Topics in Concurrency

Size: px
Start display at page:

Download "Topics in Concurrency"

Transcription

1 Topics in Concurrency Lecture 3 Jonathan Hayman 18 October 2016

2 Towards a more basic language Aim: removal of variables to reveal symmetry of input and output Transitions for value-passing carry labels τ, a?n, a!n α?x p α?0 p[0/x] α?n p[n/x] This suggests introducing prefix α?n.p (as well as α!n.p) and view α?x p as a sum n α?n.p[n/x] infinite sum View α?n and α!n as complementary actions Synchronization can only occur on complementary actions

3 Pure CCS Actions: a, b, c,... Complementary actions: a, b, c,... Internal action: τ Notational convention: a = a Processes: p ::= λ.p prefix λ ranges over τ, a, a for any action a i I p i sum I is an indexing set p 0 p 1 parallel p\l restriction L a set of actions p[f ] relabelling f a function on actions P process identifier Process definitions: P def = p

4 Transition rules for pure CCS Nil process no rules Guarded processes Sum Parallel composition λ.p λ p λ p j p j I i I p λ i p 0 λ p 0 p λ 0 p 1 p 1 λ p 0 p 1 p λ 0 p 1 p 0 p 1 p0 p 1 p 0 a p 0 p 1 a p 1 p 0 p 1 τ p 0 p 1

5 Restriction Relabelling p λ p λ L L p \ L λ p \ L p λ p p[f ] f (λ) p [f ] where L = {a a L} where f is a function such that f (τ) = τ and f (a) = f (a) Identifiers p λ p P λ p P def = p

6 Transition systems Given a CCS process p, can construct its transition system A transition system is: (S, i, L, tran)

7 Transition systems Given a CCS process p, can construct its transition system A transition system is: initial state transition relation, tran S L S (S, i, L, tran) 6 set of states set of labels

8 Transition systems Given a CCS process p, can construct its transition system A transition system is: initial state transition relation, tran S L S (S, i, L, tran) 6 set of states set of labels Graphically: s t a c v b d u S = {s, t, u, v} i = s L = {a, b, c, d} tran = { (s, a, t), (s, b, u), (t, c, v), (u, d, v) }

9 Transition systems from CCS Example: (a b)[f ] where f (a) = w and f (b) = w Example: a[f ] b[f ] where f (a) = w and f (b) = w

10 Realising transition systems Give pure CCS terms for: a b a a b a d a b

11 CCS operations on transition systems λ.p: λ.p λ p

12 CCS operations on transition systems λ.p: λ.p λ p p 0 + p 1 : p 0 α p 0 + p 1 α β p 1 β

13 a.b b: a b τ b b b a.b.nil b.nil a b

14 a.b b: a b τ b b b P where P def = p: a.b.nil b.nil p α a α b P

15 a.b b: a b τ b b b P where P def = p: a.b.nil b.nil p α a α b P p \ L, p[f ]:... A denotational semantics!

16 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p nil p nil

17 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p)

18 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m

19 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x]

20 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x] (b p) p if b evaluates to true nil if b evaluates to false

21 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x] (b p) p if b evaluates to true nil if b evaluates to false p 0 + p 1 p 0 + p 1

22 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x] (b p) p if b evaluates to true nil if b evaluates to false p 0 + p 1 p 0 + p 1 p 0 p 1 p 0 p 1

23 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x] (b p) p if b evaluates to true nil if b evaluates to false p 0 + p 1 p 0 + p 1 p 0 p 1 p 0 p 1 p \ L p \ {αm α L & m Num}

24 From value-passing to pure A translation giving a pure CCS process p from a value-passing CCS closed term p p p nil nil (τ p) (τ. p) (α!a p) αm. p where a evaluates to m (α?x p) m Num αm. p[m/x] (b p) p if b evaluates to true nil if b evaluates to false p 0 + p 1 p 0 + p 1 p 0 p 1 p 0 p 1 p \ L p \ {αm α L & m Num} P(a 1,, a k ) P m1,,m k where a i evaluates to m i For every definition P(x 1,, x k ), we have a collection of definitions P m1,...,m k indexed by m 1,, m k Num.

25 Correspondence Theorem p λ p iff p λ p

26 Recursion: an alternative Instead of a process we can use with rule P where P def = p rec(p = p) p[rec(p = p)/p] λ p rec(p = p) λ p Example: rec(p = a.nil + b.p)

27 Recursion: an alternative Instead of a process we can use the notation and for Q we can use P where P def = p and Q = q rec 1 (P = p, Q = q) rec 2 (P = p, Q = q)

28 Recursion: an alternative Instead of a process we can use the notation and for Q we can use P where P def = p and Q = q rec 1 (P = p, Q = q) rec 2 (P = p, Q = q) Generally, instead of P j where P i = p i is a collection of definitions indexed by i I, can use rec j (P i = p i ) i I which is also written rec j ( P = p)

29 Proofs of correctness By satisfying formulas in a logic By satisfying an equivalence

Topics in Concurrency

Topics in Concurrency Topics in Concurrency Lecture 3 Jonathan Hayman 18 February 2015 Recap: Syntax of CCS Expressions: Arithmetic a and Boolean b Processes: p ::= nil nil process (τ p) silent/internal action (α!a p) output

More information

Semantics and Verification

Semantics and Verification Semantics and Verification Lecture 2 informal introduction to CCS syntax of CCS semantics of CCS 1 / 12 Sequential Fragment Parallelism and Renaming CCS Basics (Sequential Fragment) Nil (or 0) process

More information

CCS: Syntax & Semantics (Final Version)

CCS: Syntax & Semantics (Final Version) CCS: & Semantics (Final Version) Prof. Susan Older 14 September 2017 (CIS 400/632) CCS & Semantics 14 September 2017 1 / 10 Relevant Syntactic Sets: A Recap from Last Time We have the following countably

More information

Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems

Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems Rocco De Nicola IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it June 2013 Lesson 10 R. De Nicola

More information

Decidable Subsets of CCS

Decidable Subsets of CCS Decidable Subsets of CCS based on the paper with the same title by Christensen, Hirshfeld and Moller from 1994 Sven Dziadek Abstract Process algebra is a very interesting framework for describing and analyzing

More information

Timed Automata VINO 2011

Timed Automata VINO 2011 Timed Automata VINO 2011 VeriDis Group - LORIA July 18, 2011 Content 1 Introduction 2 Timed Automata 3 Networks of timed automata Motivation Formalism for modeling and verification of real-time systems.

More information

Expressiveness of Timed Events and Timed Languages

Expressiveness of Timed Events and Timed Languages Expressiveness of Timed Events and Timed Languages Diletta R. Cacciagrano and Flavio Corradini Università di Camerino, Dipartimento di Matematica e Informatica, Camerino, 62032, Italy, {diletta.cacciagrano,

More information

Time and Fairness in a Process Algebra with Non-Blocking Reading. F. Corradini, M.R. Di Berardini, W. Vogler. Report July 2008

Time and Fairness in a Process Algebra with Non-Blocking Reading. F. Corradini, M.R. Di Berardini, W. Vogler. Report July 2008 à ÊÇÅÍÆ ËÀǼ Universität Augsburg Time and Fairness in a Process Algebra with Non-Blocking Reading F. Corradini, M.R. Di Berardini, W. Vogler Report 2008-3 July 2008 Institut für Informatik D-8635 Augsburg

More information

Unifying Theories of Programming

Unifying Theories of Programming 1&2 Unifying Theories of Programming Unifying Theories of Programming 3&4 Theories Unifying Theories of Programming designs predicates relations reactive CSP processes Jim Woodcock University of York May

More information

Complex Systems Design & Distributed Calculus and Coordination

Complex Systems Design & Distributed Calculus and Coordination Complex Systems Design & Distributed Calculus and Coordination Concurrency and Process Algebras: Theory and Practice Francesco Tiezzi University of Camerino francesco.tiezzi@unicam.it A.A. 2014/2015 F.

More information

Models for Concurrency

Models for Concurrency Models for Concurrency (A revised version of DAIMI PB-429) Glynn Winskel Mogens Nielsen Computer Science Department, Aarhus University, Denmark November 1993 Abstract This is, we believe, the final version

More information

A Note on Scope and Infinite Behaviour in CCS-like Calculi p.1/32

A Note on Scope and Infinite Behaviour in CCS-like Calculi p.1/32 A Note on Scope and Infinite Behaviour in CCS-like Calculi GERARDO SCHNEIDER UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN Joint work with Pablo Giambiagi and Frank Valencia A

More information

Alternating-Time Temporal Logic

Alternating-Time Temporal Logic Alternating-Time Temporal Logic R.Alur, T.Henzinger, O.Kupferman Rafael H. Bordini School of Informatics PUCRS R.Bordini@pucrs.br Logic Club 5th of September, 2013 ATL All the material in this presentation

More information

Reasoning about Time and Reliability

Reasoning about Time and Reliability Reasoning about Time and Reliability Probabilistic CTL model checking Daniel Bruns Institut für theoretische Informatik Universität Karlsruhe 13. Juli 2007 Seminar Theorie und Anwendung von Model Checking

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

Modal and Temporal Logics

Modal and Temporal Logics Modal and Temporal Logics Colin Stirling School of Informatics University of Edinburgh July 23, 2003 Why modal and temporal logics? 1 Computational System Modal and temporal logics Operational semantics

More information

An introduction to process calculi: Calculus of Communicating Systems (CCS)

An introduction to process calculi: Calculus of Communicating Systems (CCS) An introduction to process calculi: Calculus of Communicating Systems (CCS) Lecture 2 of Modelli Matematici dei Processi Concorrenti Paweł Sobociński University of Southampton, UK Intro to process calculi:

More information

Trace semantics: towards a unification of parallel paradigms Stephen Brookes. Department of Computer Science Carnegie Mellon University

Trace semantics: towards a unification of parallel paradigms Stephen Brookes. Department of Computer Science Carnegie Mellon University Trace semantics: towards a unification of parallel paradigms Stephen Brookes Department of Computer Science Carnegie Mellon University MFCSIT 2002 1 PARALLEL PARADIGMS State-based Shared-memory global

More information

Propositional Dynamic Logic

Propositional Dynamic Logic Propositional Dynamic Logic Contents 1 Introduction 1 2 Syntax and Semantics 2 2.1 Syntax................................. 2 2.2 Semantics............................... 2 3 Hilbert-style axiom system

More information

First-Order Predicate Logic. Basics

First-Order Predicate Logic. Basics First-Order Predicate Logic Basics 1 Syntax of predicate logic: terms A variable is a symbol of the form x i where i = 1, 2, 3.... A function symbol is of the form fi k where i = 1, 2, 3... und k = 0,

More information

Models of Concurrency

Models of Concurrency Models of Concurrency GERARDO SCHNEIDER UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN Thanks to Frank Valencia Models of Concurrency p.1/57 Concurrency is Everywhere Concurrent

More information

COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences. Revision: 1.3

COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences. Revision: 1.3 1 COMP9020 Lecture 3 Session 2, 2014 Sets, Functions, and Sequences Revision: 1.3 2 Notation for Numbers Definition Integers Z = {... 2, 1, 0, 1, 2,...} Reals R. : R Z floor of x, the greatest integer

More information

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators.

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators. CSE 311: Foundations of Computing I Autumn 014 Practice Final: Section X YY ZZ Name: UW ID: Instructions: Closed book, closed notes, no cell phones, no calculators. You have 110 minutes to complete the

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Real-Time Reactive System - CCS with Time Delays

Real-Time Reactive System - CCS with Time Delays Real-Time Reactive System - CCS with Time Delays Wai Leung Sze (Stephen) Swansea University VINO 18th July 2011 Overview Introduction of real-time reactive system Describing the real-time reactive system

More information

A Brief History of Shared memory C M U

A Brief History of Shared memory C M U A Brief History of Shared memory S t e p h e n B r o o k e s C M U 1 Outline Revisionist history Rational reconstruction of early models Evolution of recent models A unifying framework Fault-detecting

More information

Special Topics on Applied Mathematical Logic

Special Topics on Applied Mathematical Logic Special Topics on Applied Mathematical Logic Spring 2012 Lecture 04 Jie-Hong Roland Jiang National Taiwan University March 20, 2012 Outline First-Order Logic Truth and Models (Semantics) Logical Implication

More information

Coinductive big-step semantics and Hoare logics for nontermination

Coinductive big-step semantics and Hoare logics for nontermination Coinductive big-step semantics and Hoare logics for nontermination Tarmo Uustalu, Inst of Cybernetics, Tallinn joint work with Keiko Nakata COST Rich Models Toolkit meeting, Madrid, 17 18 October 2013

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Finitary logics for some ees observational bisimulations

Finitary logics for some ees observational bisimulations Finitary logics for some ees observational bisimulations Miranda Mowbray Hewlett Packard Pisa Science Centre, Corso Italia 115, Pisa, Italy mjfm@hplb.hpl.hp.com November 7, 1995 Keywords: concurrency,

More information

Modeling and Analysis of Communicating Systems

Modeling and Analysis of Communicating Systems Modeling and Analysis of Communicating Systems Lecture 5: Sequential Processes Jeroen Keiren and Mohammad Mousavi j.j.a.keiren@vu.nl and m.r.mousavi@hh.se Halmstad University March 2015 Outline Motivation

More information

Recursion in Coalgebras

Recursion in Coalgebras Recursion in Coalgebras Mauro Jaskelioff mjj@cs.nott.ac.uk School of Computer Science & IT FoP Away Day 2007 Outline Brief overview of coalgebras. The problem of divergence when considering unguarded recursion.

More information

Causality Interfaces and Compositional Causality Analysis

Causality Interfaces and Compositional Causality Analysis Causality Interfaces and Compositional Causality Analysis Edward A. Lee Haiyang Zheng Ye Zhou {eal,hyzheng,zhouye}@eecs.berkeley.edu Center for Hybrid and Embedded Software Systems (CHESS) Department of

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Homework 8/Solutions

Homework 8/Solutions MTH 309-4 Linear Algebra I F11 Homework 8/Solutions Section Exercises 6.2 1,2,9,12,16,21 Section 6.2 Exercise 2. For each of the following functions, either show the function is onto by choosing an arbitrary

More information

September 14. Fall Software Foundations CIS 500

September 14. Fall Software Foundations CIS 500 CIS 500 Software Foundations Fall 2005 September 14 CIS 500, September 14 1 Announcements I will be away September 19-October 5. I will be reachable by email. Fastest response cis500@cis.upenn.edu No office

More information

Liveness of Communicating Transactions

Liveness of Communicating Transactions (joint work with Vasileios Koutavas and Matthew Hennessy) TRINITY COLLEGE DUBLIN COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH Dublin Concurrency Workshop 2011 Traditional Transactions Transactions provide

More information

Partial model checking via abstract interpretation

Partial model checking via abstract interpretation Partial model checking via abstract interpretation N. De Francesco, G. Lettieri, L. Martini, G. Vaglini Università di Pisa, Dipartimento di Ingegneria dell Informazione, sez. Informatica, Via Diotisalvi

More information

CS 4110 Programming Languages & Logics. Lecture 25 Records and Subtyping

CS 4110 Programming Languages & Logics. Lecture 25 Records and Subtyping CS 4110 Programming Languages & Logics Lecture 25 Records and Subtyping 31 October 2016 Announcements 2 Homework 6 returned: x = 34 of 37, σ = 3.8 Preliminary Exam II in class on Wednesday, November 16

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Elimination of binary choice sequences

Elimination of binary choice sequences Elimination of binary choice sequences Tatsuji Kawai Japan Advanced Institute of Science and Technology JSPS Core-to-Core Program Workshop on Mathematical Logic and its Application 16 17 September 2016,

More information

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus CS 4110 Programming Languages & Logics Lecture 16 Programming in the λ-calculus 30 September 2016 Review: Church Booleans 2 We can encode TRUE, FALSE, and IF, as: TRUE λx. λy. x FALSE λx. λy. y IF λb.

More information

Lecture Notes on Model Checking

Lecture Notes on Model Checking Lecture Notes on Model Checking 15-816: Modal Logic André Platzer Lecture 18 March 30, 2010 1 Introduction to This Lecture In this course, we have seen several modal logics and proof calculi to justify

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Deconstructing CCS and CSP Asynchronous Communication, Fairness, and Full Abstraction

Deconstructing CCS and CSP Asynchronous Communication, Fairness, and Full Abstraction Deconstructing CCS and CSP Asynchronous Communication, Fairness, and Full Abstraction Stephen Brookes Carnegie Mellon University Paper presented at MFPS 16 In honor of Robin Milner Abstract The process

More information

1. Definition of a Polynomial

1. Definition of a Polynomial 1. Definition of a Polynomial What is a polynomial? A polynomial P(x) is an algebraic expression of the form Degree P(x) = a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 3 x 3 + a 2 x 2 + a 1 x + a 0 Leading

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

COMPUTER SCIENCE TEMPORAL LOGICS NEED THEIR CLOCKS

COMPUTER SCIENCE TEMPORAL LOGICS NEED THEIR CLOCKS Bulletin of the Section of Logic Volume 18/4 (1989), pp. 153 160 reedition 2006 [original edition, pp. 153 160] Ildikó Sain COMPUTER SCIENCE TEMPORAL LOGICS NEED THEIR CLOCKS In this paper we solve some

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV Henrik Nilsson University of Nottingham, UK G54FOP: Lecture 17 & 18 p.1/33 These Two Lectures Revisit attempt to define denotational

More information

Primitive recursive functions: decidability problems

Primitive recursive functions: decidability problems Primitive recursive functions: decidability problems Armando B. Matos October 24, 2014 Abstract Although every primitive recursive (PR) function is total, many problems related to PR functions are undecidable.

More information

2nd Exam. First Name: Second Name: Matriculation Number: Degree Programme (please mark): CS Bachelor CS Master CS Lehramt SSE Master Other:

2nd Exam. First Name: Second Name: Matriculation Number: Degree Programme (please mark): CS Bachelor CS Master CS Lehramt SSE Master Other: 2 Concurrency Theory WS 2013/2014 Chair for Software Modeling and Verification Rheinisch-Westfälische Technische Hochschule Aachen Prof. Dr. Ir. Joost-Pieter Katoen apl. Prof. Dr. Thomas Noll S. Chakraorty,

More information

PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2

PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2 PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2 Neil D. Jones DIKU 2005 14 September, 2005 Some slides today new, some based on logic 2004 (Nils Andersen) OUTLINE,

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

Review of The π-calculus: A Theory of Mobile Processes

Review of The π-calculus: A Theory of Mobile Processes Review of The π-calculus: A Theory of Mobile Processes Riccardo Pucella Department of Computer Science Cornell University July 8, 2001 Introduction With the rise of computer networks in the past decades,

More information

On the Executability of Interactive Computation. June 23, 2016 Where innovation starts

On the Executability of Interactive Computation. June 23, 2016 Where innovation starts On the Executability of Interactive Computation Bas Luttik Fei Yang June 23, 2016 Where innovation starts Outline 2/37 From Computation to Interactive Computation Executability - an Integration of Computability

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

Featured Weighted Automata. FormaliSE 2017

Featured Weighted Automata. FormaliSE 2017 Featured Weighted Automata Uli Fahrenberg Axel Legay École polytechnique, Palaiseau, France Inria Rennes, France FormaliSE 2017 Elevator Pitch featured transition systems for modeling software product

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2017 Fall Hakjoo Oh COSE212 2017 Fall, Lecture 1 September 4, 2017 1 / 9 Inductive Definitions Inductive definition (induction)

More information

Benefits of Interval Temporal Logic for Specification of Concurrent Systems

Benefits of Interval Temporal Logic for Specification of Concurrent Systems Benefits of Interval Temporal Logic for Specification of Concurrent Systems Ben Moszkowski Software Technology Research Laboratory De Montfort University Leicester Great Britain email: benm@dmu.ac.uk http://www.tech.dmu.ac.uk/~benm

More information

Lecture 11: Timed Automata

Lecture 11: Timed Automata Real-Time Systems Lecture 11: Timed Automata 2014-07-01 11 2014-07-01 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: DC (un)decidability This Lecture:

More information

Propositional and Predicate Logic - IV

Propositional and Predicate Logic - IV Propositional and Predicate Logic - IV Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - IV ZS 2015/2016 1 / 19 Tableau method (from the previous lecture)

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

MATH1050 Greatest/least element, upper/lower bound

MATH1050 Greatest/least element, upper/lower bound MATH1050 Greatest/ element, upper/lower bound 1 Definition Let S be a subset of R x λ (a) Let λ S λ is said to be a element of S if, for any x S, x λ (b) S is said to have a element if there exists some

More information

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main Real-Time Systems Lecture 10: Timed Automata 2013-06-04 10 2013-06-04 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: PLC, PLC automata This Lecture:

More information

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University Modelling Real-Time Systems Henrik Ejersbo Jensen Aalborg University Hybrid & Real Time Systems Control Theory Plant Continuous sensors actuators Task TaskTask Controller Program Discrete Computer Science

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

Trace Refinement of π-calculus Processes

Trace Refinement of π-calculus Processes Trace Refinement of pi-calculus Processes Trace Refinement of π-calculus Processes Manuel Gieseking manuel.gieseking@informatik.uni-oldenburg.de) Correct System Design, Carl von Ossietzky University of

More information

Formal Models of Timed Musical Processes Doctoral Defense

Formal Models of Timed Musical Processes Doctoral Defense Formal Models of Timed Musical Processes Doctoral Defense Gerardo M. Sarria M. Advisor: Camilo Rueda Co-Advisor: Juan Francisco Diaz Universidad del Valle AVISPA Research Group September 22, 2008 Motivation

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

Propositions. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.1, Page 1

Propositions. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.1, Page 1 Propositions An interpretation is an assignment of values to all variables. A model is an interpretation that satisfies the constraints. Often we don t want to just find a model, but want to know what

More information

1 Completeness Theorem for First Order Logic

1 Completeness Theorem for First Order Logic 1 Completeness Theorem for First Order Logic There are many proofs of the Completeness Theorem for First Order Logic. We follow here a version of Henkin s proof, as presented in the Handbook of Mathematical

More information

CSE 311 Lecture 25: Relating NFAs, DFAs, and Regular Expressions. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 25: Relating NFAs, DFAs, and Regular Expressions. Emina Torlak and Kevin Zatloukal CSE 3 Lecture 25: Relating NFAs, DFAs, and Regular Expressions Emina Torlak and Kevin Zatloukal Topics From regular expressions to NFAs Theorem, algorithm, and examples. From NFAs to DFAs Theorem, algorithm,

More information

Basics of Model Theory

Basics of Model Theory Chapter udf Basics of Model Theory bas.1 Reducts and Expansions mod:bas:red: defn:reduct mod:bas:red: prop:reduct Often it is useful or necessary to compare languages which have symbols in common, as well

More information

ECE473 Lecture 15: Propositional Logic

ECE473 Lecture 15: Propositional Logic ECE473 Lecture 15: Propositional Logic Jeffrey Mark Siskind School of Electrical and Computer Engineering Spring 2018 Siskind (Purdue ECE) ECE473 Lecture 15: Propositional Logic Spring 2018 1 / 23 What

More information

Model checking (III)

Model checking (III) Theory and Algorithms Model checking (III) Alternatives andextensions Rafael Ramirez rafael@iua.upf.es Trimester1, Oct2003 Slide 9.1 Logics for reactive systems The are many specification languages for

More information

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future...

Models. Lecture 25: Model Checking. Example. Semantics. Meanings with respect to model and path through future... Models Lecture 25: Model Checking CSCI 81 Spring, 2012 Kim Bruce Meanings with respect to model and path through future... M = (S,, L) is a transition system if S is a set of states is a transition relation

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Iit Istituto di Informatica e Telematica

Iit Istituto di Informatica e Telematica C Consiglio Nazionale delle Ricerche Specification and Analysis of Information Flow Properties for Distributed Systems R. Gorreri, F. Martinelli, I. Matteucci IIT TR-12/2010 Technical report Febbraio 2010

More information

Communication and Concurrency: CCS

Communication and Concurrency: CCS Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 cours SSDE Master 1 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics,

More information

From Monadic Second-Order Definable String Transformations to Transducers

From Monadic Second-Order Definable String Transformations to Transducers From Monadic Second-Order Definable String Transformations to Transducers Rajeev Alur 1 Antoine Durand-Gasselin 2 Ashutosh Trivedi 3 1 University of Pennsylvania 2 LIAFA, Université Paris Diderot 3 Indian

More information

06 From Propositional to Predicate Logic

06 From Propositional to Predicate Logic Martin Henz February 19, 2014 Generated on Wednesday 19 th February, 2014, 09:48 1 Syntax of Predicate Logic 2 3 4 5 6 Need for Richer Language Predicates Variables Functions 1 Syntax of Predicate Logic

More information

Bringing class diagrams to life

Bringing class diagrams to life Bringing class diagrams to life Luis S. Barbosa & Sun Meng DI-CCTC, Minho University, Braga & CWI, Amsterdam UML & FM Workshop 2009 Rio de Janeiro 8 December, 2009 Formal Methods proofs problems structures

More information

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 1 - Propositional logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 1 - Propositional logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018

More information

Solutions to Homework I (1.1)

Solutions to Homework I (1.1) Solutions to Homework I (1.1) Problem 1 Determine whether each of these compound propositions is satisable. a) (p q) ( p q) ( p q) b) (p q) (p q) ( p q) ( p q) c) (p q) ( p q) (a) p q p q p q p q p q (p

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

PSPACE-completeness of LTL/CTL model checking

PSPACE-completeness of LTL/CTL model checking PSPACE-completeness of LTL/CTL model checking Peter Lohmann April 10, 2007 Abstract This paper will give a proof for the PSPACE-completeness of LTLsatisfiability and for the PSPACE-completeness of the

More information

logical verification lecture program extraction and prop2

logical verification lecture program extraction and prop2 logical verification lecture 7 2017-05-04 program extraction and prop2 overview program extraction program extraction: examples verified programs: alternative approach formulas of prop2 terminology proofs

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method Overview CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL Agenda for today: Semantic argument method for proving FOL validity Işıl Dillig Important properties of FOL

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

CS477 Formal Software Dev Methods

CS477 Formal Software Dev Methods CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

More information

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980 Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics, to be handled on

More information

CS156: The Calculus of Computation Zohar Manna Winter 2010

CS156: The Calculus of Computation Zohar Manna Winter 2010 Page 3 of 35 Page 4 of 35 quantifiers CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 2: First-Order Logic (FOL) existential quantifier x. F [x] there exists an x such that F [x] Note:

More information

Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning

Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning Logical Structures in Natural Language: Propositional Logic II (Truth Tables and Reasoning Raffaella Bernardi Università degli Studi di Trento e-mail: bernardi@disi.unitn.it Contents 1 What we have said

More information

Roberto Bruni, Ugo Montanari DRAFT. Models of Computation. Monograph. May 20, Springer

Roberto Bruni, Ugo Montanari DRAFT. Models of Computation. Monograph. May 20, Springer Roberto Bruni, Ugo Montanari Models of Computation Monograph May 20, 2016 Springer Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information