: MTWThF 7:30am  8:20am Room 104 EMCB Office Hours: (9:00am  10:30am M W F, Room 169 KEN Website: http://www.mech.utah.edu/~pardyjak/
More informationFLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes
SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written
More informationFLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes
SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam
More informationIntroduction to Turbulence AEEM Why study turbulent flows?
Introduction to Turbulence AEEM 7063003 Dr. Peter J. Disimile UCFEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and
More informationConsider a wing of finite span with an elliptic circulation distribution:
Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1,  s y s where s=b/ denotes the wing semispan. Use this equation, in conjunction with the KuttaJoukowsky
More informationTHE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE
Vol.1, Issue.2, pp371384 ISSN: 22496645 THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE Dr. Mohammed W. Khadim Mechanical Engineering
More informationMath 575Lecture Failure of ideal fluid; Vanishing viscosity. 1.1 Drawbacks of ideal fluids. 1.2 vanishing viscosity
Math 575Lecture 12 In this lecture, we investigate why the ideal fluid is not suitable sometimes; try to explain why the negative circulation appears in the airfoil and introduce the vortical wake to
More informationProcess Fluid Mechanics
Process Fluid Mechanics CENG 2220 Instructor: Francesco Ciucci, Room 2577A (Lift 2729), Tel: 2358 7187, email: francesco.ciucci@ust.hk. Office Hours: Tuesday 17:0018:00 or by email appointment Teaching
More informationEngineering Fluid Mechanics
Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationPEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru
TwoDimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives  At the end of this session the delegate would have understood PEMP The potential theory and its application
More informationFluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition
Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationLecture4. Flow Past Immersed Bodies
Lecture4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics
More informationAERODYNAMICS LAB MANUAL
AERODYNAMICS LAB MANUAL Year 20172018 Course Code AAE103 Regulations R16 Class IV Semester Branch Aeronautical Engineering Prepared by Mr. G. Satya Dileep Mr. N. Venkata Raghavendra Aeronautical Engineering
More informationWhat is the crack propagation rate for 7075T6 aluminium alloy.
 130  APPENDIX 4A 100 QUESTIONS BASED ON SOURCE DOCUMENTS LISTED IN APPENDIX 4B 2006 Magnitude of reductions in heat transfer on the nose region of a body when ablation of the surface takes place. (PI2002)
More informationBluff Body, Viscous Flow Characteristics ( Immersed Bodies)
Bluff Body, Viscous Flow Characteristics ( Immersed Bodies) In general, a body immersed in a flow will experience both externally applied forces and moments as a result of the flow about its external surfaces.
More informationExperimental Aerodynamics. Experimental Aerodynamics
Lecture 3: Vortex shedding and buffeting G. Dimitriadis Buffeting! All structures exposed to a wind have the tendency to vibrate.! These vibrations are normally of small amplitude and have stochastic character!
More informationfor what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?
1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first
More informationExperimental Investigation to Study Flow Characteristics over a Naca0018 Aerofoil and an Automobile DomeA Comparative Study
Experimental Investigation to Study Flow Characteristics over a Naca0018 Aerofoil and an Automobile DomeA Comparative Study M. Sri Rama Murthy 1, A. V. S. S. K. S. Gupta 2 1 Associate professor, Department
More informationAerodynamics. Professor: Luís Eça
Professor: Luís Eça 1. Introduction Aerodynamical forces. Flow description. Dependent variables and physical principles that govern the flow 2. Incompressible, Viscous Flow Analytical solutions of the
More informationCFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING
28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,
More informationFLOW SEPARATION. Aerodynamics BridgePier Design Combustion Chambers Human Blood Flow Building Design Etc.
FLOW SEPARATION Aerodynamics BridgePier Design Combustion Chambers Human Blood Flow Building Design Etc. (Form Drag, Pressure Distribution, Forces and Moments, Heat And Mass Transfer, Vortex Shedding)
More informationAerodynamics. Professor: Luís Eça
Aerodynamics Professor: Luís Eça Program 1. Introduction Aerodynamical forces. Flow description. Dependent variables and physical principles that govern the flow Program 2. Incompressible, Viscous Flow
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationMechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY
Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics
More informationUniversity of Engineering and Technology, Taxila. Department of Civil Engineering
University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE201 Fluid Mechanics  I Prerequisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference
More informationCE261 ENGINEERING MECHANICS  DYNAMICS
CE1 ENGINEERING MECHANICS  DYNAMICS Instructor JORGE A. RAMÍREZ, PH.D. ASSOCIATE PROFESSOR Water Resources, Hydrologic and Environmental Sciences Division Civil Engineering Department A Engineering Bldg.
More informationAirfoils and Wings. Eugene M. Cliff
Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and
More informationPropulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering
TITLE Propulsion Systems and Aerodynamics MODULE CODE 556894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE
More informationBLUFFBODY AERODYNAMICS
International Advanced School on WINDEXCITED AND AEROELASTIC VIBRATIONS OF STRUCTURES Genoa, Italy, June 1216, 2000 BLUFFBODY AERODYNAMICS Lecture Notes by Guido Buresti Department of Aerospace Engineering
More informationAirfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424
Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424 Evan Coleman April 29, 2013 Spring 2013 Dr. MacLean 1 Abstract The purpose of this experiment was to determine the lift coefficient,
More informationFluid mechanics MFKGT710005
Fluid mechanics MFKGT710005 MSc in Petroleum Engineering Full time course SUBJECTMATTER COMMUNICATIONS DOSSIER UNIVERSITY OF MISKOLC FACULTY OF EARTH SCIENCE AND ENGINEERING INSTITUTE OF PETROLEUM AND
More informationFlight Vehicle Terminology
Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes
More informationList of symbols. Latin symbols. Symbol Property Unit
Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze
More informationAn alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow
An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow Antonio C. Mendes, Jose C. Pascoa Universidade da Beira Interior, Laboratory of Fluid Mechanics,
More informationInstrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A
AerE 344 Lecture Notes Lecture # 05: elocimetry Techniques and Instrumentation Dr. Hui Hu Dr. Rye Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 500, U.S.A Sources/ Further
More informationCompressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath
Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus
More informationStability and Control Some Characteristics of Lifting Surfaces, and PitchMoments
Stability and Control Some Characteristics of Lifting Surfaces, and PitchMoments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such
More informationAERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS. John McArthur. A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL
AERODYNAMICS OF WINGS AT LOW REYNOLDS NUMBERS by John McArthur A Qualifying Exam Proposal Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the
More informationCOMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE
COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. VelázquezAraque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University
More informationPPT ON LOW SPEED AERODYNAMICS B TECH IV SEMESTER (R16) AERONAUTICAL ENGINEERING. Prepared by Dr. A. Barai. Mr. N. Venkata Raghavendra
PPT ON LOW SPEED AERODYNAMICS B TECH IV SEMESTER (R16) AERONAUTICAL ENGINEERING Prepared by Dr. A. Barai Professor Mr. N. Venkata Raghavendra Associate Professor INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)
More informationSCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN
SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text
More informationExperimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil
Research Paper American Journal of Engineering Research (AJER) eissn: 23200847 pissn : 23200936 Volume4, Issue1, pp9196 www.ajer.org Open Access Experimental Evaluation of Aerodynamics Characteristics
More informationThe Pilot Design StudioClassroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art
The Pilot Design StudioClassroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art Studio Method Used for Many decades in Architectural and Art Schools Origins The concept of the
More informationME 425: Aerodynamics
ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture0 Introduction toufiquehasan.buet.ac.bd
More informationAE301 Aerodynamics I UNIT B: Theory of Aerodynamics
AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B1: Mathematics for Aerodynamics B: Flow Field Representations B3: Potential Flow Analysis B4: Applications of Potential Flow Analysis
More informationUnsteady Aerodynamic Vortex Lattice of Moving Aircraft. Master thesis
Unsteady Aerodynamic Vortex Lattice of Moving Aircraft September 3, 211 Master thesis Author: Enrique Mata Bueso Supervisors: Arthur Rizzi Jesper Oppelstrup Aeronautical and Vehicle engineering department,
More informationLecture # 16: Review for Final Exam
AerE 344 Lecture Notes Lecture # 16: Review for Final Exam Dr. Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 511, U.S.A Dimensional Analysis and Similitude Commonly used
More informationMomentum (Newton s 2nd Law of Motion)
Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of
More informationAll that begins... peace be upon you
All that begins... peace be upon you Faculty of Mechanical Engineering Department of Thermo Fluids SKMM 2323 Mechanics of Fluids 2 «An excerpt (mostly) from White (2011)» ibn Abdullah May 2017 Outline
More information