Chemical Bonding I: Basic Concepts

Size: px
Start display at page:

Download "Chemical Bonding I: Basic Concepts"

Transcription

1 Chemical Bonding I: Basic Concepts Chapter 9 Chang & Goldsby Modified by Dr. Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

2 Example 9.8 (1) Strategy The skeletal structure for N 2 O is We follow the procedure used for drawing Lewis structures and calculating formal charges in Examples 9.5 and 9.6. Solution The three resonance structures are End 10/30 9 am class 2

3 Example 9.8 (2) We see that all three structures show formal charges. Structure (b) is the most important one because the negative charge is on the more electronegative oxygen atom. Structure (c) is the least important one because it has a larger separation of formal charges. Also, the positive charge is on the more electronegative oxygen atom. Check Make sure there is no change in the positions of the atoms in the structures. Because N has five valence electrons and O has six valence electrons, the total number of valence electrons is = 16. The sum of formal charges is zero in each structure. 3

4 The Incomplete Octet Exceptions to the Octet Rule BeH 2 Be 2e 2H 2 1e H Be H 4e BF 3 B 3e 3F 3 7e F B F 24e F 3 single bonds 3 2 = 6 9 lone pairs 9 2 = 18 Total = 24 4

5 Odd-Electron Molecules Exceptions to the Octet Rule (1) NO N 5e O 6e N O 11e The Expanded Octet ( with principal quantum number n > 2) SF 6 S 6e 6F 42e 48e F F F S F F F 6 single bonds 6 2 = lone pairs 18 2 = 36 Total = 48 5

6 Example 9.9 Draw the Lewis structure for aluminum triiodide AlI 3. AlI 3 has a tendency to dimerize or form two units as Al 2 I 6. 6

7 Example 9.9 (1) Strategy We follow the procedures used in Examples 9.5 and 9.6 to draw the Lewis structure and calculate formal charges. Solution The outer-shell electron configurations of Al and I are 3s 2 3p 1 and 5s 2 5p 5, respectively. The total number of valence electrons is or 24. Because Al is less electronegative than I, it occupies a central position and forms three bonds with the I atoms: Note that there are no formal charges on the Al and I atoms. 7

8 Example 9.9 (2) Check Although the octet rule is satisfied for the I atoms, there are only six valence electrons around the Al atom. Thus, AlI 3 is an example of the incomplete octet. 8

9 Example 9.10 Draw the Lewis structure for phosphorus pentafluoride PF 5, in which all five F atoms are bonded to the central P atom. End class 10/30 10 am M PF 5 is a reactive gaseous compound. 9

10 Example 9.10 (1) Strategy Note that P is a third-period element. We follow the procedures given in Examples 9.5 and 9.6 to draw the Lewis structure and calculate formal charges. Solution The outer-shell electron configurations for P and F are 3s 2 3p 3 and 2s 2 2p 5, respectively, and so the total number of valence electrons is , or 40. Phosphorus, like sulfur, is a third-period element, and therefore it can have an expanded octet. 10

11 Example 9.10 (2) The Lewis structure of PF 5 is Note that there are no formal charges on the P and F atoms. Check Although the octet rule is satisfied for the F atoms, there are 10 valence electrons around the P atom, giving it an expanded octet. 11

12 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 12

13 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. (imagine tying together 2 balloons as far as possible), lone pair electrons are invisible but occupy space Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB linear linear 13

14 Beryllium Chloride Copyright McGraw-Hill Education. Permission required for reproduction or display. 14

15 VSEPR Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB linear Linear AB imagine tying 3 balloons trigonal Planar trigonal planar 15

16 Boron Trifluoride Copyright McGraw-Hill Education. Permission required for reproduction or display. 16

17 Class # of atoms bonded to VSEPR (2) # lone pairs on Arrangement of electron pairs Molecular Geometry AB linear linear AB trigonal planar trigonal planar AB tetrahedral tetrahedral imagine tying 4 balloons 17

18 Methane Copyright McGraw-Hill Education. Permission required for reproduction or display. 18

19 VSEPR (3) Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB linear linear AB trigonal planar trigonal planar AB tetrahedral tetrahedral AB trigonal bipyramidal trigonal bipyramidal 19

20 Phosphorus Pentachloride Copyright McGraw-Hill Education. Permission required for reproduction or display. 20

21 VSEPR (4) Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB linear linear AB trigonal planar trigonal planar AB tetrahedral tetrahedral AB trigonal bipyramidal trigonal bipyramidal AB Octahedral octahedral 21

22 Sulfur Hexafluoride Copyright McGraw-Hill Education. Permission required for reproduction or display. 22

23 Summary of VSEPR *Bonds coming out of the page are represented as solid wedges. Bonds going into the page are represented as dashed wedges. 23

24 Tetrahedral Bond Angles lone-pair vs. lone-pair repulsion > lone-pair vs. bondingpair repulsion > bonding-pair vs. bondingpair repulsion 24

25 VSEPR: 3 Electron Groups Class # of atoms bonded to # lone pairs on Arrangement of electron pairs AB trigonal Planar AB 2 E 2 1 trigonal planar Molecular Geometry trigonal planar bent Copyright McGraw-Hill Education. Permission required for reproduction or display. 25

26 VSEPR: 4 Electron Groups Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB tetrahedral tetrahedral AB 3 E 3 1 tetrahedral trigonal pyramidal Copyright McGraw-Hill Education. Permission required for reproduction or display. End 11/1/17 9 am & 10 am 26

27 VSEPR: 4 Electron Groups Class # of atoms bonded to # lone pairs on Arrangement of electron pairs Molecular Geometry AB tetrahedral tetrahedral AB 3 E 3 1 tetrahedral trigonal pyramidal Copyright McGraw-Hill Education. Permission required for reproduction or display. End 11/1/17 9 am & 10 am 27

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Lewis Structure and Electron Dot Models

Lewis Structure and Electron Dot Models Lewis Structure and Electron Dot Models The Lewis Structure is a method of displaying the electrons present in any given atom or compound. Steps: 1. Make a skeleton structure 2. Count all e- available

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table.

VSEPR Theory. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. Chemistry Warm-up: 1. Pick up a set of the skeleton notes from the first lab table. 2. Complete the words of the week assignment. You need to have answers for Tuesday, Thursday and today. Today s : Draw

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Introduction to VSEPR Theory 1

Introduction to VSEPR Theory 1 1 Class 8: Introduction to VSEPR Theory Sec 10.2 VSEPR Theory: The Five Basic Shapes Two Electron Groups: Linear Geometry Three Electron Groups: Trigonal Planar Geometry Four Electron Groups: Tetrahedral

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Valence electrons are the outer shell electrons of an atom. The valence

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

Valence Shell Electron Pair Repulsion Model

Valence Shell Electron Pair Repulsion Model Valence Shell Electron Pair Repulsion Model Why? Molecules adopt a shape that minimizes their energy. In most cases simply considering the repulsive energy of electron pairs is sufficient to predict molecular

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs

(A) 1 bonding pair (B) 1 bonding pair and 1 lone pair (C) 2 bonding pairs (D) 2 bonding pairs and 2 lone pairs AP Chemistry - Problem Drill 13: Lewis Structures and VSPER No. 1 of 10 1. Lewis structure is used to model covalent bonds of a molecule or ion. Covalent bonds are a type of chemical bonding formed by

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model

The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model 1 PREDICTING MOLECULAR SHAPE The shape of simple molecules (and parts of larger molecules) can be easily predicted using the VSEPR model VSEPR = Valence Shell Electron Pair Repulsion Model - Each BOND

More information

Activity Formal Charge and VSEPR Theory for Expanded Octets

Activity Formal Charge and VSEPR Theory for Expanded Octets Activity 201 7 Formal Charge and VSEPR Theory for Expanded Octets Directions: This Guided Learning Activity (GLA) goes over formal charge and the structures of molecules with expanded octets. Part A introduces

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4 Expanded valence shells (extended octets) more than 8e - around a central atom Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Chem 121 Exam 4 Practice Exam

Chem 121 Exam 4 Practice Exam Chem 121 Exam 4 Practice Exam 1. What is the correct electron configuration for bromine? b. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 4p 6 c. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 d. 1s 2 2s 2 2p 6 3s 2 3p

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative Helpful Hints Lewis Structures Octet Rule Lewis structures are a basic representation of how atoms are arranged in compounds based on bond formation by the valence electrons. A Lewis dot symbol of an atom

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

CHM 151LL: Geometry of Covalent Compounds

CHM 151LL: Geometry of Covalent Compounds CM 151LL: Geometry of Covalent Compounds Introduction Octet Rule A Lewis structure (or electrondot formula) is a twodimensional structural formula showing the arrangement of electrons around atoms in covalently

More information

MOLECULAR MODELS OBJECTIVES

MOLECULAR MODELS OBJECTIVES MOLECULAR MODELS OBJECTIVES 1. To learn to draw Lewis structures for common compounds 2. To identify electron pairs as bonding pairs or lone pairs 3. To use electron pair repulsion theory to predict electronic

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

The Shapes of Molecules. Chemistry II

The Shapes of Molecules. Chemistry II The Shapes of Molecules Chemistry II Lewis Structures DEFINITIN: A structure of a molecule showing how the valence electrons are arranged. 1) nly the valence electrons appear in a Lewis structure. 2) The

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Localized electron model A bond is made when a half-filled orbital of one atom overlaps with a half-filled orbital of another.! Bond: orbitals overlap straight on p

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1 Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical species

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Carbon Compounds. Chemical Bonding Part 1b

Carbon Compounds. Chemical Bonding Part 1b Carbon Compounds Chemical Bonding Part 1b Board Notes Introduction to VSEPR Organic Formulas Various Representations " dimethyl ether C 2 H 6 O " propyl alcohol C 3 H 8 O 3D representations " Wedges and

More information

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

Chemical Bonding. Types of Bonds. Ionic Bonding. Resonance Structures. Molecular Geometries. VSEPR Basic Shapes 3-D Notation Hybridization (Lab) Chemical Bonding Types of Bonds Ionic Bonding Lewis Structures Covalent Bonding Resonance Structures Octet Rule Polar Molecules Molecular Geometries VSEPR Basic Shapes 3-D Notation Hybridization (Lab)

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Downloaded from

Downloaded from Points to Remember Class: XI Chapter Name: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.3 Covalent structures

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Chem 105 Friday, 5 Nov 2010

Chem 105 Friday, 5 Nov 2010 Chem 105 riday, 5 Nov 2010 Lewis formula practice Sub-octet and expanded-octet molecules Molecular geometry Electron pair geometry vs. molecular geometry 11/5/2010 1 The preferred Lewis formula for CN

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Chemistry and the material world Lecture 3

Chemistry and the material world Lecture 3 Chemistry and the material world 123.102 Lecture 3 Electronic bookkeeping we need a way of finding out in which proportions two or more atoms make up a molecule is it CH 3 or CH 4 or CH 5? counting valence

More information

Chapter 8. Bonding: General Concepts. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 8. Bonding: General Concepts. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents (8.1) (8.2) (8.3) (8.4) (8.5) (8.6) (8.7) (8.8) Types of chemical bonds Electronegativity Bond polarity and dipole moments Ions: Electron

More information

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures.

Illinois Central College CHEMISTRY 130 Laboratory Section: To predict the shapes of molecules based on their Lewis Structures. Exercise 12 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Molecular Structure Name: Objectives To predict the shapes of molecules based on their Lewis Structures. Background The Valence

More information

C PM RESURRECTION

C PM RESURRECTION Announcements Final Exam TIME: October 8, 7:30-9:30AM VENUE: CTC 105 65-Multiple Choice Questions 3 Questions Each Chapter 2-5 7 Questions Each Chapter 6-8 30 Questions From Chapter 9-11 Saturday Review

More information

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding Outline for Today Monday, Nov. 12 Chapter 8: Chemical Bonding Bond Enthalpies Chapter 9: Theories of Bonding VSEPR (Valence Shell Electron Pair Repulsion) Theory Valence Bond Orbital ybridization Molecular

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

Molecular shapes. Balls and sticks

Molecular shapes. Balls and sticks Molecular shapes Balls and sticks Learning objectives Apply VSEPR to predict electronic geometry and shapes of simple molecules Determine molecule shape from electronic geometry Distinguish between polar

More information

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 F13--Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 F13--Exam #2 2013.10.18 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A valid Lewis structure of cannot be drawn without violating the

More information

Lesson Plan. Lesson: Shape of Molecules. Aim: To investigate the shapes of molecules and ions. Learning Outcomes :

Lesson Plan. Lesson: Shape of Molecules. Aim: To investigate the shapes of molecules and ions. Learning Outcomes : Lesson Plan Lesson: Shape of Molecules Aim: To investigate the shapes of molecules and ions Learning Outcomes : At the end of the lesson, students will be able to : 1. explain the Valence Shell Electron

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information